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Abstract: This paper deals with a reliability system hit by three types of shocks ranked as harmless,
critical, or extreme, depending on their magnitudes, being below H1, between H1 and H2, and above
H2, respectively. The system’s failure is caused by a single extreme shock or by a total of N critical
shocks. In addition, the system fails under occurrences of M pairs of shocks with lags less than some
δ (δ-shocks) in any order. Thus, the system fails when one of the three named cumulative damages
occurs first. Thus, it fails due to the competition of the three associated shock processes. We obtain a
closed-form joint distribution of the time-to-failure, shock count upon failure, δ-shock count, and
cumulative damage to the system on failure, to name a few. In particular, the reliability function
directly follows from the marginal distribution of the failure time. In a modified system, we restrict
δ-shocks to those with small lags between consecutive harmful shocks. We treat the system as a
generalized random walk process and use an embellished variant of discrete operational calculus
developed in our earlier work. We demonstrate analytical tractability of our formulas which are also
validated, through Monte Carlo simulation.

Keywords: competing failure processes; extreme shocks; N-critical shocks system; multiple δ-shocks;
random walk; fluctuation theory; discrete operational calculus; failure time; prefailure time; reliability
function; closed form
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1. Introduction
1.1. Competing Failure Processes

The term “competing failure processes” applies to systems periodically or continuously
damaged by at least two factors. For example, a system can be hit by shocks of different
magnitudes, so that one single extreme shock of a magnitude exceeding a threshold H can
knock the system down. Or if two consecutive shocks land in the system within a very
short period of time, say, with a time lag smaller than a δ, this can ruin the system as well.
The second of two such shocks is referred to as a δ-shock. In this simple situation, the
system fails when it is hit by an extreme shock or by a δ-shock, whichever of the two comes
first. The time of the system’s failure is referred to as the time-to-failure or lifetime of the
system. Even though there is one single shock process, we deal with two different types of
damages inflicted on the system.

More formally, suppose that the shocks land in the system at times τ1, τ2, . . . with
respective magnitudes W1, W2, . . .. Thus, a shock at τk is extreme when Wk > H, and the
kth shock is a δ-shock if τk − τk−1 < δ. The system fails at time τk if the kth shock is extreme
or it is a δ-shock. In this case, τk is the lifetime of the system.

More rigorously, let ν = inf{n = 1, 2, . . . : Wn > H} and µ = inf{m = 1, 2, . . . : τm−
τm−1 < δ}, and ρ = µ ∧ ν. Then, τρ is the time-to-failure.

Now, we can identify two processes, R1 = (τk, Wk : k = 0, 1, . . .) and R2 = (τk−
τk−1 : k = 1, 2, . . .), which compete with each other in the sense that R1 wins if ν < µ. R2
wins if µ < ν, and no process wins when µ = ν. Consequently, we can say that R1 and
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R2 compete with each other, and because they are obviously dependent, R1 and R2 are
dependent competing failure processes (or DCFP).

Other examples of DCFP include the degradation (aging) process that is represented
by a monotone-increasing function or monotone-increasing or nondecreasing stochastic
process φ that runs until it crosses some fixed sustainability threshold D. If T (whether
random or deterministic) is the crossing (first passage) time, then the system fails. Degra-
dation can be accelerated by soft shocks that more quickly degrade the system, causing φ
to cross D sooner, which may also occur upon the landing of one of the soft shocks that
turns out to be fatal. Thus, the combination of the natural degradation and external soft
shocks can represent process R1. Other shocks can also hit the system as described above
as process R1, now R2, with some shocks being extreme. If the crossing of D occurs first
and thus causes a so-called soft failure of the system, then R1 wins. If an extreme shock
(with magnitude W > H) hits the system first and causes a so-called hard failure, R2 wins.
Altogether, the system fails at some time τρ, which is T or some time τk, when an extreme
shock occurs.

Note that in the general case, the magnitude Wk depends on τk − τk−1, for all
k = 1, 2, . . . (τ0 = 0). Such a process (τk, Wk : k = 1, 2, . . .) is called position-dependent or
the process with position-dependent marking. The latter adds yet additional dependence
between R1 and R2.

1.2. The System under Study

Consider a reliability system periodically hit by random hard shocks of magnitudes
W1, W2, . . . taking place at respective times τ1, τ2, . . .. Some of these shocks are harmless,
some are critical, and some can be singly fatal (usually called extreme). All shocks are
classified by one of the three types dependent on their magnitudes relative to two fixed
critical thresholds, H1 < H2. The harmless shocks are those whose magnitudes Wks ≤ H1.
Shocks with magnitudes Wk ∈ (H1, H2] are critical, and any single shock of magnitude
Wk > H2 is extreme and thus fatal. The system fails instantly after being hit by a single
extreme shock. However, there are N critical shocks to be landed in any order that need to
knock the system down. The last, Nth critical, shock is fatal. In a nutshell, a shock is fatal if
it is extreme or Nth critical.

Altogether, the system fails whenever it is being hit by N critical shocks or by one
extreme shock, whichever of the two events comes first. Note that regarding the critical
shocks, it is not a run system, in which critical shocks must follow one another. In our case,
the assumptions are looser, allowing the critical shocks to be mixed with harmless shocks
that cause failure only when their total number reaches N.

Further embellished, the system is refined in such a way that the harmless shocks
are not that harmless after all. Namely, the system can also be fatally harmed if any two
consecutive shocks (including those categorized as harmless) land with a time lag less than
some δ > 0. The second shock is referred to as a δ-shock. Now we have three different
forces that can trigger system’s failure:

(i) A total of N critical shocks.
(ii) One extreme shock.
(iii) Two consecutive shocks, with a time lag between them less than δ.

(iii′) An embellished variant of (iii) is due to the system’s policy with a total of M
δ-shocks. Note that M δ-shocks apply to multiple δ-shocks occurring in any
order, even consecutively. For example, if M δ-shocks are consecutive, starting,
say, at τi+1, the i + 1st shock (deemed as the first δ-shock) lands within a period
of time less than δ counted from the ith shock at τi, followed by i + 2nd shock
at τi+2 with a time lag less than δ from τi+1, . . ., followed by i + Mth shock at
τi+M with a time lag less than δ from τi+M−1. An M-δ-shock model in which
δ-shocks occur consecutively is called a δ-run model.
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The system fails at some τρ ∈ {τ1, τ2, . . .} if at least one of the three events (i–iii) or
(i, ii) with (iii′) above takes place.

Related Literature. For convenience, we break the entirety of the literature into four
subsections whose contents may occasionally overlap.

1.3. DCFP

The systems with DCFP are more complex than those introduced in Section 1.1. Most
work is focused on computing the reliability function R(t) = P

{
τρ > t

}
, t ≥ 0 and the

utility of the total probability formula to arrive at R(t) that typically includes one or
multiple series and integrals, with numerical results or Monte Carlo simulation, all used to
compute special cases. Many such papers include interesting practical examples of complex
devices in engineering and computer science where such DCFP take place and with the
need to proceed with an associated probabilistic analysis.

For example, Che et al. [1] in 2018 studied a system with degradation driven by a
monotone-increasing stochastic process intertwined with occasional soft shocks entering
the system according to a marked Poisson process. That same process of soft shocks also
hits other components but with different impacts, and they are referred to as hard shocks,
some of which are extreme due to their magnitudes. The first such extreme shock knocks
the system down unless the system fails earlier due to a combination of degradation and
soft shocks.

A somewhat similar system was studied in 2018 by Zhang et al. [2], in 2017 by Hao
et al. [3], in 2023 by Feng et al. [4] (where degradation is modeled by a gamma process), and
in 2021 by Bian et al. [5], who dealt with a multicomponent system. In 2021, Sun et al. [6]
studied yet another similar system, where, however, the degradation process is modeled
by drifted Brownian motion (which is nonmonotone).

Now, Hao and Yang [7] in 2018 embellished Hao et al. [3], which they coauthored, by
introducing hard failure thresholds and also adding a δ-shock policy to the competition.

An interesting modification of the above was proposed by Liu et al. [8] in 2017, in
which the degradation process is rendered nonmonotone to attribute to downhill directions
as a self-healing mechanism.

In 2021, Lyu et al. [9] added the third competing process pertaining to the run shock
policy. This condition renders the system fail when the magnitudes of k consecutive shocks
exceed a critical threshold. Furthermore, when the total number of shocks attains a certain
value, the degradation rate of soft failure changes. Furthermore, the shocks’ interarrival
times follow a phase distribution.

In 2022, Hao and Li [10] investigated DCFP applied to a single-component model,
series, parallel, and mixed series and parallel models.

In 2019, Ranjkesh et al. [11] studied a DCFP system where a shock process is Poisson
with position-dependent marking. In this system, there is no other degradation process
besides the shocks that accumulate until their cumulative damage crosses a fixed threshold.
Another competing process is forged using the δ-shock principle. The authors approximate
the system’s reliability function.

In 2023, Dshalalow and Aljahani [12] studied an N-critical shock model competing
with an aging process.

N-Critical Shocks Models. As a DCFP with multiple processes involved, an N-critical
model, along with aging and soft shocks, was studied in 2022 by Dshalalow and White [13].
The aging process was defined as linear with a deterministic slope, and it was combined
with soft shocks that accelerated aging, and such a cumulative aging process sooner or
later crossed a sustainability threshold. The projection of such a crossing point was the
soft failure. After this random point, say η, the system was deemed inoperational and shut
off. The system could also fail if it was hit by one of the critical shocks, namely, by the Nth
critical shock, say at the instant τν. Thus, the system fails at time η ∧ τν.

In 2012, Jiang et al. [14] studied a variant of such a system with aging, soft shocks
(cumulative shocks model), and hard shocks. There are three thresholds, H0 < H1 < H2, of
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which H2 is “critical”. It takes just one shock of a magnitude above H2 to knock the system
down. However, once N shocks cross H0 (but not H2), the threshold H2 is downgraded to
H1, so that it now takes one H1-critical shock (that is, of a lesser magnitude) to knock the
system down. Meanwhile, aging, along with soft shocks, takes its course, and if the aging
curve crosses some D, the system soft-fails, unless it fails earlier due to an extreme shock.
Now we see that while this system is not exactly N-critical shock, it carries some elements
of the N-critical shock protocol.

An N-critical shock system was studied earlier by Cha and Finkelstein [15] in 2011,
but with no aging. Wu et al. [16] in 2022 also studied an N-critical shock system with no
aging under the assumption that shocks arrive according to a Markov renewal process.

Most recently, an N-critical shock system appeared in 2023 in works by Wei et al. [17]
and Dshalalow and Aljahani [12]. The authors of [17] also included shock-dependent
maintenance. In [12], Dshalalow and Aljahani worked with an aging process driven
by a nonspecified monotone-increasing function δ that crosses a threshold D at point
T = δ−1(D) that can be observed only with some random delay, that is, at some epoch
of time when the system’s failure can be verified. The system can fail earlier if it is hit by
a total of N critical shocks. So, there is a combination of DCFP and N-critical shocks in
one system. The authors of [12] arrive at closed-form functionals representing the joint
distribution of the lifetime of the system, the overall damage to the system upon failure,
and other characteristics, such as prefailure time and the associated damage.

Run Shock Models. A run shock system is a special case of an N-critical shock system,
compared to which, a run shock requires N consecutive shocks to occur to knock down the
system, whereas an N-critical shock policy allows N critical shocks to mix with noncritical
shocks in any order. Furthermore, any consecutive occurrence of N critical shocks is not
excluded from the N-critical shock protocol, and thus formally, the N-critical policy is more
relaxed compared to the run shock policy. For that reason alone, the N-critical policy seems
to apply to a wider class of reliability systems.

Here is another shortcoming of the run shock policy. Suppose a system is hit by a run
of N − 1 consecutive critical shocks followed by one noncritical shock, then followed by
another run of N − 1 consecutive critical shocks and one noncritical shock, and so on. It
seems likely that it takes a while (if ever) to come up against a run of N-critical shocks
before the system becomes “inoperational” as per the run shock nomenclature. It appears
that in this situation, the system may become exhausted much earlier than at an assumed
failure time in the run shock framework.

Yet, run shock represents much earlier modeling with an interesting analytics. An
argument for run shocks was given in Mallor and Omey [18] in 2001 that if applied to
insurance claims, only a series of N consecutive claims large enough would raise flags. We
think that N large claims in any order are sufficiently concerning and more realistic. Note
that Mallor and Omey [18] were the first to introduce such systems; they also studied such
a system in 2003 [19]. Various embellishments of run shock models were studied in Gong
et al. [20] in 2018, Eryilmaz and Tekin [21] in 2019, Lyu et al. [9] in 2021, and in 2022 by
Wen et al. [22]. Poursaeed [23] in 2021 studied a fairly complex multistate run shock system
with different lengths of runs and different categories of failures.

δ-Shock Models. Related to our system are also δ-shock models. As already mentioned
in the description of our model, the failure of the system is stipulated by the first occurrence
of two consecutive shocks with a time lag of less than some fixed δ. This policy pertains to
our model when M = 1. The plain δ-shock policy is often implemented whenever shock
damages (or magnitudes) are hard to observe. A δ-shock model was first introduced by
Li et al. [24] in 1999 followed by Li and Kong [25] in 2007 under the same assumptions,
targeting the asymptotic behavior of the system when δ → 0. Another plain δ-shock model
from the same period was analyzed by Tang and Lam [26] in 2006.

Embellishments of δ-policy are seen in later works, like one in the article by Parvardeh
and Balakrishnan [27], dated 2015. Here, the system is deemed to fail when (a) there
is an occurrence of one δ-shock, or (b) the magnitude of any single extreme shock is
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larger than some H, whichever comes first. Eryilmaz [28] combined run shocks and M
δ-shocks (that is, a run and δ-run model in one), which was a significant upgrade of [27]
even though the paper by Eryilmaz appeared three years earlier, in 2012, compared to [27].

An interesting embellishment of Eryilmaz’s δ-run model [28] was introduced by
Jiang [29] in 2020. Such a system had N different failure thresholds δ1 > δ2 > . . . > δN > 0.
If the time lag between two consecutive shocks lies in (δi+1, δi), i = 1, . . . , N (δN+1 = 0), the
system is associated with ith failure type. The Nth type is irreparable and the whole system
needs replacement, while the first N − 1 types allow repair.

Other various embellishments of δ-shock systems were studied by Lorv et al. [30] in
2020, Wu et al. [31] in 2022, Roozegar et al. [32] in 2023, Doostmoradi [33] in 2023, and Lyu
et al. [34] also in 2023.

Remark 1 (Some applications). While extreme shocks naturally occur in numerous real-world
situations and the reliability literature, δ-shock systems are slightly less popular, while N-critical
models are especially rare. Yet such situations often arise in connection with various insurance
claims or a combination of claims, citations, and violations. It is particularly apparent with car
insurance. Each insured automobile driver knows that every incident, even the one caused by
another driver, triggers an unwanted citation, collectively crossing a specific threshold ending in
cancellation of a policy, because the driver is deemed to pose a risk for the underwriter. Not every
accident or incident (i.e., shock) is equal (shock’s magnitudes), but roughly a certain number of
incidents deemed critical can cause a policy’s cancellation. The time lag between such shocks can also
play a major role. Typically, several incidents mixed with traffic violations occurring within short
time intervals carry a higher risk of cancellation than the same amount of such incidents spread over
a longer period.

δ-shocks that occur in technology or electronic devices are regarded more hazardous because
they significantly reduce the chance for the system to partially recover after being hit by harmful
shocks. Consider, for example, a car suspension system that is periodically hit by bumps or holes.
One such critical hit may require a small amount of maintenance. Yet even with maintenance, there
is a limit to how many such hits the suspension can sustain before having to undergo a complete and
costly replacement. Such hits become even more dangerous if they occur within time intervals short
enough without giving the system an opportunity for partial maintenance.

The same applies to biological organisms like human bodies periodically traumatized by various
diseases that wear out our immune system. Those ailments occurring with shorter lags reduce the
odds for our bodies to (even partially) recover, and thus, such shocks become more life-threatening.
One of the reasons why δ-shocks are alarming is because after each disorder (harmful shock), our
immune system works hard on the body’s recovery, whereas consecutive δ-shocks force the system
to multitask.

Critical and δ-shocks often take place in the stock market. Any adverse action, such as proposing
a controversial budget in Government chambers deemed harmful to the market or raising crude
oil prices, can cause the market to stumble. Raising interest rates due to inflation, wars and the
expectation of wars, or bad reports about major companies or sectors, to name a few, can be thought
of as critical shocks for the market. On the other hand, an economic shock is harmless if it is just
noisy and can be easily identified by using special mathematical tools. However, adverse economic
or political events can have big impacts on market health, especially if they occur within short time
periods, giving the market no opportunity to recover and increasing the risk of a serious crash.

Our Work. The system under study includes two models. In Model 1, we consider a
random process of shocks that are categorized under four types: harmless shocks, critical
shocks (with a total of N to ruin the system), extreme shocks of which only one is sufficient
to knock the system down, and δ-shocks (when two consecutive shocks of any category
hit the system within a time interval shorter than δ). We obtain a closed form of joint
distribution of the failure time τρ, the shock count ρ upon the failure, the cumulative
damage to the system upon the failure, and some other useful random characteristics,
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such as prefailure time τρ−1 and the status of the system at τρ−1. In particular, it gives the
reliability function that directly follows from the marginal distribution of τρ.

In Model 2, we define a δ-shock as a consecutive critical shock. Consequently, the
harmless shocks are excluded, or rather, bypassed. Thus, if two critical shocks, say, at Tj
and Tj+1, hit the system, one after another, the time lag between them must be smaller than
δ. There can be some or many harmless shocks enclosed between Tj and Tj+1 landing at
times τs, τs+1, . . ., but they are not counted as a threat to the system, even though their time
lags are even shorter. Note that a shock at Tj+1, instead of being critical, can also be extreme
and thus counted as a δ-shock. Then for Model 2, we obtain similar characteristics.

Because we treat the system as a generalized random walk process and use an em-
bellished variant of discrete operational calculus, our techniques differ from all others
in the reliability literature. We demonstrate analytical tractability of the results obtained
from a number of special cases and marginal distributions, leading to compact and explicit
expressions, and we discuss various examples. Furthermore, we validate our results by
Monte Carlo simulation.

2. Formalism of Model 1

The current section deals with modeling of a reliability system referred to as Model 1.
Section 3 deals with formulas for the joint distribution of key characteristics of the shock
process, including the prediction of the time-to-failure established in Theorem 1 (using
fluctuation analysis of random walk processes) that by far exceeds what Model 1 originally
targets. Sections 4–6 continue with Model 1, discussing various applications and special
cases and validating the results associated with Theorem 1 by Monte Carlo simulation.
Sections 7–10 deal with Model 2, which emerged from Model 1.

Let [W] denote the equivalent class of all stochastically equivalent r.v.s on a given
probability space (Ω,F ,P) valued in R+ such that W ∈ [W] represents the magnitude of
some shock. Then, the sample space Ω can be partitioned into the three events:

E1 = {W ≤ H1}, E2 = {H1 < W ≤ H2}, E3 = {H2 < W}. (1)

Let
Y = 1E2 + N1E3 (2)

with distribution
a = P(E3), b = P(E2), c = P(E1). (3)

Here 1A stands for the indicator function parametrized by a fixed set A that can be an
event like in (2).

Note that the way r.v. Y is defined implies that one extreme shock that ruins the
system at once has the strength of N critical shocks. Furthermore, it takes N critical shocks
to makes the system inoperational. That said, with a sequence Y1, Y2, . . . , the system is
immune to harmless shocks, that is, when respective Y’s equal 0 (with probability c). With
Yk1 = Yk2 = . . . = YkN = 1, the system is stricken by a total of N critical shocks of which the
fatal one lands at τkN . The system can be ruined earlier at some τn if Yn = N, corresponding
to the first and only extreme shock.

Obviously, {Y = N} = E3, {Y = 1} = E2, and {Y = 0} = E1. Then the probability
generating function (pgf) of Y is

EzY =
∫

zYdP =
∫

zyPY(dy) = ∑y zyP{Y = y} = azN + bz + c. (4)

As mentioned, the impact of one extreme shock is equivalent to N critical shocks
that occur in any order and are mixed with harmless shocks, in particular, when N = 1,
Y = 1E2∪E3 , eliminating the need for two thresholds H1 and H2 and making any critical
shock equally extreme. The pgf of Y reduces to EzY = (a + b)z + c, making Y a Bernoulli
r.v. with events E2 and E3 merged. On the other hand, when N becomes very large, it
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seems like one extreme shock is a more likely scenario of system’s failure, although the
latter also depends on a and b.

Suppose (τk : k = 1, 2, . . .) is a point process onR+, that is, ∑∞
k=1 ετk (εa is a point mass)

a random measure, representing the times when the shocks hit the system, such that almost
surely (a.s.) τk → ∞ as k → ∞.

Let (Wk : k = 1, 2, . . .) ⊆ [W] be a sequence of iid (independent and identically dis-
tributed) r.v.s representing magnitudes of shocks exerted on the system at respective times
(τk). The process of the shocks’ times and magnitudes could be specified by the marked
point process. However, if we want to easily distinguish the impacts of the shocks as per
(1)–(4), we would rather turn to the auxiliary sequence (Yk) associated with (Wk), specified
in (2), and utilize the marked point process ∑∞

k=1 Ykετk . Note that while the r.v. Yk is closely
related to Wk, it does not reveal the magnitude of Wk other than pointing out what category
the shock with magnitude Wk belongs to. But the sequence {Yk} carries enough information
on {Wk} to lay the foundation for our forthcoming analysis of a discrete-valued random
walk that we are going to employ throughout this paper, and thus it well serves its purpose.

To proceed further, we have

Bn = ∑n
k=1 Yk, n = 1, 2, . . . , (5)

and we form the associated sequence of partial sums of {Yk} and define

ν = min{n : Bn ≥ N}. (6)

where ν is the ruin index (also the nominal count of harmful hits) exerted upon the system
in the absence of any other formal cause of the system’s failure.

We note that there is a situation when Bν is strictly greater than N. It occurs when
Bν−1 < N and Yν = N, that is, when Wν > H2. Thus, the system has accumulated Bν−1
critical shocks (short of N), and a shock at τν turns out to be extreme (valued equivalent to
N critical shocks), implying that Bν = Bν−1 + N, which can be strictly greater than N.

Observe that even if N is large, the system still can fail fairly soon, because one extreme
shock carries N and it knocks the system down on its first occurrence, while a sequence of
critical shocks gets spread out over time if probability b of a critical shock is small enough
compared to a, making N such shocks unlikely to occur soon. So, the competition between
critical and extreme shocks is more flexible compared to a system under critical shocks
alone, and it is driven by N as well as a and b.

Furthermore, the system can also go under if there are M instances (in any order)
when the time lag between any two consecutive (even harmless) shocks is less than some
(small) real number δ. This is formalized as follows. Let Xi ∈ [X] such that

Xi = 1{|(τi−1,τi)|<δ}, i = 1, 2, . . . , τ0 = 0, (7)

assuming that

|(τi−1, τi)| ∈ [∆], i = 1, 2, . . . , τ0 = 0, |·|is the Lebesgue measure (8)

(later on, we discuss other options for τ0), that is, the lengths ∆is of intervals (τi−1, τi)s are
identically distributed as some r.v. ∆.

The r.v. Xi is Bernoulli with the marginal pgf

EyXi = αy + β, (9)

where
α = P{∆ < δ}. (10)

Thus, {Xi} is the sequence of i.i.d. Bernoulli r.v.s counting δ-shocks.
We would like to call Xis and Yis the shocks identifiers.
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Remark 2. From this on, it makes sense to define X0 = Y0 = 0 a.s.; while it is clear why we
set X0 = 0 (because with M = 1, the condition X0 = 1 would make the system instantly fail
and bar it from any further development, which makes sense to avoid), with Y0 = 0 we agree to
have the system started with one harmless shock if we take into consideration Equations (2) and (3)
where Y ∈ {0, 1, N} with the distribution {c, b, a}. Of course, we can replace the very rigid and
impractical condition X0 = 1 a.s. with P{X0 = 1} = q instead.

Concerning {Yk}, we set Y1, Y2, . . . ∈ [Y]. However, we define Y0 = 0 with probability 1,
that is, under the assumption that a = b = 0 and c = 1, which agrees with (2) and (3), and
have Y0 distributed differently from the rest of Yis. Consequently, the process {(Xi, Yi) : i ∈ N0} is
delayed renewal.

A benefit of such a setting is that X1 is a δ-shock if |(τ0, τ1)| < δ, because with a harmless
shock at τ0, we ensure that X1 = 1, in full agreement with its definition in (7) rather than with a
conflicting message about X1 being 1 according to (7) if there is no shock at all at τ0. Furthermore,
it is also in agreement with a forthcoming formula in Corollary 1.

We also note that with Y0 = 0, a harmless shock allegedly at τ0 need not occur exactly at
time τ0, but at any time prior to τ0 allowing us to keep a harmless shock on record and assign it to
time τ0.

The joint distribution of (X, ∆) is naturally obtained through

g(y, θ) = EyXe−θ∆ = Ey1{∆<δ} e−θ∆ = α(θ)y + β(θ), (11)

where
α(θ) = E1{∆<δ}e−θ∆ and β(θ) = E1{∆≥δ}e−θ∆ (12)

and
α = α(0) = P{∆ < δ}, β = β(0), α + β = 1, (13)

whereas the marginal LST (Laplace–Stieltjes transform) of ∆ is

γ(θ) = Ee−θ∆ = g(1, θ) = α(θ) + β(θ) assuming
1
γ
= E∆ < ∞. (14)

As for the common joint transform γ(y, z, θ) = EyXzYe−θ∆ of the sequence (Xi, Yi, ∆i), i =
1, 2, . . ., we assume that Y is independent of (X, ∆). That is, in the context of the marked
point process (Xi, Yi, ∆i), i = 1, 2, . . . , we assume position independent marking. This means
that the magnitude Wi of the ith shock at τi (and thus Yi) is independent of ∆i = |(τi−1, τi)|,
as a common assumption in many real-world reliability systems. Note, however, that this
assumption does not hold if τis are random observations over the status of the system, and
Xis and Yis at τi would then strictly depend on ∆is.

Consequently,

γ(y, z, θ) = EzYE
[
yXe−θ∆

]
= a(z)g(y, θ) =

(
azN + bz + c

)
[α(θ)y + β(θ)]. (15)

Example 1. To illustrate our settings in a practical formation of the joint distribution of ∆ and
X, suppose the ∆-marginal distribution of (X, ∆) is exponential with parameter γ, that is, ∆ ∈
[Exp(γ)]. Then, from (12),

α(θ) = Ee−θ∆1{∆<δ} = γ
∫ δ

x=0
e−(θ+γ)xdx =

γ

γ + θ

[
1 − e−(γ+θ)δ

]
(16)

and
β(θ) = E1{∆≥δ}e−θ∆ =

γ

γ + θ
− γ

γ + θ

[
1 − e−(γ+θ)δ

]
=

γ

γ + θ
e−(γ+θ)δ. (17)

Then,
α = α(0) = P{∆ < δ} = 1 − e−γδ and β = β(0) = e−γδ. (18)
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Hence, from (11),

g(y, θ) = EyXe−θ∆ = Ey1{∆<δ} e−θ∆ = α(θ)y + β(θ)

= γ
γ+θ

[
y
(

1 − e−(γ+θ)δ
)
+ e−(γ+θ)δ

] (19)

verifying that the corresponding marginal transforms are

g(1, θ) = Ee−θ∆ =
γ

γ + θ
and g(y, 0) = EyX = αy + β =

(
1 − e−γδ

)
y + e−γδ

as it should be. Furthermore, from (19),

d
dy

g(y, θ)
∣∣
y=1 =

γ

γ + θ

(
1 − e−(γ+θ)δ

)
=

γ

γ + θ

(
1 − e−γδe−θδ

)
,

we obtain the subcovariance

R(∆, X) = E[∆ · X] = (−1)
∂

∂θ
g(1, θ)

∣∣
θ=0 =

1
γ

(
1 − e−γδ

)
+ δe−γδ.

Therefore, from (19),

Cov(∆, X) = E[∆ · X]−E∆ ·EX
= 1

γ

(
1 − e−γδ

)
+ δe−γδ − 1

γ

(
1 − e−γδ

)
= δe−γδ. (20)

The same construction as above can be applied to any absolutely continuous, a.s. positive r.v. with a
density f . Of course it would be preferable, although not mandatory, that

α(θ) = Ee−θ∆1{∆<δ} =
∫ δ

x=0
e−θx f (x)dx

yields a closed-form expression. For example, a gamma r.v. with parameters (α = r, β = γ), where

r ∈ N, will do the job. Its density is f (x) = γe−γx (γx)r−1

(r−1)! , implying that

α(θ) = Ee−θ∆1{∆<δ} =
γr

(r − 1)!

∫ δ

x=0
e−(θ+γ)xxr−1dx.

The integral can be easily computed because r ∈ N. For example, for r = 3 (without loss of
generality),

α(θ) = γ3

2

∫ δ
x=0 e−(θ+γ)xx2dx = [1 − e−(θ+γ)δ]

(
γ

γ+θ

)3
− δγ

(
γ

γ+θ

)2
− 1

2 (δγ)2 γ
γ+θ

β(θ) =
(

γ
γ+θ

)3
− α(θ) = e−(θ+γ)δ

(
γ

γ+θ

)3
+ δγ

(
γ

γ+θ

)2
− 1

2 (δγ)2 γ
γ+θ

α(0) = 1 − e−γδ − δγe−γδ − 1
2 e−γδ(δγ)2

β(0) = e−γδ + δγe−γδ + 1
2 e−γδ(δγ)2.

Now, with the sequence

An = ∑n
k=1 Xk, n = 1, 2, . . . , (21)

of partial sums, we define the ruin index on M occasions of pairs of shocks hitting the
system within a small time interval:

µ = min{m : Am = M}. (22)

Finally, the cumulative ruin index
ρ = µ ∧ ν (23)
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forms the time-to-failure of the system τρ or equivalently, the lifetime of the system. Conse-
quently, τρ is the earliest time of an arriving shock when a total of M δ-shocks land in the
system or the number of critical shocks reaches N or when the arriving shock at τρ is of
magnitude Wρ > H2, whichever of the three named events comes first.

Figure 1 below depicts system’s failure caused by one of the two conditions: an
occurring extreme shock or the number of critical shocks reaching N. Here, ρ = ν. This is
because µ < M.

0t 1t 2t

critical shock

non critical shock

v
t1v

t
-

th critical shockN

-shockd

1H

2H

extreme shock

n
t

extreme shock prior to

th critical shockN

Figure 1. System’s failure due to extreme or Nth critical shock. Here, ρ = ν.

In Figure 2, the cause of the failure is M δ-shocks at τµ occurring earlier than τν (that
is, when the total of critical shocks reaches N or if an extreme shock strikes). Thus, ρ = µ.

0t 1t 2t

critical shock

non critical shock

-shockd

1H

2H

-shockd
fatal ( th) -shockM d

critical -shockd

d<

mt

1mt -

Figure 2. Failure due to Mth δ-shock that occurs prior to an extreme or Nth critical shock.

3. Background on Discrete Operational Calculus and Its Use for Bivariate Marked
Point Processes

In this section, we continue to formalize the above model and lay a foundation for its
analysis which goes back to Dshalalow’s article [35] (preceded even by their earlier work),
further embellished in Dshalalow and White [36] as well as in this paper. Let (Ω,F , (Ft),P)
be a filtered probability space. Given the sequence (Xk, Yk) of shock identifiers at respective
times (τk), we define the random measure with bivariate marks

(A, B, τ) = ∑∞
k=1(Xk, Yk)ετk (εa is the Dirac point mass at a point a),

adapted to filtration (Ft), representing the stream (τk) of shocks and their respective
damages to the system. For example, given a set S ⊆ R+, the r.v. (A, B, τ)(S) gives the
total amount of casualties to the system on time set S that can be deduced from (Xk, Yk)’s
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involving those ks for which τks∈ S. Most pertinently, if S = [0, t], we can (at least
theoretically) conclude whether or not the system remains operational by time t. Thus,
{τk} is a sequence of stopping times relative to (Ft) and so is τρ.

Our analysis will focus on the time-to-failure τρ, that is, when the system fails due to a
fatality through a single extreme shock or due to other damages by all critical or δ-shocks
consolidated by τρ. Thus, we target the principal portion of (A, B, τ) reduced to(

Aρ, Bρ, τρ

)
= ∑ρ

k=1(Xk, Yk)ετk ,

that is, in the time interval
[
0, τρ

]
.

The main purpose is to find the joint distribution of τρ and the cumulative damages
to the system at τρ to assess the situation, for example, to see if the overall damage can be
fixed and maintained or the system needs replacement. Perhaps it could be reasonable to
calibrate the associated thresholds H1, H2, and δ. An associated control or optimization is
more readily feasible if the outcome yields closed-form functionals.

We therefore introduce the functional

Φρ(s, y, z, θ, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1 ,
|s| ≤ 1, |y| ≤ 1, |z| ≤ 1, |u| ≤ 1, |v| ≤ 1, Re θ ≥ 0, Re ϑ ≥ 0,

to provide comprehensive information on the system at time τρ, including ρ (the total
shock count upon failure including critical, harmless, extreme, and δs); Aρ (≤ M)—the
total number of δ-shocks; and Bρ—the number of critical and extreme shocks combined.
With Bρ < N, the system’s failure is entirely due to Aρ = M; with Bρ = N, the system’s
failure is due to N critical shocks but no extreme shock; and with Bρ > N, the system fails
due to a combination of one extreme and critical shocks. Furthermore, if needed, the above
functional also provides the information on all named characteristics at time τρ−1, that is,
upon an epoch of a nonfatal shock preceding the one at time-to-failure τρ of the system.

Other than Φρ, of interest is also

Φµ>ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1 1µ>ν

on the confined space (Ω,F ∩ {ν < µ},P{ν<µ}). It gives the status of the system that fails
entirely due to critical shocks alone or a combination of critical shocks and one single
extreme shock at τρ, but not due to δ-shocks. More on this and other variants is established
in Theorem 1.

We recall that the random measure (A, B, τ) = ∑∞
k=0(Xk, Yk)ετk is a marked point

process. More specifically, (A, B, τ) is a marked delayed renewal process with position-
dependent marking (although it is not required in the Model 1 setting, where we assume
position independence). The latter means that

(i) (Xk, Yk, ∆k = (τk − τk−1)), k = 0, 1, 2, . . . , τ−1 = 0, is a sequence of independent ran-
dom vectors.

(ii) The vectors (Xk, Yk, ∆k) ⊆ [(X, Y, ∆)], k = 1, 2, . . . , (that is, identically distributed).
(iii) (X0, Y0, ∆0 = τ0) /∈ [(X, Y, ∆)] (so far no assumption on the initial condition).
(iv) The vectors (Xk, Yk) may depend on ∆k but do not depend on ∆0, . . . , ∆k−1, k =

1, 2, . . . ; (X0, Y0) depends on ∆0 (position dependence).

Throughout the rest of the paper, we use the D-operator and its calculus, introduced
earlier in Dshalalow [35]. The D-operator, like the differential operator, is parametric (with
integer parameter k ∈ Z), defined as

Dk
xF(x, y) =

limx→0
1
k!

∂k

∂xk

[
1

1−x F(x, y)
]

, k ≥ 0

0, k < 0

if it is applied to a function F analytic at zero in variable x.
As rendered in calculus, where we rarely use the definition of the derivative, we make

use of some properties of the D-operator (see [35,36]):
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(Di) D is a linear functional.
(Dii) Dk

x(1(x)) = 1, where 1(x) = 1 for all x ∈ R.
(Diii) Let g be an analytic function at zero. Then, it holds true that

Dk
x

(
xjg(x)

)
= Dk−j

x g(x).

(Div) In particular, if j = k, we have

Dk
x

(
xkg(x)

)
= g(0).

Theorem 1. Let

(A, B, τ) = ∑∞
k=0(Xk, Yk)ετk (24)

be a marked random measure with position-dependent marking representing a delayed marked
renewal process terminated at τρ such that the joint transforms of the respective increments of
(A, B, τ) are

γ(y, z, θ) = EyXzYe−θ∆o f (Xi, Yi, ∆i), i = 1, 2, . . . , (25)

γ0(y, z, θ) = ExX0 zY0 e−θ∆0 , (26)

[since (Y0, ∆0) has a different distribution from (Yi, ∆i)s], with the respective components

∆1 = τ1, ∆2 = τ2 − τ1, . . . ∈ [∆] (27)

∆0 = τ0 /∈ [∆], (28)

Yi = 1E2 + N1E3 , with the distribution a = P(E3), b = P(E2), c = P(E1)[see (1)] : (29)

Y0 = B0 is an integer-valued, nonnegative, r.v. (30)

Then the functionals Φρ, Φµ>ν, Φµ<ν, Φµ≥ν, Φµ≤ν satisfy the following formulas:

Φρ(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1

= DN−1
w ◦ DM−1

x

[
γ0(y, z, θ)− γ0(xy, zw, θ)

+Ψ[γ(y, z, θ)− γ(xy, zw, θ)]
]
(M, N)

(31)

Φµ>ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ>ν

= DN−1
w ◦ DM−1

x

[
γ0(xy, z, θ)− γ0(xy, zw, θ)

+Ψ[γ(xy, z, θ)− γ(xy, zw, θ)]
]
(M, N)

(32)

Φµ<ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ<ν

= DN−1
w ◦ DM−1

x

{
γ0(y, zw, θ)− γ0(xy, zw, θ) + Ψ[γ(y, zw, θ)− γ(xy, zw, θ)]

}
(M, N).

(33)

Φµ=ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ=ν

= DN−1
w ◦ DM−1

x

{
γ0(y, z, θ)− γ0(y, zw, θ) + Ψ[γ(y, z, θ)− γ(y, zw, θ)]

−
[

γ0(xy, z, θ)− γ0(xy, zw, θ) + Ψ[γ(xy, z, θ)− γ(xy, zw, θ)]
}
(M, N).

(34)

Φµ≥ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ≥ν

= DN−1
w ◦ DM−1

x {γ0(y, z, θ)− γ0(y, zw, θ) + Ψ[γ(y, z, θ)− γ(y, zw, θ)]}(T) (35)

Φµ≤ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ≤ν

= DN−1
w ◦ DM−1

x {γ0(y, z, θ)− γ0(xy, z, θ) + Ψ[γ(y, z, θ)− γ(xy, z, θ)]}(T). (36)

where

Ψ = Ψ(s, y, z, θ, u, v, ϑ; x, y) =
sγ0(xyu, zvw, θ + ϑ)

1 − sγ(xyu, zvw, θ + ϑ)
. (37)
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Proof. Introduce the following sequences of random indices:

{µ(p) = inf{m : Am > p} : p = 0, 1, . . .} (38)

{ν(q) = inf{n : Bn > q} : q = 0, 1, . . .} (39){
ρ(p, q) = µ(p) ∧ ν(q) : (p, q) ∈ N2

0

}
(40)

and
H12 = H12(p, q) =

{
µ(p) > ν(q) : (p, q) ∈ N2

0

}
(41)

H21 = H21(p, q) =
{

µ(p) < ν(q) : (p, q) ∈ N2
0

}
(42)

H11 = H11(p, q) =
{

µ(p) = ν(q) : (p, q) ∈ N2
0

}
(43)

Next, define the associated double sequences of functionals:

Φρ(p,q)(s, y, z, θ, u, v, ϑ; p, q) = Esρ(p,q)yAρ(p,q)zBρ(p,q)uAρ(p,q)−1 vBρ(p,q)−1 e−θτρ(p,q)−ϑτρ(p,q)−1

= Esρ(p,q)yAρ(p,q)zBρ(p,q)uAρ(p,q)−1 vBρ(p,q)−1 e−θτρ(p,q)−ϑτρ(p,q)−1
(
1H12 + 1H21 + 1H11

)
= Φµ(p)>ν(q)(s, y, z, θ, u, v, ϑ; p, q) + Φµ(p)<ν(q)(s, y, z, θ, u, v, ϑ; p, q)

+Φµ(p)=ν(q)(s, y, z, θ, u, v, ϑ; p, q), (p, q) ∈ N2
0.

(44)

From (44), we first work on Φµ(p)>ν(q)(s, y, z, θ, u, v, ϑ; p, q):

Φµ(p)>ν(q)(s, y, z, θ, u, v, ϑ; p, q) =
Esρ(p,q)yAρ(p,q)zBρ(p,q)uAρ(p,q)−1 vBρ(p,q)−1 e−θτρ(p,q)−ϑτρ(p,q)−11µ(p)>ν(q)

= Esν(q)yAν(q)uAν(q)−1 zBν(q)vBν(q)−1 e−θτν(q)−ϑτν(q)−1 1µ(p)>ν(q)
= ∑∞

j=0 ∑k>j EsjyAj zBj uAj−1 vBj−1 e−θτj−ϑτj−11{µ(p)=k,ν(q)=j}.

(45)

To continue, we introduce operator D applied to a generic function
[
N0,

_
B(0, 1) ⊆ C, f

]
,

where
_
B(0, 1) is a compact unit ball in C centered at zero,

Dp{ f (p)}(x) =
∞

∑
p=0

xp f (p)(1 − x), x ∈ B(0, 1). (46)

(Here, [Domain f , Codomain f , f ] is a standard specification of function f ).
Note that the dummy index p attached to D is being used for convenience only to

indicate which variable (if more than one) it applies to. It can be readily shown that Dk of
(Di) is the inverse operator of D that can revive f if we apply it for every k:

Dk
x
(

Dp{ f (p)}(x)
)
= f (k), k = 0, 1, . . . (47)

Denote the composition

Dpq(·)(x, w) = Dq ◦ Dp(·)(x, w). (48)

Now the application of operator Dpq to 1{µ(p)=k,ν(q)=j} can be readily proven to yield

Dpq1{µ(p)=k,ν(q)=j}(x, w) =
(
xAk−1 − xAk

)(
wBj−1 − wBj

)
= xAk−1

(
1 − xXk

)
wBj−1

(
1 − wYj

)
, j, k = 0, 1, . . . , where A−1 = B−1 = 0.

(49)

Using Fubini’s theorem and noticing that Dpq is a linear operator, we obtain from
(44)–(49),
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Φ∗
µ>ν(s, y, z, θ, u, v, ϑ; x, w) = DpqΦµ(p)>ν(q)(s, y, z, θ, u, v, ϑ; p, q)(x, w)

= ∑∞
j=0 sj ∑k>j E[yAj zBj uAj−1 vBj−1 e−θτj−ϑτj−1Dpq1{µ(p)=k,ν(q)=j}(x, w)]

= ∑∞
j=0 sj ∑k>j E

[
yAj zBj uAj−1 vBj−1 e−(θ+ϑ)τj−1−θ∆j xAk−1

(
1 − xXk

)
wBj−1

(
1 − wYj

)]
separating independent factors

= ∑∞
j=0 sj ∑k>j E

[
(xyu)Aj−1 (zvw)Bj−1 e−(θ+ϑ)τj−1 (yx)Xj zYj

(
1 − wYj

)
e−θ∆j x∑k−1

i=j+1 Xi
(

1 − xXk
)]

and by the independent increments property

= γ0(xy, z, θ)− γ0(xy, zw, θ) + γ0(xyu, zvw, θ + ϑ)[γ(xy, z, θ)− γ(xy, zw, θ)]
× s ∑∞

j=1 sj−1γj−1(xyu, zvw, θ + ϑ)

= γ0(xy, z, θ)− γ0(xy, zw, θ) +
sγ0(xyu,zvw,θ+ϑ)

1−sγ(xyu,zvw,θ+ϑ) [γ(xy, z, θ)− γ(xy, zw, θ)].
(50)

The convergence of the series is due to ∥γ(xyu, zvw, θ + ϑ)∥ < 1 as established in [36].
Finally, we arrive at Formula (32), proving that

Φµ>ν(s, y, z, θ, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1 1µ>ν

= DN−1
w ◦ DM−1

x

[
γ0(xy, z, θ)− γ0(xy, zw, θ) +

sγ0(xyu, zvw, θ + ϑ)

1 − γ(xyu, zvw, θ + ϑ)
[γ(xy, z, θ)− γ(xy, zw, θ)]

]
(M, N).

Φµ<ν(s, y, z, θ, u, v, ϑ; M, N) of (33) can be obtained from (32) and (50) by interchanging
the roles of µ and ν. Thus, analogous to (50),

Φ∗
µ<ν(s, y, z, θ, u, v, ϑ; x, w) = DpqΦµ(p)<ν(q)(s, y, z, θ, u, v, ϑ; p, q)(x, w)

= γ0(y, zw, θ)− γ0(xy, zw, θ) + Ψ[γ(y, zw, θ)− γ(xy, zw, θ)]
(51)

yielding Formula (33). Now, to obtain (34), we use a similar routine.
Lastly, Formula (31) for Φρ(s, y, z, θ, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1

follows from summing up expressions (32)–(34) as per (44) and a straightforward algebra.
Formulas (35) and (36) are also subject to the summation of the pairs of (32), (34) and (33),
(34), respectively.

4. Reduced Functional

In this section, we discuss special cases that not only are in agreement with popular
settings in the reliability literature but also are reducible to very tame formulas in support
of our claim of closed-form expressions. First, we drop Aρ−1, Bρ−1, and τρ−1 from Φρ (the
reference parameters at the time of a shock prior to system’s failure at τρ), even though they
might be useful in some applications or even as stand-alone characteristics. Furthermore,
we assume M = 1, rather than being arbitrary. Under this constraint, the system reduces to
the most common variant of δ-shock models. One possible shortcoming of this assumption
is due to a single instance of any two shocks hitting one after another within a very short
time interval and standing on par with seemingly more serious assaults by a single extreme
shock or N critical shocks. A practical argument for employing this policy is that the system
does not have to be destroyed due to a δ-shock (especially if a δ-shock is formed by two
consecutive harmless shocks) but may be paused and evaluated for needed maintenance.
Granted, a pair of two consecutive harmless shocks can be harmless, but this is hard to know,
let alone that in various real-world systems the true magnitudes of shocks is impossible to
even approximate; however, often two shocks hitting one after another within a short time
interval can raise flags. Secondly, it is possible that at least one of the two shocks in δ-form
can be harmful. Thirdly, we address this issue when constructing Model 2 in Sections 7–10.
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Main Formula

From (31),

Φρ(s, y, z, θ, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1

= DN−1
w ◦ DM−1

x

[
γ0(y, z, θ)− γ0(xy, zw, θ)

+ sγ0(xyu,zvw,θ+ϑ)
1−sγ(xyu,zvw,θ+ϑ) [γ(y, z, θ)− γ(xy, zw, θ)]

]
(M, N)

we drop Aρ−1, Bρ−1, and τρ−1, reducing (31) to the formula for the joint distribution of the
lifetime τρ; the cumulative damages to the system Aρ, Bρ from critical, extreme, or δ-shocks
(whichever of the three occurs first) at the failure time; and the total shock count ρ, namely

Φρ(s, y, z, θ, 1, 1, 0; M, N) = EsρyAρ zBρ e−θτρ

= DN−1
w ◦ DM−1

x

[
γ0(y, z, θ)− γ0(xy, zw, θ)

+ sγ0(xy,zw,θ)
1−sγ(xy,zw,θ) [γ(y, z, θ)− γ(xy, zw, θ)]

]
(M, N).

(52)

Remark 3. Functionals Φρ in Formulas (31) and (52) include a prehistory of the system (that is,
prior to the current process of shocks lashing at the system from τ0 until τρ; plainly, prior to τ0). It
may pertain to a history of prior damages to the system until τ0 that were not reset or repaired and
thus had to be integrated as its initial condition. In particular, it can carry out crossings of lower
threshold values M0 and N0.

The historical information on the system is included in the initial distribution

γ0(y, z, θ) = EyX0 zY0 e−θτ0

as the joint transform of X0–the δ-shocks count; Y0–the number of critical shocks; and the duration
τ0 of the process observed from the inception. If any of the specified conditions of system’s failure
at τ0 are already met, it will be instantly detected by one of the D-operators pertaining to property
(Div), with no further development past τ0, because the system would be inoperational.

Yet, to tame the underlying formulas in Theorem 1, we often set τ0 = 0 and X0 and Y0 as
constants or zeros serving as sufficiently reasonable initial conditions for the system. As mentioned,
however, more comprehensive data can include a full cycle of prior assaults and its outcome that
can conveniently be integrated by merging utilizing the flexibility of Formulas (31) and (52). This
option in its most general form is always available, but it would extend our current work beyond its
length and we choose to postpone it.

For now, we reduce the historical process to X0 = Y0 = τ0 = 0, implying that γ0 = 1.
That being said, with X0 = 0, we have no prior δ-shocks but one harmless shock at τ0, as per our
discussion in Remark 2. We recall that all Ys have distribution c = P{Y = 0}, b = P{Y = 1},
and a = P{Y = N}. We generally assume that a, b, c are positive. However, the latter applies only
to Y1, Y2, . . . , and not to Y0 which has a = b = 0 to enable a δ-shock at τ1 with probability 1 in the
event |(τ0, τ1)| < δ, as pointed out in Remark 2.

Consequently, under γ0 = 1, Formula (52) is further reduced to

Φρ(s, y, z, θ, 1, 1, 0; M, N) = EsρyAρ zBρ e−θτρ

= DN−1
w ◦ DM−1

x

[
sγ(y,z,θ)−sγ(xy,zw,θ)

1−sγ(xy,zw,θ)

]
(M, N).

(53)

Now, from

sγ(y, z, θ)− sγ(xy, zw, θ)

1 − sγ(xy, zw, θ)
=

1 − sγ(xy, zw, θ)− 1 + sγ(y, z, θ)

1 − sγ(xy, zw, θ)
= 1 − 1 − sγ(y, z, θ)

1 − sγ(xy, zw, θ)
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and by properties (Dii) and (Diii) of operator D, we arrive at an even tamer expression
for Φρ.

Φρ(s, y, z, θ, 1, 1, 0; M, N) = EsρyAρ zBρ e−θτρ

= 1 − [1 − sγ(y, z, θ)]DN−1
w ◦ DM−1

x

[
1

1−sγ(xy,zw,θ)

]
(M, N).

(54)

In a nutshell, the associated special case of (31) in Theorem 1 agrees with the following:

Corollary 1. Under the conditions of Theorem 1, setting X0 = Y0 = τ0 = 0 and dropping
Aρ−1, Bρ−1, and τρ−1, the reduced functional Φρ(s, y, z, θ, 1, 1, 0; M, N) satisfies Formula (54).

As pointed out in the beginning of this section, our next attempt to further reduce Φρ

is through setting M = 1. We checked out the general case for M ≥ 1 and obtained fully
explicit, although bulkier, formulas. Consequently, we decided to postpone and finish it in
a stand-alone paper. Now, with M = 1, the final variant of (54) turns

φρ(s, y, z, θ; N) = Φρ(s, y, z, θ, 1, 1, 0; 1, N)
= EsρyAρ zBρ e−θτρ

= 1 − [1 − sγ(y, z, θ)]DN−1
w ◦ D0

x

[
1

1−sγ(xy,zw,θ)

]
using (Dv)

= 1 − [1 − sγ(y, z, θ)]DN−1
w

1
1 − sγ(0, zw, θ)

. (55)

Thus,
φρ(s, y, z, θ; N) = EsρyAρ zBρ e−θτρ

= 1 − [1 − sγ(y, z, θ)]Π(s, z, θ)
(56)

where
Π(s, z, θ) = DN−1

w
1

1 − sγ(0, zw, θ)
.

From (15), where γ(y, z, θ) =
(
azN + bz + c

)
[α(θ)y + β(θ)], we have

1
1 − sγ(xy, zw, θ)

=
1

1 − s(azNwN + bzw + c)[α(θ)xy + β(θ)]

implying that
1

1 − sγ(0, zw, θ)
=

1
1 − sβ(θ)(azNwN + bzw + c)

. (57)

After a straightforward algebra and abbreviations,

A = A(s, z, θ) =
saβ(θ)zN

1 − scβ(θ)
, B = B(s, z, θ) =

sbβ(θ)z
1 − scβ(θ)

, C = C(s, θ) =
1

1 − scβ(θ)
(58)

we arrive at
1

1 − sγ(0, zw, θ)
= C

1
1 − (AwN + Bw)

. (59)

To proceed with operator DN−1
w , we expand C 1

1−(AwN+Bw)
in the functional series

π = π(s, zw, θ) = C ∑∞
n=0

[
AwN + Bw

]n

that agrees with C 1
1−(AwN+Bw)

on an open ball B(0, ε) ⊆ C of radius ε centered at w = 0,

where C 1
1−(AwN+Bw)

is analytic. π is a feasible representation of C 1
1−(AwN+Bw)

on B(0, ε),

because operator D requires exactly that.
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To continue, we rewrite π in the form

π = C ∑∞
n=0

[
AwN−1 + B

]n
wn.

Then, applying DN−1
w to π under (Div) gives

Π(s, z, θ) = DN−1
w π = C ∑N−1

n=0 DN−1−n
w

[
AwN−1 + B

]n
. (60)

The next step is due to the following:

Lemma 1. For n = 0, 1, . . . R, it holds true that

DR−n
w

(
awR + b

)n
= bn.

Proof. Firstly,

DR−n
w

(
awR + b

)n
= ∑n

k=0

(
n
k

)
akbn−kDR−n

w wRk.

Then,
DR−n

w

(
awR + b

)n
= 1 = b0, if n = 0

Further, for k ≤ n, n ≥ 1,

DR−n
w wRk = 1, if k = 0 and DR−n

w wRk = 0, if k > 0

Thus, DR−n
w

(
awR + b

)n
= ∑n

k=0 (
n
k)akbn−k1{0}(k) = bn.

So, from Lemma 1 and Equation (60),

Π(s, z, θ) = C ∑N−1
n=0 Bn = C 1−BN

1−B = 1
1−scβ(θ)

1−BN

1− sbβ(θ)z
1−scβ(θ)

= 1−BN

1−scβ(θ)−sbβ(θ)z

= 1
1−sβ(θ)(c+bz)

[
1 −

(
sbβ(θ)z

1−scβ(θ)

)N
]

.
(61)

In particular,

Π = Π(1, 1, 0) =
1 − BN

1 − (1 − a)β
=

1 − BN

α + aβ
=

1
α + aβ

[
1 −

(
bβ

1 − cβ

)N
]

, (62)

which will play a key role in the forthcoming sections.
Thus, from (4), (11), (55) and (61),

φρ(s, y, z, θ; N)= EsρyAρ zBρ e−θτρ

= 1 − [1 − s{α(θ)y + β(θ)}a(z)]
{

1
1−sβ(θ)(c+bz)

[
1 −

(
sbβ(θ)z

1−scβ(θ)

)N
]}

,
(63)

herewith arriving at a fully explicit expression.
In conclusion:

Corollary 2. Under the conditions of Theorem 1, with X0 = Y0 = τ0 = 0, dropping Aρ−1, Bρ−1,
and τρ−1, and reducing the number of δ-shocks M to one, the functional Φρ(s, y, z, θ, 1, 1, 0; 1, N) =
φρ(s, y, z, θ; N) satisfies Formula (63).

Example 2. The functional φρ(s, y, z, θ; N) = EsρyAρ zBρ e−θτρ in (63) represents a closed-form
expression, which is obvious, and it is reducible to a fully explicit formula once α(θ) and β(θ) are
specified. We turn to Example 1, with
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∆ ∈ [Exp(γ)]and α(θ) =
γ

γ + θ

[
1 − e−(γ+θ)δ

]
, β(θ) =

γ

γ + θ
e−(γ+θ)δ

that can be substituted in (63), while a(z) = azN + bz + c is all set.

5. Marginal Distributions and Means

From Formula (63) for the joint distribution of the time-to-failure τρ and other charac-
teristics of system’s failure, we obtain marginal transforms starting with τρ.

5.1. Time-to-Failure

For s = y = z = 1, we arrive at

Ee−θτρ = φρ(1, 1, 1, θ; N) = 1 − [1 − γ(θ)]Π(1, 1, θ), (64)

where

Π(1, 1, θ) =

{
1

1 − β(θ)(b + c)

[
1 −

(
bβ(θ)

1 − cβ(θ)

)N
]}

(65)

as per (61).
The mean of τρ can be easily derived from (62), (64) and (65):

Eτρ =
1
γ

Π =
1
γ

1
α + aβ

[
1 −

(
bβ

1 − cβ

)N
]

. (66)

Figure 3 below depicts Eτρ(N) in N, ranging from 1 to 100 with four different scales,
allowing us to see with what speed Eτρ approaches a constant value. It looks like it reaches
equilibrium for N around 50 under a fixed choice of main parameters.
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Figure 3. The figure depicts Eτρ under fixed a = 0.1, b = 0.3, c = 0.6, γ = 0.1, δ = 0.1, α = 1 − e−γδ,
and β = 1 − α and with four different maximum values for N: 10, 20, 40, and 100.
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Figure 4 takes on Eτρ as a function of 1
γ in the interval (0.1, 10) for four different fixed

Ns, 5, 10, 20, 30. Recall that 1
γ is the mean time between any two consecutive shocks. The

rest of the parameters are fixed. We see that Eτρ

(
1
γ

)
is monotone-decreasing.
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Figure 4. The figure depicts Eτρ as a function of 1
γ running from 1 to 10 under fixed a = 0.1, b = 0.3,

c = 0.6, δ = 0.05, α = 1 − e−γδ, β = 1 − α with four fixed values for N: 5, 10, 20, 30.

5.2. Assessment of (66)

We render a quick verification in (66) that
(

bβ
1−cβ

)N
< 1 under the assumptions that

0 < a and 0 < α. Indeed, let ∗ be one of the relations <,≤,=,>,≥. Then, because cβ < 1
(or else a = b = α = 0),

bβ

1 − cβ
∗ 1 ⇔ (b + c)β ∗ 1

implying that

(b + c)β < (a + b + c)β ≤ 1 or (b + c)β ≤ (a + b + c)β < 1.

It follows that relation ∗ is < and thus(
bβ

1 − cβ

)N
< 1. (67)

Because of (67), Eτρ is monotone-increasing in N, with the largest value 1
γ

1
α+aβ at

N = ∞ (see Remark 4 below regarding N = ∞) and the smallest at N = 1:

Eτρ(1) =
1
γ

1
α + aβ

α + aβ

1 − cβ
=

1
γ

1
1 − cβ

(68)
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(due to 1 − bβ
1−cβ = α+aβ

1−cβ )

Eτρ(∞) =
1
γ

1
α + aβ

, (69)

respectively. The mean length of the lifetime τρ depends on the mean interarrival time 1
γ

of shocks and on α = P{∆ < δ} and β = 1 − α, but more on α. With α small and β large,

α + aβ gets smaller, and thus 1
γ

1
α+aβ

[
1 −

(
bβ

1−cβ

)N
]

gets generally larger. This is because of

a lesser impact of δ-shocks and the competition running more between extreme and critical
shocks, with a lesser chance to be interrupted by a single δ-shock.

With N large, as per version (69), Eτρ is dominated by α alone, where the competition
runs entirely between extreme and δ-shocks. Thus, with α small, γ fixed, Eτρ largely
depends on a single extreme shock. Of course, Eτρ in all cases can be made arbitrarily long
by decreasing γ and at the same time making any δ-shock’s occurrence unlikely.

Remark 4. Because the key result of Theorem 1 is exclusively established for a finite N, one needs to
take extreme caution with N → ∞. In particular, some interpretations under N = ∞ may be even
inaccurate or contradictory. The meaning of N = ∞ in the context of the D-operator at the center
of Theorem 1 is reminiscent of improper integrals, which circumvent a rigorous Riemann–Darboux
construction on compact intervals and sometimes disagree with direct and Lebesgue integrals yet
are often used. For that reason, it would be safer to reason with an asymptotic behavior of respective
quantities involved under N very large rather than N = ∞.

5.3. δ-Shocks Count

From (63), with s = z = 1, θ = 0,

φρ(1, y, 1, 0; N) = EyAρ

= 1 − [1 − {αy + β}]Π = 1 − α(1 − y)Π
(70)

whereas per (62),

Π =

{
1

α + aβ

[
1 −

(
bβ

1 − cβ

)N
]}

, (71)

we have the PGF of the δ-shocks count prior to system’s failure. (70) and (71) can be
rewritten as

EyAρ = 1 − αΠ + αΠy (72)

implying that Aρ is Bernoulli with parameter αΠ, which is also the mean of Aρ. Obviously,
the mean of Aρ is strictly less than 1.

In a nutshell,
EAρ = αΠ. (73)

Figure 5 presents five plots of EAρ(α), comparing them under five different fixed N
values. Recall that α = P{∆ < δ} = 1 − e−γδ when ∆ ∈ [Exp(γ)]. To plot the five graphs,
we did not specify γ and δ. However, we can keep γ fixed like 1

γ = 10 and vary δ in accord

with α. Obviously, δ = − 1
γ ln(1 − α) becomes monotone increasing in α with γ fixed, and

so does EAρ(α). Consequently, it becomes increasingly more likely to ruin the system with
a δ-shock against critical and extreme shocks and we see it in the plots below that EAρ

approaches 1 under Ns ranging from 1 to 10.
In Figure 5, we draw EAρ for variable values of α and five variants of N = 1, 2, 3, 4, 10

but for fixed a, b, c, where a = 0.2, b = 0.5, c = 0.3, β = 1 − α.
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Figure 5. For a = 0.2, b = 0.5, c = 0.3, β = 1 − α, with 5 different values for N, where EAρ varies in α.

5.4. Critical/Extreme Shocks Damage

From (63), with s = y = 1, θ = 0,

φρ(1, 1, z, 0; N) = EzBρ = 1 − [1 − a(z)]Π(1, z, 0), (74)

where

Π(1, z, 0) =
1

1 − β(c + bz)

[
1 −

(
bβz

1 − cβ

)N
]

(75)

as per (61). The mean of Bρ can be easily derived from (62), (74) and (75):

EBρ = (aN + b)Π =
aN + b
α + aβ

[
1 −

(
bβ

1 − βc

)N
]

. (76)

5.5. Total Shock Count

From (63), with y = z = 1, θ = 0,

φρ(s, 1, 1, 0; N) = Esρ = 1 − [1 − s]Π(s, 1, 0), (77)

where

Π(s, 1, 0) =
1

1 − sβ(c + b)

[
1 −

(
sbβ

1 − scβ

)N
]

(78)

as per (61). The mean of ρ can then be easily derived from (62), (77) and (78) as

Eρ = Π =
1

α + aβ

[
1 −

(
bβ

1 − βc

)N
]

. (79)

Figures 6 and 7 depict Eρ as a function of N with different fixed a, b, c and scales of N.
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Figure 6. γ = 0.1, δ = 0.05, α = 1 − e−γδ, β = 1 − α, a = 0.2, b = 0.5, c = 0.3.
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Figure 7. γ = 0.1, δ = 0.05, α = 1 − e−γδ, β = 1 − α, a = 0.3, b = 0.2, c = 0.5.

5.6. Monte Carlo Simulation of the Process

We next render Monte Carlo simulations of the full stochastic process under some
specified special cases and compare empirical means derived above as a demonstration of
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the results matching empirical findings. In each case below, we assume the times between
shocks is are exponential (γ), and we make numerical assumptions about the parameters,
including the parameter of time between shocks γ, the time δ, the probabilities of each
failure type (a, b, and c), the δ-shock threshold M = 1, and the critical shock threshold N.

For the first set of experiments, we set γ = δ = 1, M = 1, and N = 2. Figures 3–6
below show a comparison of predicted and estimated means of the number of the failure
times τρ, shocks ρ, δ-shocks Aρ upon failure, and (N × Extreme + Critical) shocks Bρ,
respectively.

Predicted values come from numerical implementations of (66), (73), (76) and (79)
(refer to Appendix A for the Python code). Means are estimated as sample means of
each value computed at end-of-life for a sample of 1,000,000 simulated paths (refer to
Appendix B for Python implementations for simulations). This experiment is replicated for
each (a, b) ∈ {0.1, 0.2, . . . , 0.9} × {0, 0.1, . . . , 0.8} with c = 1 − a − b.

We display three heat maps: predicted mean, sample mean, and absolute difference for
each set of probabilities. In every parameter set tested, the error between the true predicted
mean and sample mean is less than 0.002, providing a good validation of the predictions
derived above.

Note the predicted means of the failure time τρ in Figure 8 and shocks ρ in Figure 9
are identical since E∆ = 1 in this case.

Figure 8. Predicted/estimated mean and absolute error for the failure time τρ.

Figure 9. Predicted/estimated mean and absolute error for the shocks ρ.

We notice τρ, ρ, and Aρ have broadly the same pattern: an increase to the extreme
shock probability a results in smaller means. This makes sense because a high a indicates
a high probability that a single shock knocks down the system, so fewer total shocks are
likely to occur over less time with fewer opportunities for δ-shocks. More subtly, increasing
b has a negative impact on the means for constant a because it increases the chance of
critical shock failures in fewer total shocks, reducing all three means (See Figure 10).
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Figure 10. Predicted/estimated mean and absolute error for the δ-shocks Aρ.

The trend here is drastically different: Bρ is positively related to both extreme shock
probability a and critical shock probabilities b. This makes sense: if a or b increase, each
shock is more likely to be extreme or critical, each of which add to Bρ. Further, when
these probabilities are low, δ-shock failures become more likely, in which case Bρ tends to
be smaller (See Figure 11).

Figure 11. Predicted/estimated mean and absolute error for the (N × Extreme + Critical) shocks Bρ.

In addition, we perform some simulations where δ = 1, (a, b, c) = (0.5, 0.4, 0.1), and
M = 1. Furthermore, we vary the waiting time parameter γ and critical/extreme shock
threshold N as

(γ, N) ∈ {0.1, 0.2, . . . , 2} × {1, 3, 5, 10}.

Sample means here are based on 100,000 simulated paths for every pair (γ, N).
Figure 12 below shows the predicted and estimated means of the number of shocks ρ,
δ-shocks Aρ upon failure, (N × Extreme + Critical) shocks Bρ, and failure time τρ. As is
seen, the dots (empirical) align precisely with the means derived above and run on a much
denser mesh of γ values to form smooth curves, providing additional validation.

As expected, the mean failure time τρ always decreases as shocks become more
frequent (larger γ). In addition, more frequent shocks make δ-shocks more common, so
Aρ grows with γ. The means of ρ and Bρ are inversely related to γ since more frequent
shocks make δ-shock failures so common, so there is a reduction in mean number of shocks
at failure time and, hence, Bρ as well.
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Figure 12. Waiting time parameter (γ) versus predicted/empirical means of ρ, Aρ, Bρ, and τρ.

6. When the System Fails Prior to a δ-Shock

We already said in Section 4 that a single δ-shock need not necessarily ruin the system,
but it can; while the occurrence of a δ-shock may not sound convincing enough to suggest
the system becomes inoperational, any such event is worth checking out and so the system
can be fixed if needed. We are interested in estimating the probability that the system fails
through a single extreme shock or multiple critical shocks or their combination before any
δ-shock takes place. Thus, we turn to functional (32)

Φµ>ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ>ν

= DN−1
w ◦ DM−1

x

[
γ0(xy, z, θ)− γ0(xy, zw, θ)

+ sγ0(xy,zw,θ)
1−sγ(xy,zw,θ) [γ(xy, z, θ)− γ(xy, zw, θ)]

]
(M, N)

of Theorem 1 and reduce it under the same assumptions as for Φρ made in Section 4. So,
the following will be assumed:

1. M = 1.
2. γ0 = 1.
3. u = v = 1, ϑ = 0.

Hence, we arrive at the functional

Φµ>ν(s, y, z, θ, 1, 1, 0; 1, N) = φµ>ν(s, y, z, θ; N) = EsρyAρ zBρ e−θτρ 1µ>ν

= DN−1
w ◦ D0

x

[
s

1−sγ(xy,zw,θ) [γ(xy, z, θ)− γ(xy, zw, θ)]
]

= DN−1
w

[
sγ(0,z,θ)−sγ(0,zw,θ)

1−sγ(0,zw,θ)

]
= DN−1

w

[
1−sγ(0,zw,θ)−[1−sγ(0,z,θ)]

1−sγ(0,zw,θ)

]
= DN−1

w

[
1 − 1−sγ(0,z,θ)

1−sγ(0,zw,θ)

]
= 1 − [1 − sγ(0, z, θ)]DN−1

w

[
1

1−sγ(0,zw,θ)

]
= 1 − [1 − sγ(0, z, θ)]Π(s, z, θ)

(80)

which is very similar to φρ of (56) with the same principal part Π(s, z, θ) obtained in (61).
Note that unlike φρ, the functional φµ>ν does not depend on y other than that y = 0 seems
to be the only dependence on y in its right-hand side.



Entropy 2024, 26, 444 26 of 48

Thus, by purging s, y, z, θ as s = y = z = 1 and θ = 0, we have

φµ>ν(1, 1, 1, 0; N) = E1µ>ν = P{ν < µ}
= 1 − [1 − γ(0, 1, 0)]Π(1, 1, 0),

where Π(1, 1, 0) = 1
α+aβ

[
1 −

(
bβ

1−cβ

)N
]

, according to Formulas (4), (11) and (62)

γ(0, 1, 0) = β

implying that

P{ν < µ} = 1 − α

α + aβ

[
1 −

(
bβ

1 − cβ

)N
]
=

aβ

α + aβ
+

α

α + aβ

(
bβ

1 − cβ

)N
. (81)

From Section 5, we show that
(

bβ
1−cβ

)N
< 1. Because α

α+aβ is also less than 1, we
validate that 0 < P{ν < µ} < 1.

Remark 5 (Analysis of the system along extreme values of N and α). From (81), we notice
that P{ν < µ} is monotone-decreasing in N, and it converges to aβ

α+aβ as N → ∞ (see Remark 4
regarding N = ∞). Recall that α = P{∆ < δ}. So, the smaller is α, the larger is P{ν < µ}, which
makes perfect sense.

Furthermore, for N = 1 (as the critical shocks degenerate), we have that

1 − bβ

1 − cβ
=

1 − (b + c)β

1 − cβ
=

1 − (1 − a)β

1 − cβ
=

α + aβ

1 − cβ

implying that P{ν < µ} = 1 − α
1−cβ .

Thus, we see that, under N = 1, with α small and, thus β large, the probability P{ν < µ}
is pretty large. This is because there are no critical shocks competing with extreme shocks, as all
critical and extreme shocks are just extreme shocks (as mentioned in Section 2), and the occurrence
of just one extreme shock will sharply increase the likelihood of system’s failure on the basis of one
extreme shock alone.

On the other hand, when N increases, P{ν < µ} gets smaller, because now critical and
extreme shocks compete, while with N large, extreme shocks, as noticed in Section 2, have an edge
over critical shocks. Yet, P{ν < µ} = aβ

α+aβ in this case reveals an even stronger competition
between extreme and δ-shocks, and with much lesser impact of the critical shocks. Note that if α
is large, β is very small, making the probability P{ν < µ} of an earlier failure due to one extreme
shock disproportionately smaller, because β in the numerator essentially determines the value of
P{ν < µ}.

As noted, the graph in Figure 13 shows P{ν < µ}(N) as a function decreasing in N.
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Figure 13. Plot of P{ν < µ} as a function of N; for fixed a = 0.1, b = 0.3, c = 0.6, γ = 0.1, α =

1 − e−γδ, β = 1 − α, δ = 0.005, N varies from 1 to 50.

7. A Modified System. Model 2. Preliminaries

In Model 2, we redefine δ-shocks to single out only those pairs of shocks with shorter
time lags than δ that are either critical or extreme. In the previous sections, the δ-shocks
applied to any pairs of consecutive shocks under times lags smaller than δ. The latter meant
that any two consecutive harmless shocks with time lags less than δ also qualified, and
because M = 1, any such occurrence was deemed fatal for the system. In some models,
such an occurrence is of concern. In other models, it takes more than two consecutive
shocks in a row to raise flags. In the present modification, we define two consecutive
shocks within a close time proximity of each other to be a threat to the system only if either
of them is harmful (with some further constraints to follow). Note that in the event two
consecutive harmful shocks occur within a time frame less than δ, there can be arbitrarily
many harmless shocks in between, of which all were δ-shocks in the context of Model 1.
Now this is no longer the case.

An extreme shock can be a δ-shock but only if it is preceded by a critical shock. In this
case, the system fails on two counts. If an extreme shock is not δ, the system instantly fails
without giving a chance to any consecutive harmful shock to be δ. Thus, a harmful shock
can be δ only if it is a consecutive shock. Consequently, it can be critical (in particular, Nth
critical) or extreme.

In a nutshell, in a pair of two consecutive harmful shocks with a time lag less than
δ, the second shock is deemed a δ-shock if the first of the two is neither extreme nor
Nth critical.

As mentioned, the harmless shocks still land in the system, but they are no longer
counted as δ-shocks regardless of how many of them occur consecutively with time lags
less than δ.

In contrast with Model 1, we assume that at time τ0, when the system was first
observed, exactly one, strictly critical, shock landed (that is, at any time t ≤ τ0).

We form the process of harmful shocks from {τn}. Suppose T1 is the time of the first
harmful shock after epoch τ0, that is,
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T1 = min{τn : n ∈ N : Wn > H1} (82)

and furthermore,

Tj = min
{

τn > Tj−1 : Wn > H1
}

, j = 1, 2, . . . , T0 = τ0 = 0. (83)

Thus,
{

Tj
}

is an embedded sequence of consecutive harmful shocks (that excludes
harmless shocks).

We proceed with a more rigorous construction of the embedded point process
{

Tj
}

.
Define the random index

η = η1 = min{n ∈ N : Wn > H1}. (84)

Then, T1 = τη and furthermore,

ηj = min
{

n > ηj−1 : Wn > H1
}

, j = 2, 3, . . . (85)

implying that
Tj = τηj , j = 0, 1, . . . , with η0 = 0. (86)

In Figure 14, below, we focus on new variants of δ-shocks. Here, we see a path of
the shocks process in which δ-shocks can only be among harmful shocks. In particular,
τ6 = T2 is identified as the second critical shock and also a δ-shock. The three other shocks
squeezed between T1 = τ2 and T2 = τ6 are harmless, and their roles reduce only to the
determination of the distance between consecutive harmful shocks (critical or extreme).
Thus, the δ-shock at τ6 = T2 is also fatal.

In another scenario, for convenience depicted in the same figure, we assume that the
shock at T2 is not δ. Then, the system will keep functioning until eventually reaching the
time-to-failure at Tρ (introduced in Section 8), that is, at T7 when the first extreme critical
shock lands. This shock becomes fatal on two counts: firstly, because it is extreme, and
secondly, because it is also δ. If neither of these were to take place at T7, then the next
harmful shock would be fatal, because it is Nth critical (assuming that N = 8).

1
t

critical shock

th critical shockN

-shockd

1
H

2
H

harmless shocks

0
T

2 1
Tt =

6 2
Tt = 11 6

Tt =
12

t7 3
Tt = 8 4

Tt =

9
t

´ ´ ´ ´´´´

harmless shock

less

than d

´

less

than d

extreme shock

and -shockd

7
T Tr=

8 N
T T=

Figure 14. A System where δ-shocks can only be among harmful shocks (i.e., critical or extreme).

It seems obvious that ∑∞
k=0 εTk is a delayed renewal process of consecutive harmful

shocks that we will mark in a few moments. The “delay” is driven by one critical shock
striking the system at time T0 or earlier but associated with T0.

Marked point process of shocks: To identify δ-shocks we start with the sequence of
i.i.d. Bernoulli r.v.s

Vj = 1{Tj−Tj−1<δ}, j = 1, 2, . . . (87)
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(being identifiers of δ-shocks) followed by another sequence

Uj = N1{
Wηj>H2

} + 1{
H1<Wηj≤H2

} (88)

of identifiers as i.i.d. binary r.v.s valued in {1, N}. Because Wηj > H1 a.s., there is no need
to include the number 0 in the set {1, N} as much as any other number equally irrelevant.

With the shocks identifiers
(
Vj, Uj

)
, we complete our marking of the point process

∑∞
k=0 εTk (now the support counting measure) as a delayed marked renewal process

(V ,U , T ) = ∑∞
k=0

(
Vj, Uj

)
εTk . (89)

Note that (V ,U , T ) runs indefinitely, continually hitting the system even after it fails.
We fix it in Section 8 after some more formalism.

For the forthcoming analysis, we need to find the joint functional

Γ(y, z, θ) = EyVzUe−θτη = EyVzUe−θT1 , (90)

where [V] and [U] are associated equivalence classes of r.v.s distributed as Vjs and Ujs,
respectively, and τη is the time between T0 = τ0 and T1.

We begin with the marginal functional Γ(1, z, θ) = EzUe−θτη , which satisfies the key
fluctuation theorem (Dshalalow [35]) established there for a marked delayed renewal
process with three active components and holding also for a single active component,
in this case U. A component in a multivariate marked process is deemed active if it is
supposed to cross some critical threshold. Any other component that has no threshold to
cross is referred to as passive. If a multivariate marked point process carries only one active
component, say, U, all other passive components assume their respective values on U’s
crossing. For example, if another passive component is a time component, then it registers
the time when U crosses that threshold. All other passive components assume their values
accordingly at the time of U’s crossing. The process no longer evolves after this event, or
the rest of its future is of no further interest.

If a multivariate marked process has more than one active component, there is a
competition (or a game) between them, in which one of the active components hits their
associated threshold first. When it occurs, the rest of active as well as all passive components
assume their respective values, and the process stops. We dealt with this situation in
Theorem 1, established specifically for a wide class of reliability models with competing
failure processes.

Now, of the two components U and T1 = τη in Γ(1, z, θ) = EzUe−θτη , τη is passive
and it assumes its time value when U turns 1 or N for the first time after T0. To apply the
key fluctuation theorem, we first turn to Section 2 concerning the functional γ(y, z, θ) =
EyXzYe−θ∆, although we focus on the two last components, Y and ∆. Recall that Y took
values 0, 1, N, but from the above setting we are interested in the binary version of Y when
Y is either 0 or greater than 0.

Recall that in Section 2, the sequence {Bn} of partial sums Bn = ∑n
k=1 Yk was associated

with index ν =min{n : Bn ≥ N}, which would have been a ruin index in the absence of
δ-shocks. This was because the system (with no δ-shocks) was harassed exclusively by
harmless, critical, and extreme shocks, and because the system could endure some number
of critical shocks and one extreme shock to land at the total of more than N shocks altogether
upon its failure. In our present setting, we deal with a special case when the process of
shocks is “suspended” or, rather, observed at τη when the first harmful shock lands, which
can be either critical or extreme and thus valued 1 or N, respectively.

To make use of the key fluctuation theorem, we temporarily dismiss the initial critical
shock at τ0 and set ν =min{n ∈ N : Bn ≥ 1}. The suspension of the initial critical shock
makes us assume that Y0 = B0 = 0. Correspondingly, if Bn turns ≥ 1 for some n > 0
at the first time, it means that Bn−1 = 0 and so are all other Bs with lower indices, but
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Bn ∈ {1, N}. In the event the more general version of ν =min{n : Bn ≥ N} is of interest,
we would use the formula

Γ(1, z, θ) = 1 − [1 − γ(1, z, θ)]DN−1
x

1
1 − γ(1, zx, θ)

(91)

as per Dshalalow [35] (or even Dshalalow’s earlier results pertaining to this basic case).
Operator D is the same as the one in (Di) of Section 3. In our present case, as argued, we
need the version of (91) precisely for N = 1, namely,

Γ(1, z, θ) = 1 − [1 − γ(1, z, θ)]D0
x

1
1 − γ(1, zx, θ)

that instantly reduces the right-hand side of (91) to

Γ(1, z, θ) = 1 − [1 − γ(1, z, θ)]
1

1 − γ(1, 0, θ)
(92)

as per (Di). Note that with all the simplicity of (92), the formula would be difficult to
deduce by direct probabilistic means.

Now recall from (15) that under the assumed independence of r.v.s Y (an integer-
valued identifier of W) and ∆,

γ(1, z, θ) = a(z)g(1, θ) =
[

azN + bz + c
]
γ(θ), (93)

with
γ(θ) = γ(1, 1, θ) = Ee−θ∆, (94)

while
γ(1, 0, θ) = cγ(θ) (95)

needed in (92).
Substituting (93)–(95) into (92) yields

Γ(1, z, θ) = 1 −
[
1 −

[
azN + bz + c

]
γ(θ)

] 1
1−cγ(θ)

= 1 − 1−a(z)γ(θ)
1−cγ(θ)

= 1−cγ(θ)−1+a(z)γ(θ)
1−cγ(θ)

= γ(θ)
a(z)−c

1−cγ(θ)
= γ(θ) azN+bz

1−cγ(θ)

= γ(θ) a0zN+b0z
1
p −(1−p) 1

p γ(θ)
= a0(z)

pγ(θ)
1−(1−p)γ(θ) ,

(96)

where

p = a + b, a0 =
a

a + b
, b0 =

b
a + b

, a0(z) = a0zN + b0z =
1
p

[
azN + bz

]
. (97)

Remark 6. Formulas (96) and (97) embellish the marginal distribution

Γ(θ) = Γ(1, 1, θ) = Ee−θτη =
pγ(θ)

1 − qγ(θ)
, with Eτη =

1
pγ

. (98)

(which is type 1 geometric with interrenewal times included in the classic geometric experiment of a
series of independent Bernoulli trials) that alone could be readily obtained by the double expectation
formula without the use of fluctuation calculus. However, the joint distribution Γ(1, z, θ) is more
difficult to justify using straightforward probability arguments. Furthermore, the factor a0(z) in
(96) and (97) points to a rather surprising outcome that the r.v.s U and τη are independent, which
would not be obvious when using other means. Furthermore, Formula (96) identifies the distribution
of r.v. U that looks conditioned on set Ω0 = E2 ∪ E3 = {W > H1}, implying that

a0(z) = E
[
zY|Ω0

]
=

1
P(Ω0)

E
[
zY1Ω0

]
.
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In a nutshell, fluctuation calculus turns out to be a straightforward method that gives a fully
secure result, circumventing common ambiguities of the double expectation (in some difficult cases)
and other, less conventional, tools.

Thus, {Tn} is an embedded point process with the marginal LST of the interrenewal
times satisfying Formula (98). In particular, if ∆ ∈ [Exp(γ)], that is, when γ(θ) = γ

γ+θ ,

Γ(θ) = Ee−θT1 =
pγ

pγ + θ
, i.e., T1 ∈ [Exp(pγ)]. (99)

In conclusion, we consider a modified system with shocks landing at T0 = 0, T1, T2, . . . ,
of magnitudes W0, W1, W2, . . . such that H1 < W0 ≤ H2; for the other Ws, when H1 < Wi ≤
H2, the shock at Ti is critical, and when Wi > H2, the shock is extreme and thus fatal. The
system fails if a single extreme shock hits the system at some time Ti or if a shock at Ti is
Nth critical, counting from that at T0. To avoid triviality, we thus assume that N > 1. The
δ-policy has not been introduced yet.

The former δ-shock policy applied to any types or mixes of shocks is altered in the
following way. It is now restricted entirely to critical or extreme shocks (harmful shocks).
More specifically, if a shock that landed at time Ti, is such that |(Ti−1, Ti]| < δ, this shock is
referred to as a δ-shock, provided that the shock at Ti−1 is critical but not Nth critical. That
said, the shock at Ti can be (a) critical, (b) Nth critical, (c) extreme.

Now we are back to the formalism of functional Γ(y, z, θ) = EyVzUe−θτη , where
V = 1{τη<δ}. This functional was not a part of the key fluctuation formula, because
combined with V, the underlying trivariate process did not meet the conditions in the
associated theorem of [35]. However, with the newly established U that turned independent
from τη , we can use the same argument as in the formation of γ(y, z, θ) regarding U and(
V, τη

)
as independent. Thus, because V is binary with

yV = y
1{τη<δ} = y1{τη<δ} + 1{τη≥δ},

we define G(y, θ) as the marginal of Γ(y, z, θ) in the form

G(y, θ) = Ee−θτη yV = yEe−θτη 1{τη<δ} +Ee−θτη 1{τη≥δ}
= α0(θ)y + β0(θ),

(100)

with
α0(θ) = Ee−θτη 1{τη<δ} and β0(θ) = Ee−θτη 1{τη≥δ}. (101)

Note that

α0(θ) + β0(θ) = Ee−θτη = Γ(θ) = Γ(1, 1, θ) = G(1, θ)

was attached to Γ(1, z, θ) = a0(z)Γ(θ)
[
with Γ(θ) =

pγ(θ)
1−(1−p)γ(θ)

]
.

Now replacing Γ(θ) in the latter expression with G(y, θ), we come to specify Γ(y, z, θ) =
EyVzUe−θτη as

Γ(y, z, θ) = a0(z)G(y, θ) =
(

a0zN + b0z
)
[α0(θ)y + β0(θ)]. (102)

Note that α0(θ) and β0(θ) in (101) are implicit unless we specify them as in our
forthcoming discussion in Example 3.

Finally,

α0 = α0(0) = P
{

τη < δ
}

and β0 = β0(0) = P
{

τη ≥ δ
}

, with α0 + β0 = 1 (103)
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where (α0, β0) is the marginal distribution of V, with the PGF

EyV = G(y, 0) = α0y + β0. (104)

In summary, we note the following:

Proposition 1. In Model 2, where δ-shocks are formed through pairs of consecutive harmful shocks
with time lags less than δ, the associated marked point process of harmful shocks (embedded in
the process of all shocks of Model 1) is a marked delayed renewal process, with interrenewal times,
jointly with their marks Us and Vs, and are distributed in accordance with the functional Γ(y, z, θ),
satisfying formula (102) and exhibiting independence of U and

(
V, τη

)
with respective marginal

transforms in (100)–(104).

The distribution of the delay is unspecified and so far is arbitrary.
Note that we have not restricted δ-shocks as to how they turn fatal (which we do in

the forthcoming sections), nor did we specify exactly how the system fails, except for some
allusions and loose preliminaries.

Remark 7 (An informal discussion). Assume we have a process of shocks reduced to harmful
shocks only, thus with one threshold H2. Any shock with a magnitude below H2 is critical and
above H2 is extreme. Suppose the associated marked random measure is delayed renewal with
assumed position-independent marking. The above specifications of U, V, and T (= τη) apply but
with the distribution of T being arbitrary. The conditions are the same as in Proposition 1, except
that the position independence is now assumed rather than proved. Furthermore, Proposition 1
yields the special case Γ(1, 1, θ) =

pγ(θ)
1−(1−p)γ(θ) of the marginal functional Γ(y, z, θ) instead of no

assumption on Γ(·). Furthermore, Proposition 1 suggests that T1, T2, . . . are the successive epochs
of harmful shocks and thus with independent and identically distributed interarrival times following
the principles of a “geometric process” of some arrivals at random epochs of time until the first
success, with Γ(1, 1, θ) =

pγ(θ)
1−(1−p)γ(θ) using the double expectation formula.

Then we used the key fluctuation theorem to arrive at Γ(1, z, θ) = a0(z)
pγ(θ)

1−(1−p)γ(θ) , where
a0(z) is the new marginal of shocks’ binary identifiers conditioned on Ω0 that they are exclusively
harmful. The consequence altogether is that under the above actions, we are now on the new traced
probability space (Ω0,F ∩ Ω0,P0), P0 = P(· ∩ Ω0)/P(Ω0), where there is no place for harmless
shocks anymore. See more in Section 8.

8. Further Formalism of Model 2

Remark 8. Reiterating what was said in Remark 7, we note that while in Section 2, Y ∈ {N, 1, 0}
with the respective distribution {a, b, c}, the associated identifier U is valued in {N, 1} under the
distribution {a0, b0, }, as per (97).

With Ω0 = {W > H1} = {Y ∈ {1, N}} = E2 ∪ E3, the above marginal PGF a0(z) of U in
(97) can also be justified using the conditional expectation:

a0(z) = E
[
zY|Ω0

]
= E[zY1Ω0 ]

1
P(Ω0)

= 1
P(Ω0)

∫
Ω0

zYdP = 1
P(Ω0)

∫
y∈{N,1} zyPY(dy)

= 1
a+b

[
zNP{Y = N}+ zP{Y = 1}

]
= 1

a+b
[
azN + bz

]
= a0zN + b0z,

or as E0(·) = E[(·)1Ω0 ]
1

P(Ω0)
= 1

P(Ω0)

∫
ω∈Ω0

(·)P(dω), which is the associated expectation
relative to the traced probability space (Ω0,F ∩ Ω0,P0). Here, P0 is the conditional probability
measure E[(·)1Ω0 ]

1
P(Ω0)

. We will, however, relax the measure-theoretical contents of our forthcom-
ing calculus.

For notational convenience, we will use P for the conditional probability measure (P0) and the
associated conditional expectation as E (in place of E0), bearing in mind, however, that we deal with
the system on the traced space, in which the harmless shocks play no role beyond the determination
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of the joint distribution of the times between consecutive harmful (critical or extreme) shocks and
the associated shocks identifiers.

Consequently, the embedded process of shocks can be seen upon T1, T2 . . . through
U1, U2, . . . , where Uk ∈ [U], k = 1, 2, . . . Of course, Us are shock identifiers and they
represent the respective magnitudes of shocks Wη1 , Wη2 , . . . at T1, T2, . . . which can now
only be critical or extreme. Hence, the associated embedded marked point process of
times and shock magnitudes ∑∞

k=1 Wηk εTk can be replaced with a cruder but sufficiently
descriptive variant ∑∞

k=1 UkεTk that will be better suited for the associated random walk
analysis that proceeds under the same course as in Sections 2 and 3, starting with

Un = ∑n
k=1 Uk, n = 1, 2, . . . , (105)

forming the sequence of partial sums of {Uk} with

ζ = min{n : Un ≥ N}. (106)

The δ-shocks are included in (89) via the sequence of i.i.d. Bernoulli r.v.s

Vk = 1{Tk−Tk−1<δ}, k = 1, 2, . . . , T0 = 0, (107)

Acting alone, the sequence would continue until Vk = 1 a.s. However, the sequence
as well as the whole process (V ,U , T ) = ∑∞

k=0
(
Vj, Uj

)
εTk can be interrupted by an earlier

occurrence of an extreme or Nth critical shock.
Now we define

χ = min{m : Am = ∑m
k=1 Vk = M} for some M ≥ 1, (108)

tentatively assuming that M δ-shocks occurring in any order will ruin the system at time
Tχ unless other harmful shocks will cause an earlier failure. We will again deal only with
the special case M = 1, although Theorem 1 is formulated for the general value of M (that
we plan to explore in our forthcoming paper). The cumulative ruin index is then

ρ = ζ ∧ χ. (109)

(while it would be more proper to use some different character for ζ ∧ χ than ρ to tell it
from ρ in Sections 2–6, it would be harder to associate it with the common ρ in Theorem 1).

Consequently, Tρ is the time-to-failure of this system. Under this formalism of Tρ, we
can revisit Figure 14 and the preceding interpretation, which now makes more sense.

Analogous to Section 2, denote
[
τη

]
as the equivalence class of all r.v.s having the

same distribution as Ti − Ti−1, i = 1, 2, . . .. Then, the failure time of the system occurs at
Tρ, with the total count of critical and extreme shocks Uρ and δ-shocks count Aρ the on
system’s failure. Consequently, the marked process (V ,U , T ) = ∑∞

k=0
(
Vj, Uj

)
εTk of (89) is

to be curtailed to
(V ,U , T )ρ = ∑ρ

k=0

(
Vj, Uj

)
εTk ,

that is, until it ends at Tρ.

Example 3. We revisit Example 1 in a similar context. Recall that back then, we set the ∆-marginal
distribution of (X, ∆) exponential with parameter γ, that is, ∆ ∈ [Exp(γ)]. This assumption as we
pointed out in Section 7 implied that τη ∈ [Exp(γp)], where p = a + b. Now it takes very little to
adjust all computations in Example 1 replacing γ with γp. Yet we proceed with details under the
new notation:

α0(θ) = Ee−θτη 1{τη<δ} = γp
∫ δ

x=0
e−(θ+γp)xdx =

γp
γp + θ

[
1 − e−(γp+θ)δ

]
(110)
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and

β0(θ) = E1{τη≥δ}e−θτη =
γp

γp + θ
− γp

γp + θ

[
1 − e−(γp+θ)δ

]
=

γp
γp + θ

e−(γp+θ)δ. (111)

Then, the marginal distribution of V is

α0 = α0(0) = 1 − e−γpδ and β0 = β0(0) = e−γpδ. (112)

Hence,
G(y, θ) = EyVe−θτη = Ey1{τη<δ} e−θτη = α0(θ)y + β0(θ)

= γp
γp+θ

[
y
(

1 − e−(γp+θ)δ
)
+ e−(γp+θ)δ

]
.

(113)

Now, from (113),

∂

∂y
G(y, θ)

∣∣
y=1 =

γp
γp + θ

(
1 − e−γpδe−θδ

)
, (114)

and further from (114) we obtain

R
(
τη , V

)
= E[τη · Vη ] = (−1)

d
dθ

G(1, θ)
∣∣
θ=0 =

1
γp

(
1 − e−γpδ

)
+ δe−γpδ.

Therefore, from the last expression, (112), and that Eτη = 1
γp ,

Cov
(
τη , V

)
=

1
γp

(
1 − e−γpδ

)
+ δe−γpδ − 1

γp

(
1 − e−γpδ

)
= δe−γpδ. (115)

9. Competing Processes

Since the new system is similar to that treated in Sections 2–6, we abridge our reasoning
and computations making only some necessary adjustments. The formula analogous to
(52) reads

Φρ(s, y, z, θ, 1, 1, 0; M, N) = EsρyAρ zBρ e−θTρ

= DN−1
w ◦ DM−1

x

[
Γ0(y, z, θ)− Γ0(xy, zw, θ)

+ sΓ0(xy,zw,θ)
1−sΓ(xy,zw,θ) [Γ(y, z, θ)− Γ(xy, zw, θ)]

]
.

(116)

Here, M ≥ 1 but it will be reduced to M = 1, while now N ≥ 2, because we assumed
that the system started with one critical shock that landed at T0 = 0. Thus,

Γ0(y, z, θ) = EyA0 zV0 e−θT0 = z,

because A0 = V0 = T0 = 0, while U0 = 1 a.s. as previously defined. With no restriction on
N, rather than N ≥ 2, we now set M = 1, implying that

ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ

= DN−1
w ◦ D0

x

[
z − zw + szw

1−sΓ(xy,zw,θ) [Γ(y, z, θ)− Γ(xy, zw, θ)]
]

= DN−1
w

[
z − zw + szw[Γ(y,z,θ)−Γ(0,zw,θ)]

1−sΓ(0,zw,θ)

]
= z − z + zDN−2

w
sΓ(y,z,θ)−1+1−sΓ(0,zw,θ)

1−sΓ(0,zw,θ)

= 0 + zDN−2
w

[
1 − 1−sΓ(y,z,θ)

1−sΓ(0,zw,θ)

]
= z − z[1 − sΓ(y, z, θ)]DN−2

w
1

1−sΓ(0,zw,θ) .

(117)

Remark 9. In particular, the marginal transform of Tρ turns

ψρ(1, 1, 1, θ; N) = Ee−θTρ = 1 − [1 − Γ(1, 1, θ)]DN−2
w

1
1 − Γ(0, w, θ)

(117a)
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with
ETρ = − ∂

∂θ
Γ(1, 1, θ)

∣∣
θ=0D

N−2
w

1
1 − Γ(0, w, 0)

, (117b)

where
− ∂

∂θ
Γ(1, 1, θ)

∣∣
θ=0 = Eτη (117c)

and [readily from (117)]

DN−2
w

1
1 − Γ(0, w, 0)

= Eρ = Π(1, 1, 0). (117d)

The latter is the mean value of the total count ρ (if we are still dealing with shocks, although
the above Formula (117) is for an unspecified process) of all harmful shocks until failure. Indeed, the
ρ-marginal PGF is

Esρ = EsρyAρ zBρ e−θTρ
∣∣
y=z=1,θ=0 = 1 + [s − 1]DN−2

w
1

1 − sΓ(0, w, 0)
(117e)

implying that

Eρ = Π(1, 1, 0) = DN−2
w

1
1 − Γ(0, w, 0)

. (117f)

In conclusion,
ETρ = Eτη ·Eρ = ET1 ·Eρ. (117g)

This formula holds without any special assumptions or specifications rendered in Sections 7
and 8. It is even invariant of any interpretation imposed on the process dealt with in (117).

Returning to formula (117), note that it looks similar to (55). They differ in factor z and
in Γ(·) in (117), replacing γ(·) in (55).

Returning to the special case pertaining to Model 2 specified in Section 7, from

Γ(y, z, θ) = a0(z)G(y, θ) =
[

a0zN + b0z
]
(α0(θ)y + β0(θ)],

we write down expression 1
1−sΓ(0,zw,θ) in (117) in its explicit form as

F(s, zw, θ) =
1

1 − sΓ(0, zw, θ)
=

1
1 − s[a0zNwN + b0zw]β0(θ)

=
1

1 − [A0wN + B0w]
,

where A0 = sa0β0(θ)zN , B0 = sb0β0(θ)z. F looks simpler than its counterpart in (57). This
is because its polynomial in the denominator does not carry a constant (57) has.

Expanding F(s, zw, θ) in series of powers of A0wN + B0w gives

S(s, zw, θ) = ∑∞
n=0

[
A0wN + B0w

]n
= ∑∞

n=0

[
A0wN−1 + B0

]n
wn.

Series S converges to F in a vicinity of w = 0. Then we apply operator DN−2
w to S

to obtain
Π(s, z, θ) = DN−2

w F(s, zw, θ) = DN−2
w S(s, zw, θ)

= ∑N−2
n=0 DN−2−n

w
[
A0wN−1 + B0

]n
= ∑N−2

n=0 Bn
0 .

Now we need the following:

Lemma 2. For n = 0, 1, . . . R, it holds true that

DR−n
w

(
awR+1 + b

)n
= bn.(HereR = N − 2.)
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Proof. Firstly,

DR−n
w

(
awR+1 + b

)n
= ∑n

k=0

(
n
k

)
akbn−kDR−n

w w(R+1)k.

Then, for k = 0, DR−n
w w(R+1)k = 1, for all other cases of k = 1, . . . , n, (R + 1)k > R− n,

implying that DR−n
w w(R+1)k = 0. Hence,

DR−n
w

(
awR+1 + b

)n
= ∑n

k=0

(
n
k

)
akbn−k1{0}(k) = bn.

Lemma 2 is almost identical to Lemma 1, with the same outcome but still slightly
different from Lemma 1. Furthermore,

Π(s, z, θ) =
1 − BN−1

0
1 − B0

=
1

1 − sb0β0(θ)z

[
1 − (sb0β0(θ)z)

N−1
]
. (118)

In particular,

Π(1, 1, 0) =
1

1 − b0β0

[
1 − (b0β0)

N−1
]
. (119)

So we close on

ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ

= z − z
[
1 − s

[
a0zN + b0z

]
(α0(θ)y + β0(θ)]

]
Π(s, z, θ)

(120)

after the use of operator DN−2
w , and summarize it as Theorem 2.

Theorem 2. In the reliability system (originally set up with four types of shocks: harmless,
critical, extreme, and δ-shocks), in which δ-shocks can only be among harmful shocks under
the specifications in Sections 7–9 and formalized on the traced probability space (Ω0,F ∩ Ω0,P0)[
P0 = E[(·)1Ω0 ]

1
P(Ω0)

]
, the functional ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ of the joint transforms

of the lifetime Tρ, the total shocks count ρ at Tρ, the number Aρ of δ-shocks at Tρ, and the sum Bρ of
all other shock identifiers at Tρ, satisfy Formulas (118) and (120).

Note that ρ ̸= Aρ + Bρ as it might be assumed, because Bρ gives the sum of the shock
identifiers Us, which assumes values 1 (for a critical shock) and N (for an extreme shock). However,
for each ω ∈ Ω0, Bρ(ω) identifies how many critical and extreme shocks landed by Tρ(ω). For
example, if Bρ(ω) < N, we figure that the number of critical shocks was exactly Bρ(ω), with no
extreme shock included and with one δ-shock at Tρ(ω), which turns out to be the only fatal shock.
With Bρ(ω) = N, the total harmful shocks count is N. Again, we know that no extreme shock hit
the system at Tρ(ω), because otherwise, Bρ(ω) would have been 2N − 1 and not N. We just do
not know from Bρ(ω) alone if the Nth shock was also δ. Finally, with Bρ > N, we know that the
fatal shock at Tρ(ω) was extreme or extreme and δ combined.

Remark 10. While it is obvious that ψρ is given in its closed form through Equations (118) and
(120), we conclude our claim of analytical tractability by calling on the special case of Example 3,
through a single insertion of

α0(θ) =
γp

γp + θ

[
1 − e−(γp+θ)δ

]
and β0(θ) =

γp
γp + θ

e−(γp+θ)δ

in (118) and (120) as per formulas (110) and (111).
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10. Marginal Distributions and Means
10.1. Time-to-Failure

For s = y = z = 1, we arrive at

Ee−θTρ = ψρ(1, 1, 1, θ; N) = 1 − [1 − Γ(θ)]Π(1, 1, θ), (121)

where
Π(1, 1, θ) =

1
1 − b0β0(θ)

[
1 − (b0β0(θ))

N−1
]

(122)

implying that the analog Eτρ of (66) reads

ETρ =
1

γp
Π(1, 1, 0) =

1
γp

1
1 − b0β0

[
1 − (b0β0)

N−1
]
. (123)

Here, 1
γp = ET1 = Eτη as per (98).

As in Model 1, because b0β0 < 1, ETρ is monotone increasing in N, converging to
1

γp
1

1−b0β0
as N → ∞. (See Remark 4 regarding N = ∞.) The minimum value of ETρ is

reached at N = 2 (recall that N ≥ 2) and it equals to 1
γp . Furthermore, with N = 2,

Ee−θTρ = ψρ(1, 1, 1, θ; 2) = 1 − [1 − Γ(θ)] = Γ(θ) =
pγ(θ)

1 − qγ(θ)
.

Here, the system fails regardless of whatever shock (critical, extreme, or δ) strikes it.

10.2. δ-Shocks Count

From
ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ

= z − z
[
1 − s

[
a0zN + b0z

]
(α0(θ)y + β0(θ)]

]
Π(s, z, θ),

with s = z = 1 and θ = 0,

ψρ(1, y, 1, 0; N) = EyAρ = 1 − [1 − (α0y + β0]]Π(1, 1, 0)
= 1 − [1 − (α0y + β0]]

1
1−b0β0

[
1 − (b0β0)

N−1]
= 1 − [Π(1, 1, 0)− Π(1, 1, 0)(α0y + β0)] = 1 − Π(1, 1, 0) + Π(1, 1, 0)β0 + α0Π(1, 1, 0)y
= 1 − α0Π(1, 1, 0) + α0Π(1, 1, 0)y

(124)

implying that Aρ is a Bernoulli r.v. with parameter α0Π(1, 1, 0) , where

EAρ = α0Π(1, 1, 0) =
α0

1 − b0β0

[
1 − (b0β0)

N−1
]
, where α0 = P

{
τη < δ

}
. (125)

Thus, EAρ is monotone-increasing in N, with the smallest value at N = 2,

EAρ = α0 = P
{

τη < δ
}

and with the supEAρ = α0
1−b0β0

. Using straightforward arguments, we can show that
for N < ∞, the values of EAρ = α0Π(1, 1, 0) = α0

1−b0β0
< 1. Indeed,

α0

1 − b0β0
∗ 1 ⇔ α0 ∗ a0 + b0α0 ⇔ α0 − b0α0 ∗ a0 ⇔ α0a0 ∗ a0 ⇔ α0 ∗ 1.

Thus, ∗ is ≤ or rather <, implying that 0 < α0
1−b0β0

< 1. Thus, supEAρ = α0Π(1, 1, 0)
is less than 1, unless α0 = 1. With N < ∞, however, EAρ < 1 even if α0 = 1.

In a nutshell,
α0 ≤ EAρ <

α0

1 − b0β0
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implying that the mean δ-shock count lies in [α0, α0
1−b0β0

). Thus, when N = 2, the second
shock is a δ-shock with mean value α0. Consequently, with N = 2,

EyAρ = α0y + β0,

that is, the marginal Aρ ∼ V, with

α0 = P{V = 1} = P
{

τη < δ
}
= EV and β0 = P{V = 0} = P

{
τη ≥ δ

}
.

Since the system is observed at T0 with a prior critical shock, β0 is the probability that
a shock at T1 is not δ, and with N = 2, a non-δ-shock at T1 is Nth critical or extreme.

Now, with ETρ = 1
γp Π(1, 1, 0) = 1

γp
1

1−b0β0

[
1 − (b0β0)

N−1], we conclude that the
mean δ-shock value EAρ is proportional to ETρ, namely,

ETρ =
1

γp
1
α0

EAρ. (126)

10.3. Impact Bρ of Critical/Extreme Shocks

Recall that Bρ = ∑
ρ
k=0 Uk is the sum of all shocks identifiers collected by the time-

to-failure Tρ. It thus is an integer with 2 ≤ Bρ ≤ 2N − 1. It is not equal to the shock’s
count, because an extreme shock counts as N that is the largest quantity of critical shocks.
It nevertheless allows us to identify the number of critical and extreme shocks by Tρ as
noted at the end of Section 9.

Formally, if Bρ > N, then the system fails due to an extreme shock alone or on the
count of an extreme and δ-shock occurring at the same time. If Bρ = N, then the system
accumulated exactly N critical shocks by Tρ and it failed on Nth critical shock that turns
fatal or on the count of an Nth critical and δ-shock combined.

If Bρ < N, then Bρ gives the exact number of all critical shocks landing in the system
by Tρ when the system fails, and the last of these shocks at Tρ is δ. One needs to be reminded
that for various ω ∈ Ω0, Bρ(ω) can assume any of those named values, and more accurate
information comes from the distribution of Bρ obtainable from the marginal PGF EzBρ .

From

ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ

= z − z
[
1 − s

[
a0zN + b0z

]
(α0(θ)y + β0(θ)]

] 1
1−sb0β0(θ)z

[
1 − (sb0β0(θ)z)

N−1
]
,

for s = y = 1, θ = 0,

EzBρ = z − z
[
1 −

[
a0zN + b0z

]] 1
1−b0β0z

[
1 − (b0β0z)N−1

]
and EBρ = 1 + (a0N + b0)

1
1−b0β0

[
1 − (b0β0)

N−1].
10.4. Total Count of Harmful Shocks (Critical/Extreme/δ-Shocks) until Failure

This applies to r.v. ρ and its marginal pgf:

Esρ = 1 − [1 − s]]Π(s, 1, 0) = 1 − (1 − s)
1

1 − sb0β0

[
1 − (sb0β0)

N−1
]
, (127)

with the expected number of harmful shocks and δ-shocks combined:

Eρ = Π(1, 1, 0) =
1

1 − b0β0

[
1 − (b0β0)

N−1
]
=

1
α0

EAρ = γpETρ. (128)
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From (127), for N = 2, ρ = 1 a.s., which comes in agreement with the straightforward
argument that a second critical shock turns fatal regardless of whether it is second critical,
second critical and δ, extreme, or extreme and δ.

Furthermore, Eρ is monotone-increasing in N ranging from 1 (at N = 2) to 1
1−b0β0

,
which the supρ. The PGF Esρ of ρ runs in s pointwise at N = 2 at the time of failure, to
1 − 1−s

1−sb0β0
= s 1−b0β0

1−sb0β0
when N → ∞, which becomes type 1 geometric with parameter

1 − b0β0. Obviously, for a very large N, the competition runs exclusively between the
extreme and δ-shocks. (Again, see Remark 4 regarding N = ∞.)

10.5. Monte Carlo Simulation of the Process

We next render Monte Carlo simulations of the Model 2 stochastic process under some
specified special cases and compare empirical means derived above as a demonstration
the results match empirical findings. In each case, we assume the times between all
(harmless and harmful) shocks are exponential (with parameter γ), and we make numerical
assumptions about the parameters, including the parameter of time between shocks γ, the
time δ, the probabilities of each failure type (a0, b0), the δ-shock threshold M = 1, and the
critical shock threshold N.

For the first set of experiments, we set γ = δ = 1 and N = 2. Figures 15–18 below
show a comparison of predicted and estimated means of the number of the failure time τρ,
shocks ρ, δ-shocks Aρ upon failure, and (N × Extreme + Critical) shocks Bρ, respectively.

Predicted values come from numerical implementations of (123), (126)–(128) (refer to
Appendix A for the Python code). Means are estimated as sample means of each value
computed at end of life for a sample of 1,000,000 simulated paths. This experiment is
replicated for each (a0, b0) ∈ {0.1, 0.2, . . . , 0.9} × {0, 0.1, . . . , 0.8}.

We display three heat maps: predicted mean, sample mean, and absolute difference for
each set of probabilities. In every parameter set tested, the error between the true predicted
mean and sample mean is less than 0.04, providing a good validation of the predictions
derived above.

Figure 15. Predicted/estimated mean and absolute error for the failure time Tρ.

Figure 16. Predicted/estimated mean and absolute error for the shocks ρ.
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Figure 17. Predicted/estimated mean and absolute error for the δ-shocks Aρ.

We notice τρ, ρ, and Aρ have broadly the same pattern: an increase to the critical shock
probability b0 results in larger means.

Figure 18. Predicted/estimated mean and absolute error for the (N × Extreme + Critical) shocks Bρ.

In addition, we perform some simulations where δ = 1, (a0, b0) = (5/9, 4/9), and
M = 1. Furthermore, we vary the waiting time parameter γ and critical/extreme shock
threshold N as

(γ, N) ∈ {0.1, 0.2, . . . , 2} × {1, 3, 5, 10}.

Sample means here are based on 100,000 simulated paths for every pair (γ, N).
Figure 19 below shows the predicted and estimated means of the number of shocks ρ,
δ-shocks Aρ upon failure, (N × Extreme + Critical) shocks Bρ, and failure time τρ. As is
seen, the dots (empirical) align precisely with the means derived above and run on a much
denser mesh of γ values to form smooth curves, providing additional validation.

Figure 19. Waiting time parameter (γ) versus predicted/empirical means of ρ, Aρ, Bρ, and τρ.
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We see a good agreement between the true means predicted as the curves and the
Monte Carlo simulations as the dots.

11. Summary

In this paper, we studied a reliability system subject to random shocks causing different
degrees of damages. The shocks enter the system according to a delayed renewal process
{τn} with respective magnitudes {Wn}, and they are categorized as harmless, critical, and
extreme depending on their strengths relative to two thresholds 0 < H1 < H2. We assume
that the associated marked renewal process ∑∞

n=0 Wnετn is with position-independent
marking; in particular, Wns are i.i.d. random variables picked up from an equivalence
class [W]. Correspondingly, a shock of magnitude W is harmless if W < H1, critical if
H1 ≤ W < H2, and extreme if W > H2.

One of the three events can ruin the system: if there is a single extreme shock; if the
system accumulates a total of N critical shocks; or if there is a single δ-shock, which is
fatal. A δ-shock is defined as an occurrence of two consecutive shocks with a time lag less
than some δ. Thus, a pair of two, even harmless, shocks can ruin the system if the time
lag between the two is small. Using a common terminology in reliability, there are three
competing processes, and the winner is the one that ruins the system first. Understandably,
an extreme or Nth critical shock can occur at the same time as a δ-shock, and thus, two
processes may end up sharing the reward.

The objective of this paper was to predict the time-of-failure, as well as the shocks
count, including δ-shocks, upon failure. Therefore, of interest was to find the joint dis-
tribution of the system’s lifetime and damages incurred upon its ruin. At the same time,
we targeted a closed-form functional of such a distribution that was given as an explicit
formula in a symbolic form that is reducible to a totally explicit expression once involved
input parameters (such as interarrival shock times and their magnitudes in the form of the
joint distribution) are specified. We have less interest in working on asymptotic formulas
or algorithms.

The results were based on stand-alone Theorem 1, which fitted our system’s settings,
although we obtained far more than we needed. More specifically, we considered a marked
point process (A, B, τ) = ∑∞

k=1(Xk, Yk)ετk describing the evolution of shocks with their
magnitudes and respective time lags. Because that process was terminated at τρ (time-to-
failure), (A, B, τ) was truncated to

(
Aρ, Bρ, τρ

)
= ∑

ρ
k=1(Xk, Yk)ετk . Theorem 1 established a

closed-form expression for the functional

Φρ(s, y, z, θ, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1

and other variants. The formula even allowed us to handle M δ-shocks in any order, which
we, however, reduced to one (postponing the more general case). A further reduction of
Φρ led to functional φρ(s, y, z, θ; N) = EsρyAρ zBρ e−θτρ (Corollary 1, under M = 1). The
closed-form claim was fully supported by Example 2.

In Section 5, we discussed marginal distributions and means of time-to-failure τρ, δ-
shock count, the sum of all critical/extreme shocks’ identifiers, and the total shock count, by
τρ followed by Monte Carlo simulation of the above process and validation of the results.

Section 6 was dedicated to the functional

Φµ>ν(s, y, z, θ, s, u, v, ϑ; M, N) = EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−11µ>ν

of the general process under the assumption that the system will be ruined by extreme or
critical shocks prior to its failure due to δ-shocks (also established in Theorem 1) and its
special cases. Of particular interest was the probability P{ν < µ} that the failure is due to
extreme/critical shocks alone.

In part II of the paper (Sections 7–10), we introduced a variation of the above model,
called Model 2. Namely, in Model 1, we assumed that any two consecutive shocks with a
time lag less than δ were deemed fatal regardless of what kind of shocks were involved.
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This protocol did not exclude incidents with pairs of harmless shocks. In some real-world
systems, such an approach seems unwarranted, even though it is universally applied to
situations where the magnitudes of shocks are hard or impossible to observe. Yet we
decided to offer an alternative model in the event this rule ends up being too rigid. In
Model 2, we restricted the use of δ-policy to harmful shocks only. That being said, we
bypass harmless shocks and include only critical and extreme shocks with short lags that
are now deemed as δ-shocks.

In a nutshell, we singled out those critical or extreme shocks which are consecutive
and have time lags smaller than δ. Precisely, they must appear in pairs, and if a shock at
some τj is critical, we bypassed all harmless shocks at τj+1, τj+2, . . . until the next critical
or extreme shock, say, at time τj+k, comes in a close time proximity from τj. To proceed
further, we singled out the successive epochs T1, T2, . . . , from the sequence

{
τj
}

of critical
and extreme shocks. The interarrival times T1 − T0, T2 − T1, . . . between harmful shocks
was easy to find. More challenging was to determine the joint distribution of those times
and the identifiers U1, U2, . . . of shocks’ magnitudes with identifiers V1, V2, . . . of δ-shocks
(all binary). We had to use a key fluctuation theorem, previously established. The harmless
shocks process was essential in the determination of this joint functional.

After that, we moved to a traced probability subspace where harmless shocks played
no role, and we focused on ruin time Tρ of the system on the occasion of extreme, δ-, or
Nth critical shocks or some of their combinations to obtain the joint transform of Tρ and
other characteristics at Tρ

ψρ(s, y, z, θ; N) = EsρyAρ zBρ e−θTρ

after using Theorem 1 again, undergoing a similar process as in Model 1, demonstrating
again how the new variant can be analyzed through similar methods after making some
adjustments. We also confirmed our claim of analytically tractability through various
discussions on special cases, examples, and marginal distributions, followed by validation
of the results through Monte Carlo simulation.
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Abbreviations and Notation

DCFP Dependent competing failure processes
τ1, τ2, . . . Shocks (mixed harmless, critical, extreme) arrival process in Model 1
∑∞

k=1 ετk The point process of shocks in the form of random measure
εa Is Dirac point mass at point a ∈ R
W1, W2, . . . Shocks magnitudes at τ1, τ2, . . .

∑∞
k=1 Wkετk

Shocks process as marked random measure with ∑∞
k=1 ετk as the

associated support counting measure
H1, H2 Shocks’ thresholds
H1 ≥ W Harmless shock
H1 < W ≤ H2 Critical shock
H2 < W Extreme shock
fatal shock Nth critical or extreme shock
δ-shock When τi+1 − τi < δ



Entropy 2024, 26, 444 43 of 48

r.v. Random variable
i.i.d. Independent and identically distributed
[W] Equivalence class of all r.v.s that are stochastically equivalent to r.v. W
(Ω,F ,P) Probability space
E1 {W ≤ H1}
E2 {H1 < W ≤ H2}
E3 {H2 < W}
1A Indicator function parametrized by an event A
shocks identifiers X, Y, and later on U, V
Y 1E2 + N1E3

{a, b, c} Probability distribution of r.v. Y
PGF Probability generating function
a(z) EzY = azN + bz + c PGF of r.v. Y

∑∞
k=1 Ykετk

Auxiliary point process marked by the sequence {Yk} associated with
sequence {Wk} of shocks’ magnitudes

Bn ∑n
k=1 Yk, n = 1, 2, . . .

ν
Min{n : Bn ≥ N} nominal count of harmful shocks not counting
δ-shocks on system’s failure

Xi
1{|(τi−1,τi)|<δ}, i = 1, 2, . . . , τ0 = 0, sequence of i.i.d. Bernoulli r.v.s
counting δ-shocks

|A| Lebesgue measure of Borel set A
∆ An r.v. stochastically equivalent to r.v.s |(τi−1, τi)|, i = 1, 2, . . . , τ0 = 0
α P{∆ < δ}
LST Laplace–Stieltjes transform
γ(y, z, θ) EyXzYe−θ∆ the joint transform of (Xi, Yi, ∆i), i = 1, 2, . . .
γ0(y, z, θ) ExX0 zY0 e−θ∆0

g(y, θ)
EyXe−θ∆ = Ey1{∆<δ} e−θ∆ = α(θ)y + β(θ) the marginal transform of
(Xi, ∆i), i = 1, 2, . . .

α(θ) E1{∆<δ}e−θ∆

β(θ) E1{∆≥δ}e−θ∆

α α(0)
β β(0)
γ(θ) Ee−θ∆ = g(1, θ) = α(θ) + β(θ)
1
γ E∆
An ∑n

k=1 Xk, n = 1, 2, . . . ,
µ Min{m : Am = M}
ρ µ ∧ ν cumulative ruin index also total shocks count on failure in Model 1
τρ Time-to-failure or lifetime of the system in Model 1
(Ω,F , (Ft),P) Filtered probability space
εa Dirac (unit) point mass at a point a

(A, B, τ)
∑∞

k=1(Xk, Yk)ετk marked random measure representing the input stream
of shocks(

Aρ, Bρ, τρ
)

∑
ρ
k=1(Xk, Yk)ετk input stream of shocks consolidated by τρ

Aρ δ-shocks count by τρ

Bρ Critical/extreme shocks damage by τρ

Φρ(s, y, z, θ, u, v,
ϑ; M, N)

EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1 comprehensive information on the
system at time-to-failure τρ, including ρ (total shock count on failure); Aρ

(≤ M)—the total number of δ-shocks; Bρ —the number of critical and
fatal shocks combined; and at time τρ−1 preceding to failure, as their
joint distribution

Φµ>ν(s, y, z, θ, s,
u, v, ϑ; M, N)

status of the system in the form of EsρyAρ zBρ uAρ−1 vBρ−1 e−θτρ−ϑτρ−1 1µ>ν

on the confined space
(

Ω,F ∩ {ν < µ},P{ν<µ}
)

that fails due to Nth
critical or one extreme shock, but not due to δ-shocks

Dk
xF(x, y) D-operator defined as limx→0

1
k!

∂k

∂xk

[
1

1−x F(x, y)
]
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φρ(s, y, z, θ; N)

Φρ(s, y, z, θ, 1, 1, 0; 1, N) = EsρyAρ zBρ e−θτρ marginal functional
representing the joint probability distribution of

(
ρ, Aρ, Bρ, τρ

)
pertaining to the status of the system predicted by the time-to-failure at
τρ in Model 1

Tj τηj =min
{

τn > Tj−1 : Wn > H1

}
, j = 1, 2, . . . , T0 = τ0 = 0 in Model 2

ηj Min
{

n > ηj−1 : Wn > H1

}
, j = 1, 2, 3, . . . , η0 = 0{

Tj

}
Embedded sequence of consecutive harmful shocks in Model 2

Vj 1{Tj−Tj−1<δ}, j = 1, 2, . . .

Uj N1{
Wηj>H2

} + 1{
H1<Wηj≤H2

}
(V ,U , T )

∑∞
k=0

(
Vj, Uj

)
εTk delayed marked renewal process representing only

harmful shocks in Model 2
V 1{τη<δ}
p a + b
a0

a
a+b

b0
b

a+b
a0(z) a0zN + b0z = 1

p
[
azN + bz

]
= E[zY1Ω0 ]

1
P(Ω0)

= 1
P(Ω0)

∫
Ω0

zYdP
Ω0 {W > H1} = {Y ∈ {1, N}} = E2 ∪ E3
Γ(y, z, θ) EyVzUe−θτη = a0(z)G(y, θ) =

(
a0zN + b0z

)
[α0(θ)y + β0(θ)]

Γ(θ) Γ(1, 1, θ) = Ee−θτη = Ee−θT1

G(y, θ) Ee−θτη yV = yEe−θτη 1{τη<δ} +Ee−θτη 1{τη≥δ} = α0(θ)y + β0(θ)

α0(θ) Ee−θτη 1{τη<δ}
β0(θ) Ee−θτη 1{τη≥δ}
α0 α0(0) = P

{
τη < δ

}
β0 β0(0) = P

{
τη ≥ δ

}
Un ∑n

k=1 Uk, n = 1, 2, . . .
ζ Min{n : Un ≥ N}
χ Min

{
m : Am = ∑m

k=1 Vk = 1
}

ρ
χ ∧ ζ ruin index in Model 2, also total count of harmful shocks
(critical/extreme/δ-shocks) until failure in Model 2

Tρ Time-to-failure in Model 2
(V ,U , T )ρ ∑

ρ
k=0

(
Vj, Uj

)
εTk input stream of harmful shocks consolidated by Tρ

Aρ δ-shocks count by Tρ

Bρ Impact of critical/extreme shocks in Model 2

ψρ(s, y, z, θ; N)

EsρyAρ zBρ e−θTρ marginal functional representing the joint probability
distribution pertaining to the status of the system driven by(
ρ,Aρ,Bρ, Tρ

)
predicted at the time-to-failure at Tρ in Model 2

Appendix A. Numerical Implementations

In this appendix, we provide Python implementations for the special case results
derived in Section 5.

First, we have a function for Π(1, 1, 0) from (62),

Π(1, 1, 0) =
1

α + aβ

[
1 −

(
bβ

1 − cβ

)N
]

for different values of the the waiting time parameter(s) γ, the δ for δ-shocks, the distribu-
tion of shock types (a and b with c computed internally), and the waiting time distribution
(implemented for exponential and uniform distributions).

def Pi(gamma, delta, a, b, N, waiting_time_dist=’exponential’):
# compute alpha (exponential waiting time)
if waiting_time_dist == ’exponential’:

alpha = 1 - np.exp(-gamma*delta)
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# compute alpha (uniform[gamma[0],gamma[1]])
if waiting_time_dist == ’uniform’:

alpha = (delta - gamma[0])/(gamma[1] - gamma[0])

beta = 1 - alpha
c = 1 - a - b

return (1/(alpha+a*beta))*(1 - (b*beta/(1 - c*beta))**N)

The next function uses the Pi function and returns an array containing Eρ, EBρ, EAρ,
and Eτρ derived in Section 5:

Eρ = Π(1, 1, 1, 0; M, N)

Eτρ = (E∆)Π(1, 1, 1, 0; M, N)

EBρ = (aN + b)Π(1, 1, 1, 0; M, N)

EAρ = P{|∆| < δ}Π(1, 1, 1, 0; M, N)

def compute_means(gamma, delta, a, b, N, waiting_time_dist=’exponential’):
# compute alpha (exponential waiting time)
if waiting_time_dist == ’exponential’:

alpha = 1 - np.exp(-gamma*delta)
mean_waiting_time = 1/gamma

# compute alpha (uniform[gamma[0],gamma[1]])
if waiting_time_dist == ’uniform’:

alpha = (delta - gamma[0])/(gamma[1] - gamma[0])
mean_waiting_time = (gamma[0] + gamma[1])/2

pi = Pi(gamma, delta, a, b, N)
mean_failure_time = pi*mean_waiting_time
mean_failure_index = pi
mean_extreme_critical_damage = (a*N + b)*pi
mean_delta_damage = alpha*pi

return np.array([a, b, mean_failure_index,
mean_extreme_critical_damage,
mean_delta_damage,
mean_failure_time])

These functions are used for predicted values of the figures in Section 5.6.

Appendix B. Monte Carlo Simulations

In this appendix, we include the Python code used to simulate paths of the full
reliability system. All empirical sample means in the diagrams of Section 5.6 are based on
running the function below.

Its inputs are the waiting time parameter(s) γ, the δ for δ-shocks, the distribution
of shock types (a and b with c computed internally), and the waiting time distribution
(implemented for exponential and uniform distributions).

It then simulates the full path to failure, outputting values at failure time including
number of shocks (“failure_index”); prefailure and failure time; numbers of extreme, criti-
cal, and δ-shocks upon prefailure and failure times; and binary flags for whether the fatal
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shock is an extreme shock, critical shock, or δ-shock.

def simulate_path(gamma, delta, a, b, N, waiting_time_dist=’exponential’,
verbose=False):

# initialize outputs
failure_index = 0
failure_time = 0
extreme_damage = 0
critical_damage = 0
delta_damage = 0
extreme_failure = False
critical_failure = False
delta_failure = False

rng = np.random.default_rng()

# compute alpha (exponential waiting time)
if waiting_time_dist == ’exponential’:

alpha = 1 - np.exp(-gamma*delta)

# compute alpha (uniform[gamma[0],gamma[1]])
if waiting_time_dist == ’uniform’:

alpha = (delta - gamma[0])/(gamma[1] - gamma[0])

beta = 1 - alpha
c = 1 - a - b

# simulate the process
while extreme_failure + critical_failure + delta_failure == 0:

# save prior values
old_extreme_damage = extreme_damage
old_critical_damage = critical_damage
old_delta_damage = delta_damage
old_failure_time = failure_time

# compute waiting time before the next shock
if waiting_time_dist == ’exponential’:

waiting_time = rng.exponential(1/gamma)

if waiting_time_dist == ’uniform’:
waiting_time = rng.uniform(gamma[0], gamma[1])

# increment failure index
failure_index += 1

if verbose: print(f’Shock number {failure_index}’)

# add to failure_time
failure_time += waiting_time

# delta shock
if waiting_time < delta:

if verbose: print(’Delta shock!’)
delta_damage += 1
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delta_failure = True

# simulate shock
shock_strength = rng.random()

# extreme shock
if shock_strength < a:

if verbose: print(’Extreme shock!’)
extreme_damage += 1
extreme_failure = True

# critical shock
elif shock_strength < a + b:

if verbose: print(’Critical shock!’)
critical_damage += 1
if critical_damage == N:

critical_failure = True

return np.array([failure_index,
old_extreme_damage, extreme_damage,
old_critical_damage, critical_damage,
old_delta_damage, delta_damage,
old_failure_time, failure_time,
extreme_failure, critical_failure, delta_failure])

Empirical sample means for ρ, Aρ, and τρ presented in Section 5.6 are found in each
case by running this function 1 m times, averaging the first, seventh, and ninth outputs,
respectively. Since the simulation outputs extreme shocks and critical shocks separately
(unlike the model), we simply compute

critical_damage + N*extreme_damage

before taking the sample mean for Bρ.
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