Skip to main content
. 2024 May 25;26(6):444. doi: 10.3390/e26060444
DCFP Dependent competing failure processes
τ1,τ2, Shocks (mixed harmless, critical, extreme) arrival process in Model 1
k=1ετk The point process of shocks in the form of random measure
εa Is Dirac point mass at point aR
W1,W2, Shocks magnitudes at τ1,τ2,
k=1Wkετk Shocks process as marked random measure with k=1ετk as the associated support counting measure
H1,H2 Shocks’ thresholds
H1W Harmless shock
H1<WH2 Critical shock
H2<W Extreme shock
fatal shock Nth critical or extreme shock
δ-shock When τi+1τi<δ
r.v. Random variable
i.i.d. Independent and identically distributed
W Equivalence class of all r.v.s that are stochastically equivalent to r.v. W
Ω,F,P Probability space
E1 WH1
E2 H1<WH2
E3 H2<W
1A Indicator function parametrized by an event A
shocks identifiers X,Y, and later on U,V
Y 1E2+N1E3
a,b,c Probability distribution of r.v. Y
PGF Probability generating function
az EzY=azN+bz+c PGF of r.v. Y
k=1Ykετk Auxiliary point process marked by the sequence Yk associated with sequence Wk of shocks’ magnitudes
Bn k=1nYk,n=1,2,
ν Minn:BnN nominal count of harmful shocks not counting δ-shocks on system’s failure
Xi 1τi1,τi<δ,i=1,2,,τ0=0, sequence of i.i.d. Bernoulli r.v.s counting δ-shocks
A Lebesgue measure of Borel set A
Δ An r.v. stochastically equivalent to r.v.s τi1,τi,i=1,2,,τ0=0
α PΔ<δ
LST Laplace–Stieltjes transform
γy,z,θ EyXzYeθΔ the joint transform of Xi,Yi,Δi,i=1,2,
γ0y,z,θ ExX0zY0eθΔ0
gy,θ EyXeθΔ=Ey1{Δ<δ}eθΔ=αθy+βθ the marginal transform of Xi,Δi,i=1,2,
αθ E1Δ<δeθΔ
βθ E1ΔδeθΔ
α α0
β β0
γθ EeθΔ=g1,θ=αθ+βθ
1γ EΔ
An k=1nXk,n=1,2,,
μ Minm:Am=M
ρ μν cumulative ruin indexalso total shocks count on failure in Model 1
τρ Time-to-failure or lifetime of the system in Model 1
Ω,F,Ft,P Filtered probability space
εa Dirac (unit) point mass at a point a
A,B,τ k=1(Xk,Yk)ετk marked random measure representing the input stream of shocks
Aρ,Bρ,τρ k=1ρ(Xk,Yk)ετk input stream of shocks consolidated by τρ
Aρ δ-shocks count by τρ
Bρ Critical/extreme shocks damage by τρ
Φρ(s,y,z,θ,u,v, ϑ;M,N) EsρyAρzBρuAρ1vBρ1eθτρϑτρ1 comprehensive information on the system at time-to-failure τρ, including ρ (total shock count on failure); Aρ M—the total number of δ-shocks; Bρ—the number of critical and fatal shocks combined; and at time τρ1 preceding to failure, as their joint distribution
Φμ>ν(s,y,z,θ,s, u,v,ϑ;M,N) status of the system in the form of EsρyAρzBρuAρ1vBρ1eθτρϑτρ11μ>ν on the confined space Ω,Fν<μ,Pν<μ that fails due to Nth critical or one extreme shock, but not due to δ-shocks
DxkF(x,y) D-operator defined as limx01k!kxk11xF(x,y)
φρs,y,z,θ;N Φρs,y,z,θ,1,1,0;1,N=EsρyAρzBρeθτρ marginal functional representing the joint probability distribution of ρ,Aρ,Bρ,τρ pertaining to the status of the system predicted by the time-to-failure at τρ in Model 1
Tj τηj= minτn>Tj1:Wn>H1,j=1,2,,T0=τ0=0 in Model 2
ηj Minn>ηj1:Wn>H1,j=1,2,3,,η0=0
Tj Embedded sequence of consecutive harmful shocks in Model 2
Vj 1TjTj1<δ,j=1,2,
Uj N1Wηj>H2+1H1<WηjH2
V,U,T k=0Vj,UjεTkdelayed marked renewal process representing only harmful shocks in Model 2
V 1τη<δ
p a+b
a0 aa+b
b0 ba+b
a0z a0zN+b0z=1pazN+bz=E[zY1Ω0]1PΩ0=1PΩ0Ω0zYdP
Ω0 W>H1=Y1,N=E2E3
Γy,z,θ EyVzUeθτη=a0zGy,θ=a0zN+b0zα0θy+β0θ
Γθ Γ1,1,θ=Eeθτη=EeθT1
Gy,θ EeθτηyV=yEeθτη1τη<δ+Eeθτη1τηδ=α0θy+β0θ
α0θ Eeθτη1τη<δ
β0θ Eeθτη1τηδ
α0 α00=Pτη<δ
β0 β00=Pτηδ
Un k=1nUk,n=1,2,
ζ Minn:UnN
χ Minm:Am=k=1mVk=1
ρ χζ ruin index in Model 2, also total count of harmful shocks (critical/extreme/δ-shocks) until failure in Model 2
Tρ Time-to-failure in Model 2
V,U,Tρ k=0ρVj,UjεTk input stream of harmful shocks consolidated by Tρ
Aρ δ-shocks count by Tρ
Bρ Impact of critical/extreme shocks in Model 2
ψρs,y,z,θ;N EsρyAρzBρeθTρ marginal functional representing the joint probability distribution pertaining to the status of the system driven by ρ,Aρ,Bρ,Tρ predicted at the time-to-failure at Tρ in Model 2