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Abstract: Mutations in the CRB1 gene are associated with a diverse spectrum of retinopathies
with phenotypic variability causing severe visual impairment. The CRB1 gene has a role in retinal
development and is expressed in the cerebral cortex and hippocampus, but its role in cognition has
not been described before. This study compares cognitive function in CRB1 retinopathy individuals
with subjects with other retinopathies and the normal population. Methods: Neuropsychological
tests of cognitive function were used to test individuals with CRB1 and non-CRB1 retinopathies
and compare results with a standardised normative dataset. Results: CRB1 retinopathy subjects
significantly outperformed those with non-CRB1 retinopathy in list learning tasks of immediate
(p = 0.001) and delayed memory (p = 0.007), tests of semantic verbal fluency (p = 0.017), verbal IQ
digit span subtest (p = 0.037), and estimation test of higher execution function (p = 0.020) but not in
the remaining tests of cognitive function (p > 0.05). CRB1 retinopathy subjects scored significantly
higher than the normal population in all areas of memory testing (p < 0.05) and overall verbal IQ tests
(p = 0.0012). Non-CRB1 retinopathy subjects scored significantly higher than the normal population
in story recall, verbal fluency, and overall verbal IQ tests (p = 0.0016). Conclusions: Subjects with
CRB1 retinopathy may have enhanced cognitive function in areas of memory and learning. Further
work is required to understand the role of CRB1 in cognition.
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1. Introduction

Biallelic pathogenic variants in the crumbs cell polarity complex component 1 gene
(CRB1, OMIM 604210) are associated with a diverse spectrum of retinopathies with phe-
notypic variability [1]. The phenotypes reported are Leber congenital amaurosis (OMIM
#613935, LCA8), early onset severe retinal dystrophy (EOSRD) [2], autosomal recessive
retinitis pigmentosa (OMIM #600105, RP12), cone-rod dystrophy (CORD), and macular dys-
trophy (MD). Distinctive features of CRB1 retinopathies are nummular pigmentation, fine
yellow punctate deposits, preserved para-arteriolar retinal pigment epithelium (PPRPE),
and coarse and thickened retina [3,4]. The CRB1 gene encodes a type 1 transmembrane
protein, which is localised to the sub-apical region of the Muller cells and photoreceptors [5].
In the retina, it is known that CRB1 has a role in retinal development and maintaining
retinal integrity, a key component of the zonula adherens junctions at the external limit-
ing membrane (ELM) and contributing to vascular integrity and apicobasal polarity [5].
Optical coherence tomography (OCT) has revealed thicker retinas with abnormal retinal
lamination [6,7]. This is attributed to an enriched retinal progenitor population with higher
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cell proliferation with inhibited cell fate progression, resulting in cell detachment during
retinal development [5].

CRB1 exhibits distinct expression patterns outside the eye. In murine embryos, it is
expressed at the ventral area of the neural tube. In adult mouse brains, it is expressed
in the cerebellum, hippocampal dentate gyrus, olfactory bulbs, rostral migratory stream,
and the subventricular area lining the telencephalic ventricles [8]. Notably, these are the
brain areas where neurogenesis occurs [9]. Furthermore, CRB1 is expressed in other brain
areas, including the cerebral cortex and hippocampus (http://proteinatlas.org, accessed on
8 August 2019). The hippocampus is known to be critical for memory and learning, and
CRB1 expression peaks in this region during embryogenesis and early foetal development
(http://hbatlas.org/, accessed on 8 August 2019) [10–12].

Genetic contribution to human cognition has been established. Within the CA1 re-
gion of the hippocampus, the high expression of the SSRT4, PNMT, LRTM2, and DRD3
genes is critical for memory formation and learning [13]. Disruption of MDK, a gene
highly expressed in the basal layer of the cerebral cortex with a critical role in neurogene-
sis [14] and hippocampal development [15], is associated with memory impairment [15].
Pathogenic variants in BBS1 [16], CWC27 [17], and SCAPER [18] cause a retinal dystro-
phy with cognitive impairment. However, our understanding of genetic variations that
augment cognitive capacities remains limited. Using an established paradigm to study
cognitive function, one study reported a family with autosomal dominant cone-rod dys-
trophy and enhanced cognitive ability, who harboured a heterozygous missense variant
(c.2459G > A, p.Arg820His) in RIMS1, a gene known to be expressed in the ventricular
zone, thalami, and hippocampus areas of the brain [19]. However, they subsequently
reported co-inheritance of a heterozygous missense variant (c.1118C > T, p.Arg373Cys) in
PROM1 [20], which is a gene known to be putative in adult hippocampal neurogenesis [21].
It is not known which gene/variant, or if both, may be associated with their augmented
cognition. Two kindreds (A and B) with cone-rod dystrophy who harboured the PROM1
c.1117C > T p.Arg373Cys variant underwent cognitive function testing using the same
established paradigm; three out of four affected family members from kindred A displayed
average-to-superior verbal memory recall. However, in kindred B, verbal learning was
delayed in one affected individual and average in the other [22]. Genes such as PAX6
are expressed in the eye and brain, but individuals with haploinsufficiency (resulting in
aniridia) do not demonstrate enhanced intellectual ability or verbal memory compared
with normal controls [23]. Moreover, RasGRF1-deficient mice showed impaired learning
abilities and memory performance with retinal degeneration, suggesting an association
between retinopathy and memory defects [24]. This study aims to determine whether
individuals with CRB1 retinopathy have enhanced cognitive function in areas of learning
and memory, when compared to those with inherited retinal diseases (IRDs) associated
with variants in other genes with a comparable degree and onset of visual loss, as well as
unaffected individuals from the normal population.

2. Materials and Methods

A prospective neuropsychological study from patients with IRDs was performed.
Subjects reviewed at a single tertiary referral centre (Moorfields Eye Hospital) with molecu-
larly confirmed CRB1-related retinopathy were consecutively recruited, and subjects with
molecularly confirmed non-CRB1 retinopathy and similar level of visual impairment were
recruited in parallel. Ethical approval was provided by the Joint Research Ethics Committee
of the Institute of Neurology and National Hospital for Neurology and Neurosurgery,
Queens Square, and the study adhered to the tenets of the Declaration of Helsinki.

Subjects with a history of other co-morbidities which may impair cognitive func-
tion including but not limited to stroke; neurodegenerative disease, e.g., parkinsonism
and Alzheimer’s; traumatic brain injury/traumatic amnesia; psychiatric disorders, e.g.,
schizophrenia and depression; or patients with variants in syndromic retinal genes known
to negatively affect cognitive function [e.g., Bardet Biedl syndrome (BBS1)] were excluded.

http://proteinatlas.org
http://hbatlas.org/
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To account for visual impairment, cognitive function was assessed using standardised
neuropsychological tests that did not involve visual processing and required only verbal
interaction. The testing protocol was the same as that used for previous collaborative
investigations [19,23] and is detailed in the Supplementary Material (see Supplemental
Material Table S1). All testing was carried out by a Clinical Neuropsychologist (PT, MM,
and HC).

Statistical Analysis

A two-tailed Mann–Whitney U test was performed to compare mean test scores of
CRB1 retinopathy subjects with non-CRB1 retinopathy subjects. Mean test scores for both
groups were also compared to published normative mean scores (for a standardisation
sample (n = 1580) of normally sighted individuals without ocular disease, aged 16–75 years
who had undergone neurophysiological testing using the same procedure, see [25,26]), as
per previous collaborative investigations [19,23]. Sum of scaled normative data scores SPSS
(Version 25) was used to analyse these data.

3. Results
3.1. Participants

A total of 63 subjects were recruited, 21 with CRB1 retinopathy and 42 with vision
loss due to other inherited ocular conditions. All 63 subjects had a diagnosis of IRDs
or congenital visual loss confirmed by clinical examination, visual acuity tests, fundus
imaging, and molecular confirmation of pathogenic variants in CRB1, KCNV2, BEST1,
PAX6, and RDH12 in accredited clinical laboratories. Four sib-ships and four kindreds
were recruited: one sib-ship with CRB1 and one with RDH12 retinopathy, two sib-ships
and three kindreds with PAX6, and one kindred with PROM1. As cognitive function is
correlated in first-degree relatives, a mean of the scores for each sib-ship and kindred was
used in this analysis. The mean age at testing for CRB1 and non-CRB1 retinopathy subjects
was 36 (SD ± 11.2) and 38 (SD ± 13.1) years, respectively. The mean age of onset of vision
loss was 4.1 (SD ± 4.1) and 6.7 (SD ± 4.7) years, respectively. The mean visual acuity at
the time of testing was 1.84 (SD ± 0.7) logMAR for CRB1 retinopathy individuals and 1.4
(SD ± 0.6) logMAR for non-CRB1 retinopathy individuals. Details of the demographic
characteristics of this cohort are reported in Supplementary Table S2.

Common clinical features of CRB1 retinopathy, as shown in Figure 1A, included widespread
nummular pigmentation, peripheral pigment migration, dense hypo-autofluorescence depicted
on fundus autofluorescence (FAF) imaging, a coarse, thickened retina with retinal disor-
ganisation, thinning of the outer nuclear layer (ONL), and loss of the ellipsoid zone seen
on spectral-domain optical coherence tomography (SD-OCT) imaging. Figure 1C depicts
the clinical features of a non-CRB1 patient with an RDH12 gene mutation, showing bone
spicules, macular atrophy, dense hypo-autofluorescence, and retinal thinning, including
thinning of the ONL and loss of the ellipsoid zone on SD-OCT.
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Figure 1. Retinal imaging with widefield colour fundus photography, with corresponding fundus 
autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) of a CRB1-
Leber congenital amaurosis (LCA) patient, non-CRB1 LCA, and unaffected control. (A) Thirty-six-
year-old female healthy control with 0.00 logMAR vision in each eye, with normal FAF and SD-OCT 
imaging. (B) Twenty-two-year-old male patient with CRB1-LCA with 1.40 logMAR vision in each 
eye, displaying widespread nummular pigmentation, dense hypo-AF, and a coarse, thickened retina 
with retinal disorganisation, with thinning of the outer nuclear layer (ONL) and loss of the ellipsoid 
zone on SD-OCT imaging. (C) Twenty-eight-year-old female patient with RDH12-LCA, presenting 
with 1.5 logMAR vision in each eye, displaying bone spicules and macular atrophy, dense hypo-AF, 
and retinal thinning, including the ONL and loss of the ellipsoid zone on SD-OCT. 

Subjects with CRB1 Retinopathy Have Enhanced Cognitive Function 
• No significant differences were observed between the two groups of retinopathy sub-

jects in the story recall immediate (p = 0.111) and delayed (p = 0.057) memory tests 
[Figure 2A] or in the verbal fluency phonemic subtest (p = 0.363) [Figure 2B]. CRB1 
retinopathy subjects scored significantly higher than non-CRB1 retinopathy subjects 
in the list learning tasks of immediate (p = 0.001) and delayed memory (p = 0.007) 
[Figure 2C], in the verbal fluency semantic subtest (p = 0.017) [Figure 2B], and in the 
Hayling test of mental processing speed (p = 0.068) [Figure 2D]. Additionally, CRB1 
retinopathy subjects scored higher in the cognitive estimation test of higher executive 
function (p = 0.020) [Figure 3C] and in the verbal IQ digit span subtest compared to 
the non-CRB1 group (p = 0.037) [Figure 3A]. No significant differences were found in 
overall verbal IQ (p = 0.142) [Figure 3B] or in the verbal IQ vocabulary (p = 0.436) and 
similarities (p = 0.208) subtests [Figure 3A]. 

• CRB1 retinopathy subjects scored significantly higher than the normal population in 
both story recall (p = 0.0001) memory tests [Figure 2A], in immediate (p = 0.0001) and 
delayed (p = 0.0004) list learning tests [Figure 2C], both verbal fluency tests (p = 
0.0001) [Figure 3B], in the digit span (p = 0.0003) verbal IQ subtest which assesses 
immediate short term memory recall, verbal IQ similarities subtest (p = 0.002), and 
overall verbal IQ tests (p = 0.001) [Figure 3A,B]. There were no significant differences 

Figure 1. Retinal imaging with widefield colour fundus photography, with corresponding fundus
autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) of a CRB1-
Leber congenital amaurosis (LCA) patient, non-CRB1 LCA, and unaffected control. (A) Thirty-six-
year-old female healthy control with 0.00 logMAR vision in each eye, with normal FAF and SD-OCT
imaging. (B) Twenty-two-year-old male patient with CRB1-LCA with 1.40 logMAR vision in each
eye, displaying widespread nummular pigmentation, dense hypo-AF, and a coarse, thickened retina
with retinal disorganisation, with thinning of the outer nuclear layer (ONL) and loss of the ellipsoid
zone on SD-OCT imaging. (C) Twenty-eight-year-old female patient with RDH12-LCA, presenting
with 1.5 logMAR vision in each eye, displaying bone spicules and macular atrophy, dense hypo-AF,
and retinal thinning, including the ONL and loss of the ellipsoid zone on SD-OCT.

Subjects with CRB1 Retinopathy Have Enhanced Cognitive Function

• No significant differences were observed between the two groups of retinopathy
subjects in the story recall immediate (p = 0.111) and delayed (p = 0.057) memory tests
[Figure 2A] or in the verbal fluency phonemic subtest (p = 0.363) [Figure 2B]. CRB1
retinopathy subjects scored significantly higher than non-CRB1 retinopathy subjects
in the list learning tasks of immediate (p = 0.001) and delayed memory (p = 0.007)
[Figure 2C], in the verbal fluency semantic subtest (p = 0.017) [Figure 2B], and in the
Hayling test of mental processing speed (p = 0.068) [Figure 2D]. Additionally, CRB1
retinopathy subjects scored higher in the cognitive estimation test of higher executive
function (p = 0.020) [Figure 3C] and in the verbal IQ digit span subtest compared to
the non-CRB1 group (p = 0.037) [Figure 3A]. No significant differences were found in
overall verbal IQ (p = 0.142) [Figure 3B] or in the verbal IQ vocabulary (p = 0.436) and
similarities (p = 0.208) subtests [Figure 3A].
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lary verbal IQ subtest (p = 0.648) [Figure 3A], and in cognitive estimation tests of 
higher executive function (p = 0.403) [Figure 3C]. 
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Figure 2. (A). Patients with CRB1 retinopathy and non-CRB1 retinopathy exhibited no significant 
differences in immediate and delayed story recall (p = 0.111 and p = 0.057, respectively). However, 
both groups displayed significantly higher mean (±SD) scores compared to normal controls in both 
tasks (* p = 0.0001, ** p = 0.0001). (B). CRB1 retinopathy subjects scored significantly higher than non-
CRB1 retinopathy patients (* p = 0.007), and both CRB1 retinopathy and non-CRB1 retinopathy sub-
ject mean scores (±SD) were significantly higher than normal controls in the semantic (animal) test 
(** p = 0.0001, *** p = 0.0001). No significant differences were observed between CRB1 retinopathy 
and non-CRB1 retinopathy subjects in the phonemic fluency tests (p = 0.363). However, both CRB1 
retinopathy and non-CRB1 retinopathy subject mean scores (±SD) were significantly higher than 
normal controls (* p = 0.0001, ** p = 0.0001). (C). CRB1 retinopathy patients exhibited significantly 
higher mean (±SD) scores than non-CRB1 retinopathy patients in both the list learning immediate 
and delayed memory tasks (* p = 0.001 and * p = 0.007, respectively) and normal controls (** p = 0.0001 
and ** p = 0.0004, respectively). No significant differences were observed between non-CRB1 reti-
nopathy subjects and normal controls in both tasks (p = 0.6603 and p = 0.8007, respectively) (D). No 
significant differences were found between CRB1 retinopathy and non-CRB1 retinopathy subjects 
(p = 0.068) and between CRB1 retinopathy subjects and normal controls in the Hayling test (p = 
0.3491). Non-CRB1 retinopathy subjects scored significantly lower than the normal population (* p 
= 0.0001). 

Figure 2. (A). Patients with CRB1 retinopathy and non-CRB1 retinopathy exhibited no significant
differences in immediate and delayed story recall (p = 0.111 and p = 0.057, respectively). However,
both groups displayed significantly higher mean (±SD) scores compared to normal controls in both
tasks (* p = 0.0001, ** p = 0.0001). (B). CRB1 retinopathy subjects scored significantly higher than
non-CRB1 retinopathy patients (* p = 0.007), and both CRB1 retinopathy and non-CRB1 retinopathy
subject mean scores (±SD) were significantly higher than normal controls in the semantic (ani-
mal) test (** p = 0.0001, *** p = 0.0001). No significant differences were observed between CRB1
retinopathy and non-CRB1 retinopathy subjects in the phonemic fluency tests (p = 0.363). However,
both CRB1 retinopathy and non-CRB1 retinopathy subject mean scores (±SD) were significantly
higher than normal controls (* p = 0.0001, ** p = 0.0001). (C). CRB1 retinopathy patients exhibited
significantly higher mean (±SD) scores than non-CRB1 retinopathy patients in both the list learning
immediate and delayed memory tasks (* p = 0.001 and * p = 0.007, respectively) and normal controls
(** p = 0.0001 and ** p = 0.0004, respectively). No significant differences were observed between non-
CRB1 retinopathy subjects and normal controls in both tasks (p = 0.6603 and p = 0.8007, respectively)
(D). No significant differences were found between CRB1 retinopathy and non-CRB1 retinopathy
subjects (p = 0.068) and between CRB1 retinopathy subjects and normal controls in the Hayling test
(p = 0.3491). Non-CRB1 retinopathy subjects scored significantly lower than the normal population
(* p = 0.0001).
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Figure 3. (A). CRB1 retinopathy subjects’ scores were significantly higher compared to non-CRB1 
retinopathy subjects in digit span (* p = 0.037), and they outperformed normal controls in digit span 
(** p = 0.0003) and similarities (** p = 0.002) but not in vocabulary (p = 0.648). Non-CRB1 retinopathy 
subjects outperformed normal controls in similarities (* p = 0.001) but not in vocabulary (p = 0.3666) 
or digit span (p = 0.0600) tests. (B). Overall VIQ summary scores showed no significant differences 
between CRB1 and non-CRB1 subjects (p = 0.142). Both CRB1 (** p = 0.001) and non-CRB1 retinopathy 
(* p = 0.001) subjects had significantly higher VIQ scores than the normal population. (C). CRB1 
retinopathy subjects had significantly lower scores (indicating greater cognitive ability) than non-
CRB1 retinopathy patients in the cognitive estimation test (** p = 0.020), while non-CRB1 retinopathy 
subjects scored significantly higher (indicating lower cognitive ability) than normal controls (* p = 
0.004). 
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This is the first study to report elements of enhanced cognitive function in areas of 
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formed non-CRB1 patients in tests of immediate and delayed memory, higher executive 
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memory tests, and they scored significantly lower in tests of higher executive cognitive 
function and mental processing speed. 
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tions about whether there is a causal relationship between variants in CRB1 and enhanced 
memory and learning abilities in CRB1 retinopathy subjects, or if these improvements are 
the consequence of early-onset blindness, a known factor that triggers compensatory neu-
roplasticity and the reorganisation of neural circuits [32,33]. Careful control for the effects 
of blindness in different groups was undertaken, by comparing the CRB1 retinopathy 
group to a group of subjects with a similar age of onset of visual impairment and similar 
degree of sight impairment. The mean age of onset of vision loss was 4.1 (SD ± 4.1) in CRB1 
patients and 6.7 (SD ± 4.7) years in non-CRB1 retinopathy, and the mean visual acuity was 
1.84 (SD ± 0.7) logMAR and 1.4 (SD ± 0.6) logMAR, respectively. Additionally, careful 
control for the known effects of increased age on cognitive function [34] was undertaken 
by having groups with similar mean ages 36 (SD ± 11.2) years for CRB1 patients and 38 
(SD ± 13.1) years for non-CRB1 retinopathy patients). The findings of this study suggest 
that biallelic CRB1 pathogenic variants could further enhance cognitive function in sub-
jects with visual impairment. 

Previous evidence suggests an association between genetic mutations in eye–brain-
expressed genes and the enhancement of some areas of cognitive function in humans. A 
kindred of eight individuals with variants in PROM1 c.1117C > T p.Arg373Cys and RIMS1 
c.2459G > A, p.Arg820His and seven unaffected individuals underwent cognitive testing. 

Figure 3. (A). CRB1 retinopathy subjects’ scores were significantly higher compared to non-CRB1
retinopathy subjects in digit span (* p = 0.037), and they outperformed normal controls in digit
span (** p = 0.0003) and similarities (** p = 0.002) but not in vocabulary (p = 0.648). Non-CRB1
retinopathy subjects outperformed normal controls in similarities (* p = 0.001) but not in vocabulary
(p = 0.3666) or digit span (p = 0.0600) tests. (B). Overall VIQ summary scores showed no significant
differences between CRB1 and non-CRB1 subjects (p = 0.142). Both CRB1 (** p = 0.001) and non-CRB1
retinopathy (* p = 0.001) subjects had significantly higher VIQ scores than the normal population.
(C). CRB1 retinopathy subjects had significantly lower scores (indicating greater cognitive ability) than
non-CRB1 retinopathy patients in the cognitive estimation test (** p = 0.020), while non-CRB1 retinopa-
thy subjects scored significantly higher (indicating lower cognitive ability) than normal controls
(* p = 0.004).

• CRB1 retinopathy subjects scored significantly higher than the normal population in
both story recall (p = 0.0001) memory tests [Figure 2A], in immediate (p = 0.0001) and
delayed (p = 0.0004) list learning tests [Figure 2C], both verbal fluency tests (p = 0.0001)
[Figure 3B], in the digit span (p = 0.0003) verbal IQ subtest which assesses immediate
short term memory recall, verbal IQ similarities subtest (p = 0.002), and overall verbal
IQ tests (p = 0.001) [Figure 3A,B]. There were no significant differences in the Hayling
test of mental processing speed (p = 0.349) [Figure 2D], in the vocabulary verbal IQ
subtest (p = 0.648) [Figure 3A], and in cognitive estimation tests of higher executive
function (p = 0.403) [Figure 3C].

• Non-CRB1 retinopathy subjects scored significantly higher than the normal population
in story recall (p = 0.0001) [Figure 2A]. No significant differences were seen in the list
learning immediate (p = 0.6603) and delayed (p = 0.800) memory tests [Figure 2C] and
in the verbal IQ digit span (p = 0.060) and vocabulary (p = 0.366) subtests [Figure 3A].
Additionally, non-CRB1 retinopathy subjects scored significantly higher than the nor-
mal population in both verbal fluency tests (p = 0.0001) [Figure 3B], in the similarities
verbal IQ subtest (p = 0.001) [Figure 3A], and in the overall verbal IQ tests (p = 0.001)
[Figure 3B]. They, however, scored significantly worse than the normal population
in the Hayling test of mental processing speed (p = 0.0001) [Figure 2D] and cognitive
estimation tests of higher executive function (p = 0.004) [Figure 3C].

4. Discussion

This is the first study to report elements of enhanced cognitive function in areas of
learning and memory in subjects with biallelic CRB1 retinopathy. CRB1 patients outper-
formed non-CRB1 patients in tests of immediate and delayed memory, higher executive
cognitive function, and some aspects of verbal fluency which facilitates stored memory
retrieval [27]. They also scored significantly higher than the normal population in all
memory and verbal fluency tests, in overall verbal IQ tests, including the digit span subtest
which assesses short term memory. Non-CRB1 retinopathy subjects scored significantly
higher than the normal population in verbal fluency tasks and in some, but not all, memory
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tests, and they scored significantly lower in tests of higher executive cognitive function and
mental processing speed.

Individuals with sight impairments are considered to have enhanced working memory
capacity [28,29], memory processing [30], and verbal ability [31]. This raises questions
about whether there is a causal relationship between variants in CRB1 and enhanced
memory and learning abilities in CRB1 retinopathy subjects, or if these improvements
are the consequence of early-onset blindness, a known factor that triggers compensatory
neuroplasticity and the reorganisation of neural circuits [32,33]. Careful control for the
effects of blindness in different groups was undertaken, by comparing the CRB1 retinopathy
group to a group of subjects with a similar age of onset of visual impairment and similar
degree of sight impairment. The mean age of onset of vision loss was 4.1 (SD ± 4.1) in CRB1
patients and 6.7 (SD ± 4.7) years in non-CRB1 retinopathy, and the mean visual acuity was
1.84 (SD ± 0.7) logMAR and 1.4 (SD ± 0.6) logMAR, respectively. Additionally, careful
control for the known effects of increased age on cognitive function [34] was undertaken
by having groups with similar mean ages 36 (SD ± 11.2) years for CRB1 patients and
38 (SD ± 13.1) years for non-CRB1 retinopathy patients). The findings of this study suggest
that biallelic CRB1 pathogenic variants could further enhance cognitive function in subjects
with visual impairment.

Previous evidence suggests an association between genetic mutations in eye–brain-
expressed genes and the enhancement of some areas of cognitive function in humans. A
kindred of eight individuals with variants in PROM1 c.1117C > T p.Arg373Cys and RIMS1
c.2459G > A, p.Arg820His and seven unaffected individuals underwent cognitive testing.
Affected individuals were found to have above average scores in verbal IQ tests that
involved nonvisual processing. However, their scores in memory and executive function
tests were variable, with some scores below average. The enhancement of some cognitive
domains was attributed to genetic mutation rather than impaired visual function [19,20].
A kindred of four with the same PROM1 c.1117C > T p.Arg373Cys variant displayed
superior memory recall. However, one individual was found to have delayed learning [22].
Wang et al. observed the enhancement of recognition memory in the murine forebrain
following the overexpression of type-1 adenylyl cyclase (ADCY1), a gene known to be
crucial in hippocampus memory formation by increasing cyclic AMP, which positively
regulates synaptic plasticity. They postulated that a shift in the balance between negative
and positive regulators whose activities counteract one another, e.g., protein phosphatases
versus protein kinases, could occur following transgenic overexpression, may induce
further synaptic plasticity, and that the enhancement of protein kinase (MAPK) signalling
can increase memory recognition. However, they also suggested that such an enhancement
of one area of memory had the potential to impair the function of another [35].

Earlier studies have shown that mutations in the CA1 hippocampal region-expressed
genes have detrimental effects on hippocampus-dependent memory tasks: in CNB1 gene
knockout mice, working memory and synaptic plasticity were impaired, suggesting that
rather than enhancing performance, the mutation induces the inhibition of crucial com-
ponents of memory regulation [36]. Moreover, deletion of the ryanodine receptor type
3 (RyR3) gene in mice has been shown to impair some forms of hippocampal synaptic
plasticity and spatial learning. RyR3 deletion negatively affects long-term potentiation and
depotentiation in the hippocampal CA1 region and dentate gyrus, leading to deficits in
hippocampal synaptic plasticity and reduced performance in spatial memory tasks [37].
No memory impairment was observed in our CRB1 retinopathy subjects; in fact, all areas
of memory not reliant on vision were enhanced compared to the normal population.

Molecular changes in brain-expressed genes have been found to positively influence
memory and other areas of cognition [38]. Deletion of 5-HT1B (a gene thought to mod-
ify cognitive behaviour) in mice resulted in enhanced spatial memory performance and
facilitated learning abilities [39]. The NR2B (N-methyl-D-aspartate) receptor, a synaptic co-
incidence detector critical for learning and memory formation, acts as a “molecular switch”
in the memory process. Tang et al. demonstrated that NR2B transgene overexpression
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in the cortex and hippocampus of adult mice resulted in superior performance in several
hippocampus-dependent learning and memory tasks [40,41] and they outperformed age-
matched controls into old age [42]. Enhanced cognition is also associated with variants in
further brain-expressed genes cb1-b [43], TLCN [44], and CREB [45].

CRB1 is expressed in the hippocampus, an area of the brain critical for learning and
memory [46]. However, the association of CRB1 with memory and learning is yet to be
explained. Biallelic CRB1 mutation causes isolated retinal dystrophy without brain dys-
function. The overexpression of CRBE2 (a member of the crumbs cell polarity complex,
expressed in retinal pigment epithelium and the cortex, hippocampus, hypothalamus, and
cerebellum of adult mouse brains, and an essential regulator for neuronal differentiation
during neurogenesis) is induced in the cortex of the CRB1rd8 mutant mouse brain, sug-
gesting a possible compensatory mechanism for CRB1 dysfunction [47]. CRB1 is integral
to tight junctions and apical-basal polarity and the lack of it results in increased cell pro-
liferation in the retina and cells in a proliferative phase [5]. If this was also seen in the
hippocampus, maybe there is an increased number of cells and loss of lamination that may
allow for increased neuronal growth/synaptic plasticity. This expression occurs in foetal
stages, so increased cell proliferation in that area may enhance memory capacity. However,
further studies are needed to prove this hypothesis.

There is evidence that early-onset blindness can result in training-induced neuroplastic
changes in humans [48] and animals, whereby if one cortical area is deprived of adequate
sensory input during early development, the reorganisation of the non-deprived senses
occurs by means of cross-modal synaptic plasticity [49,50]. Loss of function mutations in
the cone-rod homeobox-containing gene (CRX) in knockout mice demonstrated sensory
compensation and striking adaptions to their environment by utilising non-visual infor-
mation 5 days after visual loss [51]. Moreover, decades of research in humans suggested
that congenital blindness results in superior memory [28–30,32,33,52,53] and learning abil-
ities [31] resulting from environmentally induced compensatory alterations within the
occipital cortex [54,55]. fMRI studies have demonstrated that sensory reorganisation and
recruitment of other sensory modalities occurs in the congenitally blind brain, with in-
creased activation and neuroplastic changes occurring within the occipital cortex [56–58].
Whether these striking adaptions and enhancement of memory and learning in the blind
brain is entirely environmentally dependent or whether variants in genes also expressed in
the brain can increase the potential for synaptic plasticity is yet to be established.

Investigation of whether there is a correlation between the severity of CRB1 retinopathy
and memory enhancement could lead to valuable insights, particularly considering the
established link between compensatory cross-modal neuroplasticity in blind individuals and
the extent of their visual impairment [28,59]. Furthermore, assessing the cognitive abilities of
CRB1 knockout mice or other associated disease models could offer a different perspective on
its function in the brain and whether its absence induces synaptic neuroplasticity.

Limitations

There are some limitations to our study: the raw normative dataset was not available
to the investigators, therefore it was only feasible to perform statistical analysis using
mean values, instead of median values, for each group of subjects. It was not possible
to control for the known effects of gender, educational level, and socio-economic status
on cognitive function [60] as this would have significantly reduced the sample size. A
further control group of CRB1 carriers was not available. It is noteworthy that whilst
both retinopathy groups had similar visual acuity levels at time of testing, 68% of CRB1
retinopathy subjects had unrecordable or severely restricted visual fields, which would
have further affected overall levels of visual impairment for this group, whereas only a
proportion (28%) of the non-CRB1 retinopathy subjects had field loss. This could have
influenced test performance, given that the enhancement of memory performance appears
to be more profound in individuals who have no useful measurable vision [28,59]. A
total of 80% of CRB1 retinopathy subjects had achieved a minimum of A-level education
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compared with 55% of subjects in the non-CRB1 retinopathy group. This could imply that
the CRB1 group was biased in relation to educational attainment, particularly as educational
level and cognitive function positively correlate [60]. However, it may also suggest that
patients with CRB1 retinopathy have superior learning abilities, which concurs with their
significantly higher scores in the list learning and semantic verbal fluency tasks. Finally,
PAX6 mutation patients were included as part of the non-CRB1 group, PAX6 mutations
play a fundamental role in brain development, and there is evidence that PAX6 mutations
correlate with anatomical and functional changes [61].

5. Conclusions

Understanding the molecular processes involved in memory is a challenging and grow-
ing field. Any Mendelian disorder, such as CRB1 retinopathy, in which cognition appears
enhanced suggests a biological pathway of importance in this process that is yet to be dis-
covered. This study provides insights into the role of CRB1 in the eye and brain, and further
studies are required to investigate how its dysfunction can lead to enhanced cognition.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15060660/s1, Table S1: Summary of neurophysiological
testing protocol; Table S2: Summary of subject demographics, genetic results, and clinical characteris-
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