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Abstract: At the forefront of advanced material technology, radiation-induced hydrogels present a
promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam
radiation, and UV radiation. Through the unique synthesis process involving radiation exposure,
these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a
multitude of applications. This paper focuses on the intricacies of the synthesis methods employed
in creating these radiation-induced hydrogels, shedding light on their structural characteristics
and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels
in biomedicine and agriculture, showcasing their potential for applications such as targeted drug
delivery, injury recovery, and even environmental engineering solutions. By analyzing current
research trends and highlighting potential future directions, this review aims to underscore the
transformative impact that radiation-induced hydrogels could have on various industries and the
advancement of biomedical and agricultural practices.

Keywords: hydrogel; electron beam irradiation; gamma radiation crosslinking; biomedical engineering;
drug delivery; sustainable agriculture

1. Introduction

Hydrogels are acclaimed for their 3D polymeric water-insoluble networks that pos-
sess a notable capacity to absorb substantial amounts of water in relation to their weight,
rendering them highly sought-after materials in diverse sectors such as medical, pharma-
ceutical, food, and agricultural sectors [1,2]. In the medical and pharmaceutical realms, the
pivotal role hydrogels play as supportive structures, offering mechanical protection for
tissues where cells are either suspended within or attached to the polymeric material, is
paramount [3,4]. Equally notable is the utilization of hydrogels in the food industry, where
they come into play for encapsulating a myriad of active ingredients, exemplifying their
versatility and applicability [5]. Gamma and electron beam radiation techniques stand
out as prevalent techniques for crosslinking, compatibilizing, and grafting within various
polymer blends and composite systems. Notably, gamma radiation-induced grafting and
crosslinking have proven to be effective methodologies for enhancing the properties of
polymeric materials across an array of high-performance applications. Gamma rays, a form
of high-energy electromagnetic radiation, are used to synthesize and modify hydrogels by
crosslinking polymer solutions. In biomedicine, these hydrogels are ideal for controlled
drug delivery and wound dressings due to their biocompatibility and moisture retention
properties [6]. They can be engineered for specific release rates, allowing extended medi-
cation administration and enhanced wound healing. In agriculture, gamma ray-induced
hydrogels improve soil water retention and crop yields, particularly in arid regions, by
absorbing and gradually releasing water [7]. They can also be combined with fertilizers
and pesticides for controlled release, increasing efficiency and reducing environmental
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impact. Environmentally, these hydrogels aid in wastewater treatment by absorbing pol-
lutants like heavy metals and organic compounds, contributing to water purification and
environmental cleanup. Their high absorbency and swelling capacity make them ideal
for capturing contaminants from industrial effluents and sewage [8]. Industrially, the
responsiveness of these hydrogels to stimuli like pH and temperature enables the devel-
opment of smart materials and sensors that monitor environmental conditions. Their
adaptability supports innovative applications in controlled release systems, responsive
textiles, and robotics. Gamma ray crosslinking is known for its efficiency in hydrogel
synthesis, offering deep penetration and precise control over the crosslinking process.
For instance, gamma ray-crosslinked alginate hydrogels have shown promise in wound
healing applications, exhibiting enhanced mechanical strength and biocompatibility [9].
Additionally, agarose hydrogels crosslinked using gamma radiation have demonstrated
excellent thermal stability and controlled drug release properties, making them suitable
for drug delivery platforms [10]. Furthermore, gamma ray-crosslinked polyacrylamide
hydrogels have been utilized for the development of biosensors due to their responsive
behavior to environmental stimuli and high sensitivity [11]. These examples illustrate
the versatility and efficacy of gamma ray crosslinking in tailoring hydrogel properties for
various biomedical applications. Similarly, electron beam radiation crosslinking offers
economic advantages over conventional chemical techniques for property enhancement.
The discourse turns towards the intricate realm of developing polymeric multi-component
systems through controlled high-energy radiation crosslinking, emphasizing the signifi-
cance of this modulation. Several investigative efforts have focused on the modification
of polymeric systems employing controlled doses of gamma radiation, with an emphasis
on the radiation-induced grafting of diverse monomers onto the polymer backbone—a
pivotal aspect of this transformative process. The scrutiny extends to comparative studies
delving into the differing effects of gamma and electron beam radiation on property devel-
opment, underscoring the versatility and applicability of high-energy radiation-modified
polymers across diverse sectors ranging from automotive and insulation to sterilization
and biomedical spheres, among others. Gamma radiation serves as a versatile tool that is
particularly adept at functionalizing surfaces with stimuli-responsive polymers through the
creation of active sites on the polymeric backbone via high-energy radiation exposure. This
facilitates intricate reactions between monomers/polymers and active sites, culminating
in the formation of side chain grafts. The amendation of polymers using high-energy
irradiation through methods like direct or simultaneous techniques finds prominence in
this realm, emphasizing the synthesis of smart polymers and coatings leveraging gamma
radiation, with a keen eye on applications within the biomedical domain. Shifting focus
towards polymer hydrogel networks, characterized by their low crosslinking levels, these
intricate structures emerge through the employment of chemical or physical crosslinking
techniques, leading to the formation of crosslinking points that can either be covalent
or noncovalent. Renowned for their exceptional ability to swell or contract, retaining
significant water volumes while maintaining insolubility, hydrogels showcase versatil-
ity and adaptability [12,13]. Their malleability allows for natural shaping and notable
flexibility under varying pressures—key features that underscore their practicality and
utility. These specialized polymer materials, acknowledged for their attributes like water
absorption, retention, controlled release capabilities, and diverse functional properties,
have garnered substantial attention in recent years owing to the rapid strides in their de-
velopment. Highlighting their versatility, hydrogels often exhibit desirable characteristics
such as responsiveness to stimuli, biocompatibility, reversible physicochemical traits, and
more [14]. With a composition and structure reminiscent of human soft tissues, hydrogels
find extensive applications in a multitude of sectors, including drug delivery, cell culture,
tissue engineering, and various biomedical and biomimetic uses [15–18]. Moreover, the
tremendous potential of functionalized hydrogels in domains like intelligent sensing and
environmental remediation underscores their versatility and burgeoning prospects [19].
Noteworthy among the traditional repertoire of polymer hydrogel materials is polyvinyl
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alcohol (PVA), which has witnessed a resurgence in contemporary research avenues. This
water-soluble polymer, stemming from the alcoholysis, hydrolysis, or ammonolysis of
polyvinyl acetate (PVAc), gives rise to hydrogels with intricate three-dimensional net-
work structures facilitated through crosslinking and swelling procedures. The allure of
PVA-based hydrogels lies in their low toxicity, elevated water absorption capacity, robust
mechanical properties including a high elastic modulus and strength, and commendable
biocompatibility [20–22]. Seizing upon these advantageous attributes, applications of these
hydrogels extend across a diverse array of domains including the food industry, forestry
applications, and super absorbents, with a pronounced emphasis on the biomedicine realm
where they serve pivotal roles in drug delivery mechanisms, tissue engineering frame-
works, the development of implanted artificial muscles and organs, biosensors, wound
dressings, and soft robotics, showcasing their multidisciplinary relevance and profound
impact on various fields. Hydrogels stand out as a significant class of functional materials
distinguished by their unique structure, customizable functionalities, and notable prop-
erties such as high-water content, interconnected porosity, softness, and flexibility. These
characteristics evoke a semblance to biological materials like mucus or the extracellular
matrix enveloping cells, tissues, organs, or entire organisms [23,24]. The classification of
hydrogels into physical, chemical, or permanent gels depends on the type of crosslinking
points they feature [25]. Physical gels are characterized by molecular entanglements and
secondary forces, rendering their crosslinks reversible, thus enabling dissolution when
exposed to different environmental conditions or when in contact with water for a long
time. In contrast, permanent or chemical gels are characterized by networks that have cova-
lent bonds serving as crosslinking locations. Hydrogel creation entails the polymerization
and concurrent crosslinking of hydrophilic monomers using polyfunctional crosslinking
agents, or by directly crosslinking hydrophilic polymers. However, traces of monomers,
initiators, catalysts, and their byproducts may inadvertently introduce undesirable traits
such as color, chemical reactivity, or potential toxicity. Consequently, a call for simpler
and safer synthetic methods is growing, with single component-based processes gaining
traction. Utilizing gamma rays or accelerated electron beams has proven effective in creat-
ing hydrogels from water-soluble, biocompatible synthetic polymers like polyacrylic acid,
polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, and polyacrylamide [26],
polysaccharides [27,28], and polyaminoacids [29,30]. The distinct advantage of employ-
ing high-energy irradiation lies in achieving sterilization concurrently with appropriate
dosages. Alternatively, other methods that do not require reagents, such as the UV ir-
radiation of polymeric systems that can be directly photo-crosslinked, autoclaving, or
thermal treatments using microwave radiation, provide further options. It is essential for a
polymer to contain photoactive groups such as cinnamic acid, coumarin, anthracene, and
dimethylmaleimide in order to undergo direct photo-crosslinking [31]. On the other hand,
polymer hydrogels are synthesized by crosslinking hydrophilic polymers either physically
or chemically, with the extent of crosslinking significantly impacting the mechanical and
chemical properties of the hydrogel. Various methods are employed to create chemical
crosslinks, including photo-polymerization, radical-induced crosslinking, and click chem-
istry techniques like copper-catalyzed alkyne azide coupling and Michael additions [32].
Fine-tuning the crosslink density allows for the modulation of (bio)molecule release, hydro-
gel rigidity, cellular signaling, and the internal water volume. Control over the crosslink
density can be achieved through degradative or constructive molecular events, triggered by
factors like (UV) light, pH, enzymatic activity, or reactive oxygen species (ROS). The release
of (bio)molecules from the hydrogel matrix is typically accomplished through degradation
processes such as triggered crosslinker cleavage, whereas constructive molecular processes
like secondary radical-mediated crosslinking and sequential photoinduced crosslinking
enhance crosslink density [33]. Enhancing the crosslink density is often pursued to improve
mechanical properties such as rigidity, yield stress, or healing capabilities. To achieve the
macroscopic contraction of dextran hydrogels, a γ-radiation-triggered secondary crosslink
strategy is introduced that allows direct control over the density of secondary crosslinks
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post-initial hydrogel formation. This innovative approach underscores the translation of
molecular events like secondary crosslinking into macroscopic movement, exemplified
through hydrogel contraction. Leveraging γ-radiation enables the generation of radicals
on unsaturated polymer chains, facilitating crosslink formation and finding widespread
application [34]. The efficiency of crosslinking via gamma radiation lies in its capacity
to forgo monomers, initiators, or catalysts which may pose risks in biological applica-
tions. By adjusting the radiation dose, control over the crosslink density can be attained,
offering versatility in managing properties like rigidity [35]. Extended irradiation leads
to continued crosslink formation, resulting in material contraction. This phenomenon,
as observed by Angelini et al., demonstrates material contraction in 3% gelatin solutions
under a γ-irradiation dose surpassing 50 kGy [36], showcasing the high sensitivity and
effectiveness of gamma radiation-induced crosslinking.

The main goal of this review is to elucidate the development, characteristics, and
multifaceted applications of radiation-induced hydrogels, emphasizing their synthesis via
gamma, electron beam, and UV radiation methods. Radiation-induced hydrogels have
emerged as pivotal materials in the realm of biomedical engineering, notably in wound
healing, due to their unique properties such as high-water content, biocompatibility, and
tailored degradability. Furthermore, their utility extends into agriculture, where they
contribute to water retention and the controlled release of agrochemicals, enhancing crop
productivity in challenging environmental conditions. This paper seeks to compile and
analyze recent advancements in the synthesis of these hydrogels, comparing the efficiency
and outcomes of different radiation techniques. Moreover, we aim to explore the innovative
integration of these hydrogels in biomedical applications, particularly in drug delivery
systems and tissue engineering, as well as their rising significance in agricultural practices.
By providing a comprehensive overview of current research and potential future directions,
this review intends to highlight the transformative potential of radiation-induced hydrogels
in science and technology, fostering a deeper understanding and expanded utilization in
various disciplinary contexts.

2. Synthesis and Properties of Hydrogels
2.1. Impact of Gamma and Electron Beam Radiation

Scientists have been studying the impact of high-energy radiation, such as gamma and
electron beam radiation, on polymers for over thirty years. This research aims to understand
how radiation can be used to achieve the crosslinking, grafting, and compatibilization of
polymers [37]. The significance of radiation-exposed polymeric molecules in diverse global
applications is widely acknowledged [38]. Over the past thirty years, different constituents
from radiation-treated polymers, including customized polymers, polymer mixtures, and
hybrids, have been extensively employed in automotive, construction, aerospace, nuclear,
defense, electrical, and electronic applications which require high temperatures. Gamma
and electron beam radiation play a pivotal role in transforming industrial polymers such
as LDPE, HDPE, Nylon-6, Nylon-6 6, EPDM, POE, silicone elastomer, EVA copolymer, and
others [39].

The ionization introduced by gamma radiation in polymeric chains triggers chain
crosslinking and scission through a mechanism involving free radicals, with the extent of
the crosslinking being contingent on factors like polymer composition, phase structure,
radiation dosage and duration, and characteristics of the radiation source. The expo-
sure of polymers to gamma radiation has emerged as a prevailing method for altering
polymer structure, instigating polymerization, facilitating grafting, sterilization, and foster-
ing the crosslinking of various thermoplastics and elastomers. Innovations arising from
gamma radiation processes are highly prized for their suitability in high-performance
applications; explorations in polymer radiation technology have unlocked avenues for
superior performance in applications of great commercial relevance in packaging, auto-
motive, and electronics sectors [40]. Gamma radiation-induced crosslinking and surface
adjustments have elevated the mechanical, thermal, chemical, electrical insulation, and
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environmental traits of polymers, rendering them apt for demanding applications prevalent
in space exploration, automotive industries, construction, nuclear facilities, and defense
applications [41,42].

2.2. Gamma Radiation-Induced Hydrogel Synthesis

Hydrogel fabrication using gamma radiation involves applying high-energy gamma
rays to induce crosslinking within hydrophilic polymer networks. This method utilizes iso-
topes like cobalt-60 to uniformly crosslink the polymer chains, transforming the precursor
solution into a stable, three-dimensional hydrogel. This technique enhances the mechanical
strength and stability of hydrogels without requiring chemical crosslinking agents. Hydro-
gel systems crafted through gamma irradiation have gained considerable attention in recent
years. When an aqueous polymer solution is irradiated, radicals form on polymer chains,
and water molecules undergo radiolysis, producing hydroxyl radicals that also interact
with polymer chains, resulting in macro-radical formation. These macro-radicals then
recombine across different chains, leading to covalent bond formation and ultimately, a
crosslinked structure [43,44]. The utilization of gamma ray irradiation for living free-radical
polymerization offers several benefits for practical applications. The advantages are that it
can be controlled easily, it is environmentally friendly, and it can be used to create and ster-
ilize the hydrogel in the same step, all while maintaining a room temperature and allowing
for high penetration rates [45,46]. The precision of gamma radiation allows hydrogels to be
engineered with specific release rates, enabling extended medication administration and
enhanced wound healing. These hydrogels can be loaded with growth factors and other
therapeutic agents, providing a moist environment conducive to tissue regeneration, and
reducing infection risk [22]. In agriculture, gamma ray-induced hydrogels improve soil
water retention and crop yields, especially in drought-prone areas, by absorbing and grad-
ually releasing water. They can also combine with fertilizers and pesticides for controlled
release, increasing efficiency and reducing environmental impact [47].

Environmentally, these hydrogels aid in wastewater treatment by absorbing pollu-
tants like heavy metals and organic compounds, contributing to water purification and
environmental cleanup. Their high absorbency and swelling capacity make them ideal
for capturing contaminants from industrial effluents and sewage [48]. Industrially, their
responsiveness to stimuli such as pH and temperature enables the development of smart
materials and sensors. These hydrogels can be used in devices that monitor environmental
conditions, providing real-time data for industrial processes and safety monitoring. Overall,
gamma ray-induced hydrogels offer versatile and valuable solutions across multiple fields,
driven by their unique properties and the precise interaction between gamma rays and
polymers. Importantly, the radiation technique is environmentally friendly since there is
no need for extra chemicals that would introduce harmful contaminants into the networks
of polymers, such as chemical initiators and crosslinkers. This method is particularly
advantageous for biomedical applications, where even minimal contamination is unde-
sirable. Moreover, gamma ray irradiation is commonly utilized to sterilize biomedical
devices for veterinary and medical purposes [49,50]. Hydrogels were developed by ex-
posing them to gamma ray radiation at different doses (26, 64, 96, and 124 kGy) in the
presence of air at room temperature. This was performed using a Gamma Cell 220 type
60Co g irradiator, with a constant dose rate of 0.40 kGy h1. The hydrogels were made
using poly(N-vinyl-2-pyrrolidone) (PVP) and K2S2O8, with different levels of crosslinking
densities and molecular weights [51].

Scientists studied how these hydrogels behave when they come into contact with
a Bovine Serum Albumin solution. They looked at how much the hydrogels swell and
spread out, focusing on how different radiation doses affect them (as shown in Figure 1).
They found that higher radiation doses increased the crosslinking in the hydrogels, making
them swell differently. This research shows how important radiation is in changing the
structure and swelling properties of hydrogels, providing useful information about how
these materials evolve and behave.
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Figure 1. (a) Swelling percentages of PVP gels in 0.1 g/100 mL BSA solution across various radiation
doses and (b) swelling percentages of PVP/K2S2O8 gels in 0.1 g/100 mL BSA at different radiation
doses, reproduced with permission from ref. [51]. Copyright, Elsevier.

In order to achieve a biocompatible matrix suitable for skin tissue engineering, gamma
ray irradiation was used to create HA/chondroitin sulfate/polyacrylic acid hydrogel
systems without needing additional initiating or crosslinking agents [52] (Table 1). The pro-
duction involved gamma ray exposure to facilitate free-radical copolymerization and the
crosslinking of the glycosaminoglycans HA, CS, and the synthetic ionic polymer PAAc (as
presented in Figure 2). The gelation rate of these HA/CS/PAAc hydrogels demonstrated an
increase with irradiation doses up to 15 kGy, achieving gel fractions between 91 and 93% at
15 kGy [53,54]. This result corroborates the fact that PAAc’s three-dimensional network for-
mation and gel fraction enhancement are direct outcomes of increased irradiation exposure,
substantiating the effectiveness of this method in developing hydrogel systems targeting
tissue engineering objectives using FE-SEM. It was observed that HA/CS/PAAc hydrogels
had highly porous cross-sectional structures. By crosslinking a linear polymer with radia-
tion, a three-dimensional polymeric network is created that is capable of adsorbing water
without dissolving.

Table 1. Comparison of gamma, electron beam, and UV radiation for hydrogel synthesis: advantages,
disadvantages, applications, and dose ranges.

Synthesis
Method Example Advantage Disadvantage Application in Different Field Dose

Range (KGy) Ref.

Gama
radiation
synthesis

Polyethylene glycol
diacrylate (PEGDA)

Precise
crosslinking

Requires
specialized

facilities

Biomedical: drug delivery systems,
tissue engineering

10–25 [54,55]
Agriculture: soil conditioning,
water retention

Environmental: wastewater treatment

Industrial: smart materials, sensors

Electron
beam

irradiation
Polyvinyl alcohol (PVA) Controlled

crosslinking

High
equipment

costs

Biomedical: tissue scaffolds,
wound dressings

10–50 [56,57]
Food Packaging: enhanced barrier
properties, extended shelf life

Environmental: pollutant removal,
water treatment

Industrial: tailored materials, coatings

UV light
irradiation

Poly(N-
isopropylacrylamide)

(PNIPAM)

Cost-
effective

Limited depth
penetration

Biomedical: photo responsive hydrogels,
drug release systems

N/A [58,59]Adhesives: quick curing

Coatings: surface modification for
bio applications.
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Figure 2. (a) Synthetic diagrams for: (A) HA, (B) CS, (C) methacrylated HA (MA-HA), (D) methacry-
lated CS (MA-CS), and (E) PAAc. (b) HA/CS/PAAc-55 hydrogel produced via gamma irradiation.
(c) Influence of irradiation dose on gel fraction (%) in HA/CS/PAAc hydrogels. Images are repro-
duced with permission from ref. [52]. Copyright, Elsevier.

A different group of researchers discovered that starch/(EG-co-MAA) polymeric hy-
drogels were synthesized through gamma-induced radiation copolymerization, where
methacrylic acid (MAA) and ethylene glycol (EG) were grafted onto starch. The compo-
sition of these hydrogels, including the gel content, was observed to vary with several
factors such as the proportion of starch used, the EG:MAA ratio, the irradiation dose, and
the crosslinking density. A number of parameters were examined to determine how much
swelling these hydrogels could produce, including starch content, EG:MAA composition,
irradiation dose, immersion liquid type, pH, and ambient temperature. It was found
that the starch/(EG-co-MAA) hydrogels achieved equilibrium swelling in water within
72 h, demonstrating the hydrogels’ responsiveness to environmental conditions and their
potential for various applications [60].

In a pioneering study conducted in 2023, the development of acrylamide-methyl-
propane sulfonic acid (AAMPS)-based hydrophilic cryogels through gamma radiation at
a low pH level was explored (as shown in Figure 3a). This work included the produc-
tion of gold hybrid cryogels via a self-reduction method under ambient conditions [61].
Demonstrating a high efficiency in degrading Congo red dye with NaBH4, these cryogels
reveal significant potential for environmental remediation. Smart hydrogels and cryogels,
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recognized for their broad utility in sectors such as drug delivery, catalysis, and sensor
technology [62,63], benefit from gamma radiation’s deep penetration and scalability. This
research highlights a methodological advantage over UV radiation techniques due to
gamma radiation’s ability to produce cryogels of any thickness, overcoming the limitations
of UV methods in penetrating larger samples. The simplified production process avoids
the pH adjustments necessary for AAMPS, presenting gamma radiation as a versatile and
efficient approach for cryogel synthesis. The documentation of the cryo-polymerization
mechanism in Figure 3a further illustrates the process’s adaptability and efficiency. This
study not only advances the synthesis of hydrophilic cryogels but also emphasizes the
significance of gamma radiation in creating scalable and versatile cryogel systems.

Gels 2024, 10, x FOR PEER REVIEW 9 of 34 
 

 

 

 

Figure 3. (a) Cryo-polymerization mechanisms for single and double network pure and hybrid cry-

ogels via 𝛾-radiation [61]. (b) Structures of shellac and malachite green. (c) Impact of irradiation 

dose on water absorbency for polyacrylic acid and polyacrylic acid/(10, 20, and 30%) shellac [64]. (d) 

Proposed reaction pathway for the synthesis of PC-PAAc/GA hydrogel [65]. 

A parallel investigation into the creation of potato starch/acrylic-acid hydrogels via 

gamma radiation underlines an innovative pathway to produce materials with superior 

absorption qualities. Such hydrogels exhibit outstanding performance in dye adsorption, 

positioning them as viable candidates for eco-friendly water purification methods. This 

methodology capitalizes on gamma radiation’s crosslinking strengths alongside the in-

herent polysaccharide framework of potato starch, further augmented by acrylic acid, to 

effectively purify water by eliminating pollutants [66–68]. 

A scientific investigation explored the creation of various hydrogel structures using 

gamma radiation, combining chitosan and N,N-dimethylacrylamide. The research delved 

into modifying chitosan with DMAAm in three distinct architectures: comb-type grafting 

hydrogels (net-CS)-g-DMAAm, interpenetrating networks of CS and DMAAm (net-CS)-

inter-(net-DMAAm), and semi-interpenetrating networks (net-DMAAm)-inter-CS. These 

different polymer configurations were produced via gamma irradiation from a 60Co 

source. The degree of crosslinking notably increased with both DMAAm concentration 

and radiation dosage, achieving 80% crosslinking at a 10% v/v concentration and nearly 

full crosslinking at higher concentrations (as shown in Figure 4). It was observed that a 

minimum dose of 3 kGy was adequate for the complete crosslinking of the DMAAm, be-

yond which an additional dosage only amplified the crosslinking density. Various meth-

ods have been employed to create these structures [69,70]. 

Figure 3. (a) Cryo-polymerization mechanisms for single and double network pure and hybrid
cryogels via γ-radiation [61]. (b) Structures of shellac and malachite green. (c) Impact of irradiation
dose on water absorbency for polyacrylic acid and polyacrylic acid/(10, 20, and 30%) shellac [64].
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Another study conducted by a different research group delved into the development
of a novel superabsorbent hydrogel comprising polyacrylic acid and shellac. The process
involved utilizing gamma irradiation for the purpose of adsorbing and removing malachite
green dye. The primary aim was to fabricate a highly absorbent hydrogel by combining
polyacrylic acid with environmentally friendly shellac to effectively eliminate malachite
green dye from aqueous solutions. The study focused on investigating the adsorption
of malachite green dyes through the utilization of polyacrylic acid/shellac hydrogels.
These hydrogels were synthesized by blending aqueous solutions of polyacrylic acid and
shellac at various molecular ratios, with the shellac content ranging from 10% to 30% in the
final reaction mixture (as shown in Figure 3b,c). Additionally, different doses of gamma
radiation, ranging from 10 to 50 kGy, were applied during the synthesis process [54,55,64].
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Bio-based hydrogels, denoted as PC-PAAc/GA, were synthesized using gamma ir-
radiation to remove lead cations from simulated solutions. These hydrogels consisted of
pectin (PC) and polyacrylic acid (PAAc), reinforced with different ratios of gallic acid (GA)
(as shown in Figure 3). The irradiation dose applied was 20 kGy. The experimental data
revealed that swelling increased with the pH of the medium, reaching equilibrium after
350 min. Interestingly, the maximum swelling was achieved at a pH level of 10 for both
PC-PAAc and PC-PAA/GA1.5 formulations (as shown in Figure 3d) [65].

A parallel investigation into the creation of potato starch/acrylic-acid hydrogels via
gamma radiation underlines an innovative pathway to produce materials with superior
absorption qualities. Such hydrogels exhibit outstanding performance in dye adsorption,
positioning them as viable candidates for eco-friendly water purification methods. This
methodology capitalizes on gamma radiation’s crosslinking strengths alongside the in-
herent polysaccharide framework of potato starch, further augmented by acrylic acid, to
effectively purify water by eliminating pollutants [66–68].

A scientific investigation explored the creation of various hydrogel structures us-
ing gamma radiation, combining chitosan and N,N-dimethylacrylamide. The research
delved into modifying chitosan with DMAAm in three distinct architectures: comb-type
grafting hydrogels (net-CS)-g-DMAAm, interpenetrating networks of CS and DMAAm
(net-CS)-inter-(net-DMAAm), and semi-interpenetrating networks (net-DMAAm)-inter-CS.
These different polymer configurations were produced via gamma irradiation from a 60Co
source. The degree of crosslinking notably increased with both DMAAm concentration and
radiation dosage, achieving 80% crosslinking at a 10% v/v concentration and nearly full
crosslinking at higher concentrations (as shown in Figure 4). It was observed that a mini-
mum dose of 3 kGy was adequate for the complete crosslinking of the DMAAm, beyond
which an additional dosage only amplified the crosslinking density. Various methods have
been employed to create these structures [69,70].
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The method for creating super porous hydrogels (SPHs) using gamma radiation has
been outlined in 2009. Unlike traditional SPH synthesis, which has combined foaming
and crosslinking simultaneously, radiation synthesis has faced challenges in coordinating
these processes. To address this, the foaming and radiation crosslinking stages have
been split into two steps. This method has yielded a polyacrylamide SPH with rapid
swelling kinetics, showing a significant improvement over non-porous polyacrylamide
hydrogels. The SPH has achieved an equilibrium swelling of around 70 g/g in just 2 min,
in contrast to the conventional hydrogel, which has reached only 1.7 g/g in the same time
frame. The porous structure, with an average pore size of 100 µm, has been examined
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using scanning electron microscopy (SEM) after dehydration and air drying (as shown in
Figure 5). This separation of processes has allowed for the successful creation of super
porous hydrogels with enhanced swelling properties, presenting a promising advancement
in hydrogel synthesis (as shown in Figure 4a,b) [70,71]. Other research innovations include
the development of a self-healable soft shield designed for protection against gamma ray
radiation. This shield was based on polyacrylamide hydrogel composites, demonstrating
an advanced approach to shielding technology. By exploring the unique properties of
polyacrylamide hydrogels and their self-healing capabilities, the research aimed to provide
a versatile and efficient solution for shielding against gamma ray radiation exposure [38].
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Figure 5. (a) (A) Fabrication of a stretchable, self-healing hydrogel–metal oxide composite for γ-
ray radiation. (B) Diagram showing polyacrylamide chains hydrogen-bonded to Laponite within
hydrogel composites. (C,D) Formation of new hydrogen bonds between cut polyacrylamide chains
and Laponite via thermal diffusion [38]. (b) SEM of polyacrylamide SPH, reproduced with permission
from ref. [70]. Copyright, Elsevier.

It has been studied that gamma irradiation was employed to fabricate hydrogels that
combine α-cellulose with cellulose nanocrystals (CNCs) within gelatin in the absence of
crosslinking agents. During the production process, alkali and bleaching treatments were
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conducted on rice husks to extract cellulose from them, followed by acid hydrolysis so that
CNCs could be produced [72–74]. The compatibility between gelatin and the cellulosic
materials was then exploited to form a semi-interpenetrating network of hydrogels. The
stiffness and swelling properties of hydrogels created by dispersing CNCs were significantly
better than those created by dispersing α-cellulose. It was concluded that the uniform
distribution of CNCs throughout the gel matrix and their increased crystallinity played a
significant role in this improvement.

2.3. Viscoelastic Properties of Radiation-Induced Hydrogels

Recent developments in radiation-induced hydrogels have notably emphasized the
role of viscoelastic properties and their crucial impact on the performance and suitability
of these materials for a range of biomedical applications. Viscoelasticity, which integrates
both viscous and elastic characteristics, is primarily determined by the degree and nature
of crosslinking achieved through ionizing radiation, such as gamma or electron beams. As
the dose of radiation increases, there is an enhancement in the crosslink density within
the hydrogel network. This increment generally improves the material’s elastic modulus,
leading to firmer hydrogels that offer superior structural support, a property highly valued
in applications such as cartilage regeneration and various forms of tissue engineering
scaffolds [75]. The influence of the radiation dose on the viscoelastic properties, however,
extends beyond just increasing firmness. Higher-density crosslinking enhances the viscous
properties, enabling these hydrogels to better absorb and dissipate mechanical energy,
which is vital for applications involving dynamic mechanical stress such as joint movement
or during the pulsatile flow of blood. This capability is essential for maintaining the in-
tegrity and functionality of the hydrogel under physiological conditions [76]. Furthermore,
the specific chemical composition of the polymers employed plays a significant role in
defining the viscoelastic properties. The mechanical strength and biocompatibility of hydro-
gels are affected by the interactions between synthetic polymers like polyethylene glycol,
as well as natural polymers like alginate and chitosan when exposed to radiation. For
instance, alginate-based hydrogels have shown considerable promise due to their inherent
biocompatibility and the ability to fine-tune their mechanical properties through controlled
irradiation [77]. Recent innovations also include the integration of nano-additives into
these hydrogels, a move that has significantly bolstered both mechanical properties and
functional capabilities. Metallic nanoparticles, for example, not only enhance mechanical
robustness but also introduce additional functionalities like electrical conductivity and
improved thermal stability. These properties are invaluable in more complex applications
such as biosensors and actuators [78]. The nano-additives also help tailor the hydrogels’
response to environmental factors such as pH, temperature, and ionic strength, which is
key for developing targeted drug delivery systems that are responsive to specific physio-
logical triggers. The ability to manipulate the viscoelastic properties through an innovative
combination of polymer chemistry, radiation crosslinking techniques, and nano-additives
opens up new opportunities in the design and application of radiation-induced hydrogels.
The deep understanding and further exploration of these properties are critical, as they
influence not only the theoretical design but also the practical implementation of these
hydrogels in medical applications, where their demand is steadily increasing. Research in
this field will continue to push the limits of these versatile materials, utilizing their unique
properties to tackle complex challenges in healthcare and beyond [79].

3. Electron Beam Irradiation Synthesis

Electron beam radiation plays a vital role in hydrogel synthesis as it effectively starts
polymerization events and facilitates the crosslinking of polymer chains. This process
results in the creation of a strong and durable three-dimensional network structure, which
is crucial for the hydrogel’s mechanical strength and durability [35]. This process allows
for precise control over the physical, chemical, and biological properties of the hydrogel by
adjusting parameters such as dose, beam energy, and irradiation time, enabling tailored
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modifications to meet specific application requirements in areas like tissue engineering,
drug delivery, and wound healing [36]. Electron beam radiation represents a powerful tool
for the precise modification and enhancement of materials, offering tailored properties that
find application across various sectors. In biomedical research, the electron beam crosslink-
ing of hydrogels, such as polyethylene glycol diacrylate, enables the creation of scaffolds
with tunable mechanical properties and biocompatibility, crucial for tissue engineering
applications that require adequate support for cell growth and tissue regeneration [80].
Furthermore, in the realm of food packaging, the electron beam irradiation of polymers like
polyethylene terephthalate (PET) enhances barrier properties against gases and moisture,
extending the shelf life of packaged products and ensuring food safety by preventing con-
tamination [81]. In environmental engineering, the electron beam treatment of hydrogels
functionalized with specific groups, such as acrylic acid, allows for the efficient removal
of organic pollutants from contaminated water systems through enhanced adsorption
capacities and tailored chemical interactions [82]. These specific examples underscore
the versatility and efficacy of electron beam radiation in tailoring material properties
to meet the demands of targeted applications, showcasing its pivotal role in advancing
diverse industries.

The versatility of electron beam radiation as a tool for customizing hydrogel properties
highlights its significance in advancing materials for biomedical and industrial applica-
tions, offering researchers a sophisticated means to manipulate and optimize hydrogel
characteristics [83]. It has several advantages:

1. Electron beam (EB) radiation is an environmentally friendly process that does not
require chemicals, ensuring a clean and sustainable treatment method.

2. EB radiation can uniformly penetrate materials deeply, enabling the precise steriliza-
tion and modification of substances.

3. This technology is rapid, cost-effective, and easily scalable for industrial production,
providing efficiency in various applications.

4. EB radiation leaves no harmful residues or by-products, ensuring the safety and
purity of treated materials.

5. The controlled processing parameters of EB radiation allow for customizable outcomes
in fields such as healthcare, food preservation, and materials science.

A hydrogel wound dressing that contains PVP, PEG, and agar was produced using
electron beam technology with the aid of an electron accelerator. The research involved an
investigation into various process parameters to tailor the properties of the hydrogels. The
study revealed that the gel fraction percentage rose with an increase in irradiation dose but
decreased with a higher PEG content (as shown in Figure 6a). Conversely, the maximum
swelling percentage decreased with a higher irradiation dose while increasing alongside
higher PEG concentrations (as shown in Figure 6b). Notably, PEG played a significant role
in altering both the gel fraction percentage and maximum swelling percentage in response
to the irradiation dose. Additionally, the developed dressings were shown to serve as
effective barriers against microbes, further highlighting their potential utility in wound
care applications [56,57,84,85]. Attempts were made to explore the effects of high-energy
electron irradiation on agarose hydrogels, looking at how it affects their properties in
terms of their physical, structural, and chemical characteristics. Approximately 30 kGy of
sterilization doses were used in this study.

Following irradiation, gas cavities formed within the hydrogels, increasing in both
quantity and size with higher doses. Images taken after irradiating at 10 kGy and 30 kGy,
revealing prominent gas cavities. The researchers observed that crosslinking in an autoclave
at a pressure of 5 bar prevented gas cavity formation by enhancing the CO2 solubility
in water. Similarly, during electron beam treatment under hyperbaric conditions at a
pressure of 4 bar, a decrease in the formation of gas cavities was observed (as shown in
Figure 6c) [86,87].
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Figure 6. (a) Relation between gel fraction% in dressings and irradiation dose (PVP = 8%) and PEG
concentration (25 kGy). (b) Time-dependent swelling kinetics of hydrogel dressings at various doses,
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after irradiation at 10 kGy, 30 kGy, and 20 kGy under 1 bar, and 4 bar pressure, reproduced with
permission from ref. [86] copyright, Elsevier.

In a study, polybutylene terephthalate (PBT) was irradiated with electron beams and
treated with halogen-free flame retardants to determine how they affected the properties of
the material. The irradiation was performed using a Rhodotron TT200 10 MeV electron
beam in air, with samples receiving total absorbed doses of 200 to 400 kGy at room temper-
ature. The results showed that electron beam exposure improved the polymer’s strength
and hardness, while the incorporation of flame retardants led to a decrease in mechanical
properties. Additionally, irradiating the polymer led to a reduction of the dielectric loss
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coefficient, as well as the formation of char and the increase in residual char content after
the irradiation process [88,89].

A review article has been published on the surface modification of textiles by electron
beam irradiation recently by Abou Elmaaty et al. [90]. In their study, natural dyes such as
curcumin and saffron were pretreated with electron beam irradiation (EBI) prior to dyeing
polypropylene (PP), nylon 6, and polyethylene terephthalate (PET). These synthetic fabrics
were examined to determine whether they would be affected by exposure doses ranging
from 0 to 300 kGy and the duration of the oxidation process in the air at these exposures.
The study highlighted that the optimal conditions were attained at 300 kGy with a one-
hour oxidation time grafting with the N-halamine precursor monomer acrylic acid (AA)
and 3-allyl-5,5-dimethyl hydantoin (ADMH), followed by irradiation with electron beam
radiation (EBI), has been identified as an effective and environmentally friendly approach
to modify PET fabric for improved antibacterial and wettability properties [91]. In this
method, a highly hydrophilic surface was achieved by pre-treating PET fabric with alkali
and grafting on a hydrophilic monomer (as shown in Figure 7a,b). The combination of these
techniques presents a promising avenue for enhancing the functionality and performance
of PET textiles in antibacterial applications and moisture management [92–94].

An alternative study revealed that hydrogels produced via electron beam polymeriza-
tion showcased superior mechanical attributes and optical clarity when contrasted with
traditional UV-cured hydrogels. Noteworthy enhancements included heightened elasticity,
increased crosslinking density, and enhanced transparency spanning a broader range of
wavelengths. The investigation meticulously scrutinized the interplay between mechani-
cal and optical properties concerning differing single differential and overall irradiation
doses. These hydrogels were purposefully engineered for potential deployment in drug
delivery applications, with methylene blue serving as the prototype drug model [83,95–99].
These hydrogels were purposefully engineered for potential deployment in drug delivery
applications with a prototype drug model; methylene blue was used.
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A novel system was developed by integrating large silicon microparticles (SiMPs)
with a multifunctional gel polymer electrolyte (GPE) using electron beam exposure. This
process created an intertwined gel system with excellent properties, showcasing effec-
tive stress dissipation and high ionic conductivity. The system’s design offers potential
advancements in energy storage technologies for next-generation batteries (as shown in
Figures 7c and 8a) [100].
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4. UV Radiation Hydrogel Synthesis

It was found that ultraviolet (254 nm) radiation can create a thermally stable sub-
strate to produce cell scaffolds using a gelatin–glucose matrix. Using differential scanning
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calorimetry, the research found that UV irradiation substantially boosted the thermal stabil-
ity of the gelatin–glucose hydrogels, preventing any melting at temperatures up to 90 ◦C.
The glucose addition not only increased the crosslinking yield but also played a crucial
role in the crosslink formation, as further evidenced using scanning electron microscopy,
which exposed a distinct density variation in the irradiated samples, highlighting the
structural changes due to UV exposure [58,102]. The use of UV radiation in hydrogel
synthesis presents a groundbreaking methodology that allows for precise control over
the structural properties and functionalities of the resulting polymeric networks. Expos-
ing monomers and crosslinkers to UV light in the presence of photo-initiators initiates
polymerization reactions, resulting in hydrogels with tailored mechanical strength, biocom-
patibility, and responsiveness. UV-induced hydrogels have become important materials
in biomedical engineering for advanced wound healing applications. These hydrogels
are very good at dressing wounds because they create the right conditions for tissue re-
generation and controlled drug release, which speeds up the healing process and lowers
the risk of complications [59,103]. Furthermore, recent studies have demonstrated the ef-
ficacy of UV-induced hydrogels in agricultural applications [7], where they contribute to
improved soil hydration, enhanced seed germination rates, and increased crop yields, thus
addressing key challenges in sustainable agriculture. Additionally, in environmental man-
agement, UV-induced hydrogels have shown remarkable potential for water purification,
highlighting their capacity to effectively remove pollutants from water sources. Notably,
UV-induced hydrogels are excellent at absorbing oil spills and removing them from the
environment, making them a long-term solution for environmental cleaning. The synthesis
of hydrogels through UV radiation has significantly impacted the field of agriculture by
offering novel solutions to address key challenges in crop cultivation and soil management.
By leveraging the unique properties of UV-induced hydrogels, researchers and agricultural
practitioners have unlocked innovative approaches to enhance agricultural productivity
and sustainability. Researchers have shown that encapsulating agricultural inputs like
fertilizers and nutrients within UV-induced hydrogels enhances nutrient availability for
plants, reduces nutrient leaching, ensures efficient nutrient uptake, and minimizes envi-
ronmental nutrient losses. Furthermore, the application of UV-induced hydrogels in seed
coating technologies has revolutionized seed germination and early-stage plant growth.
The utilization of UV radiation-induced hydrogels in food safety practices represents a
critical advancement in ensuring the quality and integrity of food products throughout
the production and distribution processes. UV-induced hydrogels offer unique benefits
that can enhance food safety measures in several key areas. For instance, the integration of
these hydrogels into food packaging materials can enhance the shelf life of perishable items
by incorporating antimicrobial agents or oxygen scavengers, which inhibit bacterial growth
and reduce oxidation. In addition, UV-induced hydrogels can be tailored for the selective
capture and detection of food contaminants, providing a sensitive detection mechanism
for pathogens, toxins, and chemical residues in food samples [104]. UV-induced hydrogels
facilitate water purification in food processing facilities, effectively removing pollutants
and contaminants from water sources to ensure the safety and quality of water used in food
production processes. By controlling the release of food additives, preserving foods with
edible coatings, and improving food packaging, UV radiation-induced hydrogels offer a
comprehensive approach to enhancing food safety across the food industry. Hydrogels syn-
thesized using light-sensitive functional groups offer significant benefits, such as simplicity,
rapid preparation, and lower production costs compared to chemical crosslinking.

5. Brief Application of Hydrogels
5.1. Pharmaceuticals Application

Radiation-induced hydrogels are specialized materials formed by the crosslinking of
polymers using radiation, such as gamma rays or electron beams. These hydrogels exhibit
unique properties, including high water content, biocompatibility, and controlled mechan-
ical strength, which make them particularly valuable in pharmaceutical applications. A
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key application is in the development of advanced drug delivery systems. These hydrogels
can be engineered to encapsulate a drug and release it in a controlled manner, enhancing
therapeutic efficacy while minimizing side effects. For instance, polyvinylpyrrolidone
(PVP)-based hydrogels, crosslinked with gamma radiation, have been shown to manage
insulin release effectively, providing prolonged and stable glucose regulation for diabetic
patients [105]. Additionally, radiation-induced hydrogels are making strides in gene ther-
apy. Polyethylene glycol (PEG)-based hydrogels have been utilized as carriers for DNA and
RNA, enabling the controlled release of genetic material into specific cells. This method
shows promise for treating genetic disorders and for cancer immunotherapy by modifying
the genetic expression within targeted cells [106]. Another unique application is in the
development of hydrogels as biosensors for the real-time monitoring of physiological
conditions. For instance, hydrogels that incorporate fluorescent or electrochemical sensors
can be used to detect changes in glucose or pH levels, providing continuous and non-
invasive monitoring for diabetic patients [107]. The porous structure of hydrogels serves
as an effective matrix for drug loading, providing protection from adverse environmental
conditions while facilitating drug delivery. The porosity of the gel matrix can be tailored by
manipulating the crosslinking density. Moreover, the pace at which pharmaceuticals are
released, which is a crucial aspect for drug delivery systems, is mainly determined by the
diffusion coefficient of the molecule across the gel network and can therefore be customized
to fulfill precise requirements. Hydrogels can be optimized to enhance their suitability for
drug delivery applications by achieving biocompatibility and biodegradability through the
design of specific physical and chemical structures. These characteristics underscore the
significant potential of hydrogels as versatile drug delivery systems [108,109].

This study explores the preparation of ferrogels through the incorporation of iron
oxide nanoparticles into porcine gelatin using electron beam assistance. The resulting bio
ferrogels demonstrate potential for diverse applications, including tissue engineering, soft
actuation, and controlled drug release. By combining biocompatible components with mag-
netic responsiveness, these materials offer a promising avenue for developing mechanical
transducers that are contactless and can be used in vivo [110,111]. A recent study intro-
duced a chitosan/lithium sulfonate double network hydrogel/aerogel designed for efficient
CO2 capture, aiming to address carbon emissions. Utilizing electron beam radiation, the
hydrogel’s uniform and rapid polymerization sets it apart from traditional methods. The
resulting aerogels display excellent physical and chemical stability with a porous structure
ideal for CO2 capture. This cost-effective approach demonstrates promising applications in
the development of CO2 solid adsorbents (as shown in Figure 8b) [101].

In 2017, an investigation assessed the synthesis of hydrogels through electron beam
irradiation for the purpose of heavy metal adsorption. Polyacrylamide co-acrylic acid
hydrogels were produced using the free-radical copolymerization of acrylamide and acrylic
acid in aqueous solutions. The irradiation process was conducted at room temperature in
atmospheric conditions, with doses ranging from 2.5 kGy to 6 kGy. Researchers explored
how varying the absorbed dose, as well as the amounts of crosslinker (trimethylolpropane
trimethacrylate) and initiator (potassium persulfate), impacted the swelling properties,
diffusion coefficient, and network parameters of the hydrogels [112,113].

5.2. Biomedical Engineering
5.2.1. Skin Care

In 2023, M. Liu et al. studied the efficacy of hydrogel films based on pyruvate and
lactate in mitigating UV radiation-induced skin inflammation and oxidative stress. The
study focused on integrating lactic and pyruvic acids into a hydrogel to serve as a topical
treatment for solar dermatitis, catering to both free-radical scavenging and inflammation
modulation. The research provided detailed schematic illustrations of the gel components
and the application process for treating UV-damaged skin. This approach was thoroughly
validated to confirm the effectiveness of combining lactate and pyruvate in treating UV-
induced skin photodamage, indicating a significant potential for clinical application. The
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results from the experiments, including images stained with H and E staining taken from a
UV-irradiated BALB/c mouse skin injury model treated with the composite hydrogel film,
showed that inflammation was reduced in the presence of this composite hydrogel film. The
hydrogels, containing varying concentrations of lactate (12.8, 6.4, and 3.2 mM) and pyruvate
(200, 100, and 50 mM), showed progressively fewer inflammatory cells, highlighting their
potential therapeutic benefits through their self-tissue-repairing mechanism (as shown in
Figure 9a) [114]. Another promising application of IFI6 involves promoting the healing of
radiation-induced skin injuries (RISI) by modulating HSF1 activity. A sprayable composite
hydrogel containing IFI6-PDA@GO/SA was developed for use with HaCaT skin cells,
which was shown to enhance proliferation and migration, which provided synergistic
radio resistance both in vitro and in vivo. Additionally, the study evaluated the biological
activity of IFI6 in wound healing using these hydrogels for skin regeneration, assessing cell
proliferation, migration, and angiogenesis. This research highlights the significant potential
of IFI6-based treatments in managing and healing RISI, advocating for further investigation
into its broader therapeutic applications (as shown in Figure 9b) [115–117].
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Figure 9. (a) H and E staining images of a UV-irradiated BALB/c mouse skin model treated with
composite hydrogel films: (a) normal skin, (b) 311 nm UV-irradiated skin, (c) hydrogels without
Pyruvate and lactic acid, (d–f) hydrogels with different lactate concentrations (12.8, 6.4, and 3.2 mM),
and (g–i) hydrogels with varied pyruvate levels (200, 100, and 50 mM); reproduced with permission
from ref. [114]. Copyright, Elsevier. (b) An illustration of a schematic diagram showing how the IFI6-
PDA@GO/SA is fabricated and how it is used to heal RISIs (radiation-induced skin injuries) [115].
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Yunlong Wang’s research team has developed an innovative technique for creating
artificial skin using an elastomer-based hydrogel, inspired by the properties of connective
tissue. Utilizing a one-step radiation-induced penetrating polymerization process, the
group successfully transformed commercial silicone rubber into connective-tissue-inspired
elastomer-based hybrids (CEBHs). This approach is pivotal for their potential use in
biomedical applications, particularly as artificial skins. The resulting CEBH demonstrates
outstanding mechanical strength, ion sensitivity, and adhesion properties comparable to
human skin, making it a promising material for various medical applications (as shown in
Figure 10) [118].
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5.2.2. Cancer Therapy

Gamma ray-synthesized hydrogels have emerged as a promising tool in cancer therapy,
offering notable benefits in drug delivery and radiation therapy applications [119]. These
hydrogels are fabricated through gamma irradiation-induced polymerization, allowing
for the precise delivery of anti-cancer agents directly to the tumor site. By encapsulating
chemotherapy drugs or radioisotopes, gamma ray-synthesized hydrogels enable the tar-
geted and controlled release of therapeutic payloads, enhancing treatment efficacy while
minimizing systemic toxicity and adverse effects on healthy tissues. The tunable properties
of these hydrogels permit the customization of drug release kinetics, providing flexibility
in tailoring treatment regimens to individual patient needs. Moreover, their capability to
encapsulate and deliver radioisotopes for radiation therapy offers a synergistic approach
that can improve treatment outcomes by increasing the effective radiation dose delivered
to the tumor while sparing surrounding healthy tissues [120]. Minhas et al. developed a
degradable hydrogel-based device targeting the colon for the oral delivery of 5-FU [121].
They synthesized ethylene glycol dimethacrylate (EGDMA)-crosslinked hydrogels and
modified them with methacrylic acid (MAA) to ensure pH responsiveness and benzoyl
peroxide (BPO) for crosslinking polymerization. The results showed the high potential of
the pectin-co-poly(MAA) hydrogels for the targeted delivery of 5-FU with negligible expo-
sure of the upper gastrointestinal tract. Sung In Jeong et al. studied the one-step synthesis
of a gene carrier via gamma irradiation and its application in tumor gene therapy [122].
They revealed the selective grafting of AEMA onto C6-OH groups of WSC. AEMA-g-
WSC effectively condensed plasmid DNA to form polyplexes in the size range of 170 to
282 nm. AEMA-g-WSC polyplexes, in combination with psi-hBCL2 (a vector expressing
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short hairpin RNA against BCL2 mRNA), inhibited tumor cell proliferation and tumor
growth in vitro and in vivo, respectively, by inducing apoptosis.

Hydrogels have emerged as exceptional materials in medical science, noted for their
biodegradability, biocompatibility, and capability to manage drug release effectively. These
properties make them highly valuable in various cancer treatment modalities, such as
chemotherapy, radiotherapy, immunotherapy, and more innovative approaches like photo-
dynamic and photothermal therapies. As an adjunct or a primary treatment in chemother-
apy, hydrogels address common challenges such as non-specific targeting, severe side
effects, and poor drug tolerance that are typical of traditional chemotherapy drugs [123].
By forming through crosslinking polymerization in aqueous solutions, hydrogels prevent
drug denaturation and aggregation, enhancing the drugs’ efficacy while reducing adverse
reactions and improving systemic tolerance.

Innovatively, J.H. Lee et al. [124] developed a hydrogel responsive to temperature and
pH variations, which precisely modulates anti-cancer drug release, achieving significant
cell mortality while potentially reducing side effects. Similarly, hydrogels are making
strides in radiation therapy, typically used to disrupt cancer DNA and shrink tumors by
creating a more distributive platform for radionuclides. This function, combined with the
ability of hydrogels to contain radiosensitizers, directly addresses the inherent challenges
of radiation resistance and incomplete DNA damage repair encountered in solid tumors.
N. Wang et al. [125] demonstrated the application of a hydrogel formulated from endostatin
and hyaluronic acid–tyramine, which effectively modulated the tumor environment to
enhance radiation sensitivity. Further contributing to this area, J. Zhang et al. [126] crafted
a unique multifunctional hydrogel that integrates radiosensitizers like gold nanoparticle
aggregates, along with drugs such as doxorubicin and radiolabeled iodine-131. This inno-
vative hydrogel design not only optimizes radiation therapy but also creates a synergistic
treatment platform that could significantly expand the efficacy of cancer treatments. These
advancements illustrate the pivotal role of hydrogels in transforming cancer therapies,
offering more precision, reduced side effects, and enhanced efficacy in combating various
cancer stages [120,127]. Hydrogels continue to stand out as a cornerstone in the develop-
ment of next-generation therapeutic solutions in oncology, highlighting their indispensable
role in evolving chemotherapy treatment paradigms.

5.2.3. Drug Delivery System

The utilization of radiation-induced hydrogels for drug delivery systems is consid-
ered an innovative and promising approach in the biomedical field. These hydrogels,
synthesized using radiation methods like gamma irradiation, possess tailored properties
that make them well-suited for controlled drug release [128]. In a study conducted by
Baljit Singh et al., hydrogels developed through radiation-induced polymerization were
employed for enhancing the drug release of indinavir sulfate, a potent HIV protease in-
hibitor. These hydrogels, prepared using dietary fiber psyllium and a mixture of acrylamide
(AAm) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), showcased potential
as controlled drug delivery systems [129]. Similarly, M. Carenza et al. explored the use
of hydrogels obtained through radiation-induced polymerization as delivery systems for
peptides and protein drugs. They observed that the controlled release of peptides and
proteins from these hydrogels, produced via the radiation-induced polymerization of
2-hydroxyethyl methacrylate, varied based on factors such as protein molecular weight
and the presence of polyethylene glycol (PEG) during polymerization. The study high-
lighted the influence of polymer matrices’ swellability and porosity on the release kinetics
of peptides and proteins [130].

Global efforts have ramped up towards refining drug delivery systems that provide
controlled dosages over extended durations within the targeted areas [131]. The key struc-
tural requirements of an efficient drug delivery system include a drug storage region,
controlled release capability, and a release mechanism [132]. Notably, hydrogels offer
all three functions and possess the ability to mask the unpleasant taste and odor often
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associated with pharmaceuticals. Due to these versatile properties, hydrogels find wide-
ranging application in oral, nasal, buccal, rectal, vaginal, ocular, injectable, and various
other administration routes [47]. Once hydrogels are introduced into the body, they serve
to ensure the controlled release of embedded drugs into bodily fluids. In addressing chal-
lenges associated with lipophilic drugs such as poor solubility, dispersion inconsistencies,
and limited bioavailability, the integration of these drugs into hydrogel systems offers
a solution, enhancing drug solubility, stability, and bioactivity while enabling sustained
or controlled drug release. Conversely, while highly soluble small molecule drugs offer
benefits like improved absorption and bioavailability, they are less suited for sustained
delivery effects. To capitalize on the advantageous properties of both types of drugs,
a novel interpenetrating polymer network was formulated by modifying silicone elas-
tomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel acting as a
hydrophilic carrier within the silicone network structure, effectively embedding the an-
tibiotic ciprofloxacin. Consequently, these systems demonstrate potential for use in the
development of drug-releasing medical devices [133].

C. Liu and colleagues worked on enhancing drug carrier capacity and achieving the
sustained release of the anticancer drug methotrexate (MTX) by developing gelatin-based
hydrogels using β-cyclodextrin (β-CD) as a crosslinking agent. The hydrogel β-CD-Gel-3,
containing 15.2% by weight of β-CD, demonstrated the highest MTX loading capacity at
16.4 mg per gram of the hydrogel. Comparatively, hydrogels with 11.1% or 13.5% β-CD
content could retain 12.2 mg and 14.9 mg of MTX per gram of hydrogel, respectively. This
study also involved a dextran-crosslinked gelatin-based hydrogel for comparison [134].

5.3. Application of Hydrogel: In Agriculture

Radiation-induced hydrogels, created through gamma irradiation, represent an inno-
vative approach in agriculture by providing a controlled release mechanism for essential
agricultural inputs like fertilizers and pesticides [135]. These hydrogels effectively op-
timize nutrient delivery to plants, improve soil moisture retention, and contribute to
sustainable farming practices. By facilitating a gradual and targeted release of nutrients,
radiation-induced hydrogels offer a practical solution for enhancing crop productivity
while reducing environmental impact through minimized leaching and improved soil
health management [136]. This technology holds significant promise for revolutionizing
agricultural practices towards a more efficient and eco-friendly farming system.

A study conducted by A. I. Raafat et al. [137] investigated the radiation synthesis
of superabsorbent hydrogels using carboxymethylcellulose (CMC) and polyvinylpyrroli-
done (PVP) crosslinked with gamma irradiation for agriculture applications. The research
showed that the composition and irradiation dose significantly affected the swelling de-
gree of the CMC/PVP hydrogels, which were designed to gradually release nutrients,
with urea used as an agrochemical model to provide nitrogen nutrients. Another study
by Ahmed M. Elbarbary et al. [138] explored the radiation-induced crosslinking of poly-
acrylamide (PAAm) incorporated with low-molecular-weight natural polymers, such as
Na-alginate (Alg) or chitosan (CS), for potential agricultural applications. These superab-
sorbent hydrogels, synthesized using γ-rays, demonstrated positive effects on the growth
and yield of maize plants when used in agricultural fields. Notably, maize plants treated
with PAAm/Alg hydrogels showed a 50% increase in grain yield, indicating the potential
of these hydrogels as soil conditioners and water reservoirs in plant–soil systems.

Hydrogels play a vital role in modern agriculture by addressing various challenges
related to water management and nutrient delivery. One of the key functions of hydrogels
in agriculture is their exceptional water retention capacity. These polymers have the ability
to absorb and retain significant amounts of water, forming a gel-like structure that can
slowly release moisture to plant roots over time. This property is particularly advantageous
in regions prone to drought or water scarcity, as hydrogels can help maintain soil moisture
levels and reduce the frequency of irrigation, thereby conserving water resources [7].
Moreover, hydrogels serve as effective carriers for nutrients and fertilizers in agriculture.
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By encapsulating nutrients within their structure, hydrogels can facilitate controlled release
mechanisms, ensuring that plants receive a steady and consistent supply of essential
nutrients. This controlled delivery system not only enhances nutrient uptake by plants but
also minimizes nutrient loss through leaching or runoff, promoting more efficient nutrient
utilization and reducing environmental impact [139]. In addition to their water retention
and nutrient delivery functions, hydrogels can also improve soil structure and aeration. By
adding hydrogels to soil, farmers can enhance soil aggregation, prevent soil compaction,
and promote root development. This, in turn, leads to improved soil fertility, better plant
growth, and increased crop yields [140]. The common bio-polymeric hydrogels and their
advantages and disadvantages are shown in Scheme 1.
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Overall, the use of hydrogels in agriculture contributes to sustainable farming practices,
water conservation, efficient nutrient management, and enhanced crop productivity. Their
versatile applications make them valuable tools for modern agricultural systems seeking to
address the challenges of changing climates and growing food demand.

In the field of urban agriculture, advancements involving hydrogels have garnered
attention over recent decades as urban farming systems have evolved to manipulate light,
nutrient solutions, and the plant growth medium. Water sourcing, a critical aspect essen-
tial for plant growth, remains a major focus of study. One notable innovation in urban
agriculture is the integration of hydrogels as a crucial component in the plant growth
medium. Hydrogels, known for their efficiency as a water-holding reservoir and nutrient
mobilizer in soil, have been utilized in agriculture for five decades [141]. These hydrogels,
constructed from superabsorbent polymers, have been widely adopted in the agriculture
industry for their roles in soil enhancement, facilitating plant growth in arid conditions,
and aiding seed germination [142]. Studies on the application of hydrogels across various
soil types and dosages have shown remarkable water absorption properties, absorbing
water at a rate 400 times its dry weight and releasing water gradually to reduce herbi-
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cide and fertilizer leaching, ultimately improving soil quality, and reducing the need for
frequent irrigation [143]. Research findings from a green roof study suggest that a combina-
tion of 20% coconut coir, 80% perlite, and a 1.0 kgm−3 hydrogel provides optimal plant
growth and enhanced ornamental quality, particularly seen in Mentha suaveolens [144].
Additionally, a hydrogel composition of 20% carboxymethyl cellulose (CMC), 20% poly-
acrylamide (PAM), and oligoalginate sterilized with irradiation at 15 kGy emerges as the
most effective plant growth medium compared to coir dust used as a control [145]. These
comprehensive investigations highlight the versatility and efficacy of hydrogels in urban
farming applications.

5.4. Hydrogel as a Potting Medium

The selection of an appropriate potting medium holds a significant role in establishing
an environment conducive to optimal plant growth and fostering the healthy development
of root systems, both of which are integral aspects of overall plant vitality. While soil
has conventionally served as the preferred medium owing to its ubiquitous availability,
challenges persist, particularly in handling and transportation, more so in extensive set-
tings such as glasshouses [146]. Soil-based farming practices are vulnerable to soil-borne
diseases, with microbial composition acting as a vital determinant of soil health. Hydrogels,
characterized by their lightweight nature and rising popularity in agricultural circles, have
emerged as a favored potting medium, with a primary emphasis on their capacity for
effective water retention to support plant growth. Current research directions are focusing
on the exploration of biodegradable hydrogels and their applications in urban farming
scenarios, underscoring the importance of water conservation, nutrient retention, and the
notable advantages they offer in the cultivation of fruit crops, enhancing sustainability and
efficiency in agricultural practices [140,147].

In a recent study conducted in 2023, a research team examined the potential of hydro-
gels as an innovative material in agriculture. The study provides a summary of various
synthesis methods, types of hydrogels, and crosslinking agents utilized to develop hy-
drogels tailored for agricultural use (as shown in Figure 11a) [148–150]. A research team
detailed an experimental tomato cultivation project in Southern Italy, where they intro-
duced a novel humidity sensor incorporating a hydrogel as a sensitive element. This
innovative sensor was designed to monitor the moisture levels within the hydrogel in the
soil, enabling precise irrigation timing based on real-time moisture conditions (as shown in
Figure 11b) [151].

In 2022, a research group explored the potential of hydrogels in agriculture to boost
crop and water productivity in water-scarce environments (as shown in Figure 12a) [152].
This innovative approach aimed to manage water efficiently under water-stressed con-
ditions by preserving soil moisture in the active root zone of crops, thereby minimizing
evaporation, deep percolation, and runoff losses. Hydrogels in agriculture, acting as water
retention granules, have the unique ability to expand multiple times their original size
upon contact with water. By absorbing and retaining significant moisture during periods
of heavy rainfall or irrigation, they can subsequently release this stored water back into
the soil to meet crop water requirements when the rhizosphere zone undergoes drought
conditions [153,154]. This creates negative ions on the polymer chain, leading to chain
unwinding and the attraction of water molecules through hydrogen bonding.

In 2023, a research group highlighted the significance of biopolymer-based hydrogels
in agriculture and their water-holding capabilities, emphasizing their dual role as soil
conditioners and slow-release mechanisms for fertilizers in challenging conditions [155] (as
shown in Figure 12b,c). They discussed the use of hydrophilic hydrogels applied during
planting or seed coating, primarily serving as carriers for nutrients and enhancers of soil
quality [156,157]. Key considerations when selecting a hydrogel for soil enhancement
include superabsorbent properties, biodegradability, and chemical crosslinking. By in-
tegrating hydrogels with fertilizers in soil, nutrient leaching can be reduced, promoting
controlled and gradual nutrient release to improve crop productivity while minimizing fer-
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tilizer needs [158]. Studies have shown that fertilizers embedded within hydrogels release
nutrients at a slower rate compared to conventional water applications, demonstrating
enhanced nutrient efficiency [159,160].
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Figure 11. (a) Graphical illustration of an agricultural soil conditioner utilizing superabsorbent
hydrogels derived from polysaccharides [148]. (b) Greenhouse testing locations in Southern Italy for
hydrogel experimentation [151].

Gels 2024, 10, x FOR PEER REVIEW 27 of 34 
 

 

Figure 11. (a) Graphical illustration of an agricultural soil conditioner utilizing superabsorbent hy-

drogels derived from polysaccharides [148]. (b) Greenhouse testing locations in Southern Italy for 

hydrogel experimentation [151]. 

In 2022, a research group explored the potential of hydrogels in agriculture to boost 

crop and water productivity in water-scarce environments (as shown in Figure 12a) [152]. 

This innovative approach aimed to manage water efficiently under water-stressed condi-

tions by preserving soil moisture in the active root zone of crops, thereby minimizing 

evaporation, deep percolation, and runoff losses. Hydrogels in agriculture, acting as water 

retention granules, have the unique ability to expand multiple times their original size 

upon contact with water. By absorbing and retaining significant moisture during periods 

of heavy rainfall or irrigation, they can subsequently release this stored water back into 

the soil to meet crop water requirements when the rhizosphere zone undergoes drought 

conditions [153,154]. This creates negative ions on the polymer chain, leading to chain 

unwinding and the attraction of water molecules through hydrogen bonding. 

In 2023, a research group highlighted the significance of biopolymer-based hydrogels 

in agriculture and their water-holding capabilities, emphasizing their dual role as soil con-

ditioners and slow-release mechanisms for fertilizers in challenging conditions [155] (as 

shown in Figure 12b,c). They discussed the use of hydrophilic hydrogels applied during 

planting or seed coating, primarily serving as carriers for nutrients and enhancers of soil 

quality [156,157]. Key considerations when selecting a hydrogel for soil enhancement in-

clude superabsorbent properties, biodegradability, and chemical crosslinking. By inte-

grating hydrogels with fertilizers in soil, nutrient leaching can be reduced, promoting con-

trolled and gradual nutrient release to improve crop productivity while minimizing ferti-

lizer needs [158]. Studies have shown that fertilizers embedded within hydrogels release 

nutrients at a slower rate compared to conventional water applications, demonstrating 

enhanced nutrient efficiency [159,160]. 

 

Figure 12. (a) Mechanism of hydrogel action in soil applications [152]. (b) Swelling mechanism of 

hydrogels. (c) Illustrated procedure of complete fertilizer release from hydrogel and effects of poly-

saccharide hydrogel on soil texture for plant growth [155]. 

Figure 12. (a) Mechanism of hydrogel action in soil applications [152]. (b) Swelling mechanism
of hydrogels. (c) Illustrated procedure of complete fertilizer release from hydrogel and effects of
polysaccharide hydrogel on soil texture for plant growth [155].



Gels 2024, 10, 381 26 of 32

6. Conclusions and Future Direction

In conclusion, the synthesis of hydrogels through gamma and electron beam radia-
tion signifies substantial progress in materials science, with pivotal roles spanning across
biomedical engineering, wound healing, and agriculture. These sophisticated radiation
techniques enable the meticulous control of hydrogel crosslinking, yielding materials with
customized properties such as improved mechanical durability, exceptional absorbency, and
increased biocompatibility. In the realm of biomedical engineering, these engineered hydro-
gels excel in applications such as drug delivery systems and tissue engineering scaffolds,
offering environments that closely simulate biological tissues. For wound healing applica-
tions, radiation-synthesized hydrogels foster an optimal healing environment, speeding
up regeneration while facilitating targeted therapeutic delivery. In agriculture, they en-
hance soil water retention, reduce the frequency of irrigation, and improve the delivery of
nutrients, thereby amplifying crop yield even under stringent environmental stresses.

In the future, further improvements could be achieved through the precise optimiza-
tion of radiation parameters so that these hydrogel systems are more robust in physical
and chemical terms and more environmentally friendly. Integrating sophisticated materi-
als like nanomaterials or bioactive agents may spur the development of next-generation
hydrogel systems with superior functionalities. Moreover, comprehensive longitudinal
in vivo studies to evaluate the long-term safety and effectiveness of these hydrogels, espe-
cially within clinical and agricultural frameworks, are imperative. Advances in these areas
could markedly expand the practical applications of hydrogels, revolutionizing their use in
critical care and sustainable agriculture, particularly in resource-constrained environments.
This critical trajectory ensures hydrogels remain at the forefront of technological innovation,
meeting the demands of an evolving global market.
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