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Abstract: The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both
intracranial and systemic ones. Some variants are common in the Asian population and are reported
as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among
intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more
prevalent in the Asian population. We performed a systematic review of the literature, aiming to
assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers
were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213
variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery
dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved
in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only
patients of Asian descent and the small but non-negligible coexistence with moyamoya disease
familiarity might be limiting factors, requiring further studies to confirm these preliminary findings
and the embryological interpretation.

Keywords: RNF213; moyamoya disease; intracranial artery dissection; magnetic resonance
angiography; intracranial stenosis; atherosclerosis

1. Introduction

The ring finger protein 213 gene (RNF213; NM_001256071.2) encodes a 590 kDa pro-
tein containing a RING finger domain with E3 ubiquitin–protein ligase activity and two
regions of ATPase-associated domains. RNF213 is related to angiogenesis and vascular
inflammation in experiments in vitro and in vivo, but its exact physiologic functions remain
unknown [1]. Its role as a vasculopathy–susceptibility locus was demonstrated in 2011
in a cohort of Japanese families with moyamoya disease, investigated through genome-
wide linkage analysis, identifying heterozygosity for RNF213 p.Arg4810Lys (c.14429G>A,
rs112735431) polymorphism as significantly associated with the disease [2]. Moyamoya
disease is an intracranial, non-atherosclerotic, non-inflammatory steno-occlusive progres-
sive disease, characterized by the development of compensatory collateral networks, which
give the disease its name [3]. After this first demonstration, a genome-wide association
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study analysis in Japanese patients with moyamoya disease found that 95% and 73% of
familial and non-familial patients, respectively, had the RNF213 p.Arg4810Lys variant, pro-
viding an odds ratio of 190.8 for having moyamoya disease [4]. The same association was
documented in Korean and Chinese cohorts of moyamoya patients [5,6] with a lower allele
frequency for the RNF213 p.Arg4810Lys variant in Chinese patients compared to Japanese
and Korean patients, and another variant also being present in Chinese patients (RNF213
p.Ala5021Val) as a susceptibility factor for the development of moyamoya disease [7]. In
large cohorts, the RNF213 (c.14576G>A) mutation was reported in 69.9–85.4% of cases of
moyamoya disease [8–10]. In non-Asian patients, and particularly in Caucasian patients,
the RNF213 p.Arg4810Lys variant is extremely rare, and several different pathogenetic
variants of RNF213 have been identified [7] with a lower odds ratio (2.24) [11], showing a
strong association with moyamoya disease only in familial cases [7].

Additionally, the RNF213 c.14576G>A variant has been implicated in other vascular
diseases. The first description was of the pulmonary (peripheral pulmonary artery stenosis
with pulmonary hypertension) and coronary arteries [12], which are sometimes associated
with moyamoya disease [11,13], particularly in carriers of the homozygous mutation
of RNF213, p.Arg4810Lys. In the following years, the concept of RNF213-associated
vasculopathy was developed [14]. It has been suggested that heterozygous R4810K variant
causes classical moyamoya disease, but the same variant is associated with moyamoya
disease and systemic vascular disease when present in the homozygous state, in a gene
dosage-dependent manner [11]. Homozygous patients showed a diffuse narrowing of
the aorta and iliofemoral arteries, together with stenosis of renal, celiac or peripheral
pulmonary arteries, with or without moyamoya disease [15]. However, heterozygous
patients were mostly asymptomatic or had isolated moyamoya disease. This association
suggests a high penetrance of systemic vasculopathy in homozygous patients and a low
penetrance of moyamoya disease in heterozygous patients.

Returning to the intracranial arteries, in East Asian patients, the RNF213 (c.14576G>A)
variant is implicated in 21–23.2% of intracranial internal carotid artery stenosis (ICS) cases,
but not in vertebral artery stenosis [9,16]. This variant is notably prevalent among East
Asians without intracranial disease, with allele frequencies of 2.8% in Japanese patients,
2.5% in Korean patients and 1.1% in Chinese patients, while it is rarely found in Western
Caucasians [9,17]. The reported Minor Allele Frequency9 (MAF) for RNF213 is 0.0012 and
it significantly increases the risk of having moyamoya disease in Japanese, Korean and
Chinese patients Interestingly, the frequency of RNF213 (c.14576G>A) in Japanese patients
with cerebral aneurysms (CAN) is lower than in those with ICS and is similar to that in
control subjects without vascular lesions, ranging from 0 to 2.1% [18]. Moreover, RNF213
variants (p.Arg2438Cys and p.Ala2826Thr) have been identified in French–Canadian pa-
tients with intracranial aneurysms. However, few studies have explored the relationship
between intracranial aneurysms and RNF213, failing to clarify the site, morphology (saccu-
lar, fusiform or dissected) and clinical characteristics of these aneurysms [19]. The etiology
of intracranial aneurysms varies based on the site of origin within the intracranial vessels,
exhibiting different frequencies in men and women, as well as varying rupture rates. There-
fore, assessing these aneurysms requires a nuanced approach considering their diverse
origins and characteristics [20,21]. Figure 1 summarizes the main sites of arterial diseases
associated with RNF213 variants.

Intracranial artery dissection is a rare neurovascular condition whose genetic under-
pinnings are less understood compared to extracranial artery dissection [22,23]. Most
research involves patients from Asia, with 95% of studies involving more than 40 patients
and 61% of studies including 20 to 39 patients focusing on this population [24–28]. Among
adults, a higher incidence of intracranial artery dissection is observed in Asian men, a trend
not seen in non-Asian populations. The average age at diagnosis is 50.4 years (ranging from
47 to 61 years) [22], with older patients being more likely to present with subarachnoid
hemorrhage. The differences in the prevalence and characteristics of intracranial artery
dissections between ethnic groups, as well as the higher frequency in children compared to
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adults, indicate potential genetic risk factors. However, the genetic basis for intracranial
artery dissections remains largely unexplored. In this systematic review, we aimed to assess
the prevalence of RNF213 variants in intracranial artery dissection in Asian population, as
both issues are more prevalent in Asian than in non-Asian people.
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2. Materials and Methods

A systematic review of the published papers reporting RNF213 variations in patients
with acute spontaneous intracranial artery dissection was performed, following the Meta-
Analyses and Systematic Reviews of Observational Studies (MOOSE) group guidelines [29].
We searched PubMed and EMBASE databases for studies addressing RNF213 status in
spontaneous intracranial artery dissection without lower time limits until 28 February 2024.
We used the following keywords for PubMed: “((RNF213) OR (ring finger protein 213))”
AND “(intracranial artery dissection)”. We excluded patients with moyamoya disease
and traumatic or iatrogenic intracranial artery dissection. In addition, we applied forward
and backward citation tracking to improve the results. All studies presenting original
data about the topic of the review were included. We limited the selection to English
studies and excluded case reports and studies on nonhuman subjects. Abstracts presented
at relevant scientific meetings were excluded because of the lack of relevant information.
We avoided including duplicated datasets. Two investigators (MZ, RP) independently
screened the papers retrieved in the literature search according to the previously detailed
criteria. The NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional
Studies [30] was used to evaluate each eligible publication. The following information was
extracted: authors, year of publication, country, number of patients and main demographic
and diagnostic features, RNF213 variants and the rate of their identification. In the case of
missing values, we tried to derive them whenever possible [30]. Disagreements between
the two reviewers were addressed and resolved by consensus.
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3. Results

The systematic review of the available literature was performed in accordance with
the Section 2. The selection of the studies is summarized in the PRISMA diagram [31]
(Figure 2).
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Figure 2. PRISMA diagram [31]. ** The excluded paper [32] included both symptomatic and asymp-
tomatic patients with intracranial artery diseases and relies on a single MRI technique to diagnose
the subtype of the disease, and this is not reliable for intracranial artery dissections. Moreover, details
on RNF213 polymorphisms were not provided.

A total number of four studies were retrieved and analyzed. The citation tracking did
not find any other published report about the topic of the review. The results of the data
extraction are summarized in Table 1.
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Table 1. Data of the included studies on RNF213 testing in intracranial artery dissection.

Reference Country
Intracranial Artery
Dissection Patients

(N)
Sex Age (Years)

(Mean ± SD) Dissected Artery Diagnostic
Technique (N) Genetic Testing RNF213 Variants (N/%) Comments

Kim JS 2018
[33] Korea

24 cases vs. 24 age
and sex matched

controls
8 males (33.3%) 41.8 ± 10.2 21 MCA, 2 ICA,

1 PCA

MRA (n = 21), CTA
(n = 3), DSA (n = 13),

HRMRA (n = 21).

Blood samples for major
SNIPs of RNF213 in East

Asian patients [2]
(p.D4013N, p.P4608S,
p.R4810K, p.R4853K,

p.D4836N and
p.E4950D)

amplifying and sequencing
three exons (44, 60 and 62)

8 (33.3) in cases vs. 1 (4.2)
in controls

All had heterozygous
p.R4810K (c.14576G>A)

variant

11 had ischemic stroke, 7
had TIA, 3 had headache,

and 3 pts were
asymptomatic

Tashiro R
et al., 2019

[34]
Japan

24 patients with
intracranial VA

dissection,
62 patients with

moyamoya disease
and 48 healthy

controls

NR NR Intracranial VA

MRA and
BPAS-MRI

were used to
diagnose intracranial

VA dissection [35]

Saliva sample for RNF213
c.14576G>A polymorphism

69.0% (40/58) in the
moyamoya disease group,

0%
(0/24) in the intracranial

VAD group and 4.2%
(2/48)

in the healthy control
group

Shinya Y 2020
[36] Japan 1 Woman 63 MCA MRA

DSA Blood sample p.Arg4810Lys
(rs112735431) variant

Subarachnoid hemorrhage
with left MCA dissection
resulting in an irregular

shape and fusiform dilation
of the left M2 MCA wall.

Progression to moyamoya
disease pattern

Kim YJ 2016
[37] Korea 4/81 patients had

MCA dissection NR NR MCA MRA
HR-MRI [38]

Blood samples for major
SNIPs of RNF213 in East

Asian patients [2]
(p.D4013N, p.P4608S,
p.R4810K, p.R4853K,

p.D4836N and
p.E4950D)

amplifying and sequencing
three exons (44, 60 and 62)

Only the heterozygote
of p.R4810K was more

frequent in the
non-atherosclerosis

group than the
atherosclerosis group
(62.5% [10/16] versus

26.7% [4/15], respectively;
p = 0.045).

81 patients < 60 years old
with isolated MCA

steno-occlusion: 45 (56.6%)
in the atherosclerosis and 36

(44.4%) in the
nonatherosclerosis

Group. 28/36 (77.8%) in
non-atherosclerosis group
had suspected moyamoya

disease

SNIPs: single-nucleotide polymorphisms; MCA: middle cerebral artery; ICA: internal carotid artery; PCA: posterior cerebral artery; SD: standard deviation; TIA: transient ischemic
attack; MRA: Magnetic Resonance Angiography; CTA: Computed Tomography Angiography; HRMRA: high-resolution MRA; VA: vertebral artery.
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The rate of RNF213 variants in intracranial artery dissection is reported as 10/53
(18.9%) and increases to 10/29 (34.5%) when excluding patients with VA dissection. All
patients had the RNF213 p.Arg4810Lys variant.

4. Discussion

The RNF213 gene plays a significant role in the ethnic disparity observed in the lo-
calization of cerebral vascular diseases. Initially recognized as a susceptibility gene for
moyamoya disease [39], RNF213 variants are now linked to a broader spectrum of vascular
conditions beyond moyamoya [40], including intracranial atherosclerosis. This associ-
ation underscores the gene’s involvement in various non-moyamoya vascular diseases,
further highlighting its significance in understanding the genetic underpinnings of cerebral
vascular disorders [11,16,33,37]. In addition, the RNF213 R4810K variant is associated
with smaller intracranial arteries, suggesting impaired vasculogenesis [41,42]. Hongo et al.
showed that the outer diameter of the MCA was smaller in R4810K carriers [41]. Moreover,
negative remodeling, investigated with high-resolution MRI, involves all the intracranial
arteries; the stenotic MCA segments are measured in patients with this variant [42], pre-
disposing the smaller intracranial arteries to hemodynamic compromise. The exact role
and mechanisms of RNF213-related vascular impairment are not well known and whether
RNF213 mutations induce a loss-of-function or gain-of-function allele status is controversial.
Missense mutations might disrupt gene transcription and protein function to a certain
extent, causing the pathological dysregulation of substrate ubiquitination due to changes in
the functional domain [43,44]. Among the studies suggesting the role of RNF213 in vascular
wall construction [2], a functional study on the RNF213 p.Arg4810Lys variant proposed
that mutations in the founder are a risk factor for moyamoya disease through reduced
angiogenic activity [45,46] and induced mitotic abnormalities [47]. A study on animal
models found a link to a variety of artery-wall developments, showing thinning of the
intima and media layers after ligation of the common carotid artery in RNF213-knockout
mice [48], thinning in vascular walls and increased Mmp9 expression [49] or enhanced
post-ischemic angiogenesis [50]. Moreover, RNF213 was associated with inflammatory
responses and angiogenesis [45,51]. All these studies show an association between RNF213
and vascular remodeling processes, even the formation of an aneurysm after anastomotic
surgery [52].

Several intracranial artery diseases are more prevalent in Asian than non-Asian popu-
lations: not only moyamoya disease, but also atheromasic stenosis and intracranial artery
dissections. In non-Asians, intracranial dissections account for <10% of all dissections [53],
whereas, in Asians, intracranial artery dissections are more common than extracranial
artery dissections [15,54]. Genetic variation may partially explain these differences, and
RNF213, which is highly prevalent in Asian populations, might be one of the candidate
genes to be investigated. In the small cohort described by Kim et al. [33], of the twenty-four
patients with intracranial artery dissection, eight (33.3%) had an RNF213 variant. All
patients had the same heterozygous p.R4810K (c.14576G>A) variant, with a significantly
higher prevalence (p = 0.023) in patients with intracranial artery dissection compared to
controls. Interestingly, after adjusting for hypertension and RNF213 polymorphism, both
hypertension (adjusted odds ratio [OR], 10.185; 95% confidence interval [CI], 1.066 to 97.305;
p = 0.04) and the presence of the RNF213 variant (adjusted OR, 14.247; 95% CI, 1.563 to
129.841; p = 0.018) were independently associated with intracranial artery dissection. In the
control group, eight patients with extracranial ICA dissection were included and none had
RNF213 variants. Notably, one of the patients with intracranial artery dissection and the
RNF213 variant had a family history of moyamoya disease.

In addition, Kim et al. [36] investigated the relationship between MCA steno-occlusion
and RNF213 variants, finding that one of their four patients with intracranial MCA dis-
section harbored the c.14576G>A variant, but only a minority of the enrolled patients
underwent genetic testing: 31 patients, 16/36 (44.4%), in the non-atherosclerosis group
and 15/45 (33.3%) in the atherosclerosis group. Thirteen cases were heterozygous for
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RNF213 variants. RNF213 heterozygotes were more frequent in the non-atherosclerosis
than in the atherosclerosis group. It is interesting to note that the diagnostic criteria for
moyamoya disease were primarily developed for children and it is not completely known
if they might be applied in the same way to adults. In fact, adult-onset moyamoya disease
can present with unilateral MCA steno-occlusion [26], progressing over years to bilateral
moyamoya disease [55,56]. In addition, a focal MCA stenosis without the sufficient devel-
opment of moyamoya collaterals at the early stages of adult-onset moyamoya disease has
been described [57], and even the initial involvement of the mid-portion of M1 MCA [58].
Shinya et al. [36] reported a case of a patient with an MCA dissection and the RNF213
p.Arg4810Lys, which progressed to involve ICA with a moyamoya disease-like angiogene-
sis over six years. This case might help to consider some non-atherosclerotic intracranial
diseases as a continuum or overlapping entities. The RNF213 p.Arg4810Lys variant could
be a common susceptibility factor. It was found in about 80% of moyamoya disease patients
in Asia [59], in non-cardioembolic cerebral infarction in the Japanese population [59], in
about 2% of the general population in East Asian people as a stroke-related genetic fac-
tor [2,4,60,61] and, finally, in several systemic vascular diseases, such as coronary stenosis,
pulmonary hypertension and intracranial artery stenosis [11,12,15,61–65].

Tashiro R et al. [34] considered only patients with intracranial VA dissection in compar-
ison with patients with moyamoya disease, using the fragility of the vessels as their mean
trait. The authors found the RNF213 c.14576G>A variant in 69.0% (40/58) of the moyamoya
disease group, 0% (0/24) of the intracranial VA dissection group and 4.2% (2/48) of the
healthy control group. These differences were significant in the adjusted multivariate
analysis. In a cohort of patients with intracranial atherosclerosis, Shinya et al. [16] did not
find patients with atherosclerotic lesions in the posterior circulation harboring the RNF
c.14576G>A variant, suggesting that there is no relationship between this gene and vascular
lesions in the posterior circulation.

From an embryological standpoint, there is a theory that views moyamoya disease
through the lens of neurocristopathy, suggesting that it primarily affects arteries derived
from the neural crest rather than those of mesodermal origin. From this perspective, the
RNF213 gene variants are not only observed in moyamoya disease patients but also in
those with anterior circulation atherosclerosis rather than posterior circulation [16,33,38].
However, delineating between anterior and posterior circulation can be challenging, as high-
lighted by Komiyama et al. [66]. Komiyama proposed that moyamoya disease represents a
progressive arteriopathy of the primitive ICA, with its pathogenesis being influenced by
genetic factors. Notably, he emphasized that the distal cortical branches of the primitive
ICA, vertebral artery, basilar artery and external carotid artery remain unaffected, while
steno-occlusive changes primarily occur near the bifurcation of the cranial and caudal
divisions of the primitive ICA [66]. The existing data regarding the absence of RNF213 vari-
ants in posterior circulation atherosclerosis are insufficient to draw conclusive conclusions,
especially considering that some arteries in the posterior circulation derive from the neural
crest. Komiyama et al. [66] outlined the embryological distribution of neural crest cells,
which extends to the territory of the primitive ICA and divides into cranial and caudal
divisions at the origin of the posterior communicating artery [67]. The cranial division
includes the distal ICA, anterior and middle cerebral arteries and the anterior choroidal
artery, while the caudal division comprises the posterior communicating artery, the P1
segment of the posterior cerebral artery, the distal basilar artery and other arteries [68].
During early embryogenesis, significant vascular transformations occur, including the shift
of the telencephalic branch of the primitive anterior choroidal artery to the caudal divi-
sion of the primitive ICA, eventually forming the P2-4 segments of the posterior cerebral
artery [67–69]. This process results in the dispersion of neural crest cells to various arterial
structures, contributing to the formation of the arterial circle of Willis and its branches. The
exact embryological border between the primitive internal carotid system and the vertebro-
basilar system remains variable. It has been suggested that RNF213, a susceptibility gene
for moyamoya disease, may primarily affect derivatives of the primitive ICA among in-
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tracranial vessels. However, it is important to note that RNF213 has not been implicated
in congenital ICA and MCA anomalies in a Japanese case series. Nevertheless, there have
been reports of individuals with RNF213 gene mutations presenting with ruptured MCA
peripheral multiple aneurysms associated with twig-like MCA [70].

The hypothesis emerging from these observations is that RNF213 variants may be
associated with intracranial artery dissection, potentially increasing the vulnerability of
intracranial arteries to dissection. This aligns with the broader role of RNF213 poly-
morphisms as non-specific markers that increase the vulnerability to intracranial arterial
diseases, possibly acting as one of multiple predisposing factors [39]. This hypothesis may
partially explain the higher prevalence and risk of intracranial arterial diseases, includ-
ing intracranial atherosclerosis and artery dissections, in Asian populations [71], where
RNF213 variants are more prevalent among East Asians than Caucasians [38]. However,
the strength of this association is generally low, and the various limitations outlined in indi-
vidual studies may affect the final conclusions. One limitation of the general interpretation
of the causative role of RNF213 variants in intracranial and systemic arteriopathies lies in
the structural properties of this gene. Indeed, RNF213 has a very long open reading frame,
encoding a huge protein (length greater than 5000 aminoacyds). Due to these properties,
and particularly the length of the gene, rare variants or mutations that affect the protein
coding capacity might be expected at a higher rate. This issue should lead to caution in the
interpretation of the role of variants of unknown significance.

A final observation might be raised about the association of RNF213 variants with
intracranial and systemic vascular disease, including intracranial dissection, moyamoya
disease, intracranial aneurisms and visceral stenoses (i.e., renal artery stenosis) and the
independent role of arterial hypertension as risk factor for intracranial dissection. This pat-
tern could resemble the known focal form of fibromuscular disease [72], where intracranial
involvement apart from aneurysms is rare but has been reported.

5. Conclusions

RNF213 is a gene involved in vascular wall remodeling and documented as a suscepti-
bility marker in several intracranial and systemic vascular diseases, particularly in Asian
populations. It might also be involved in intracranial artery dissection and the actual rate
ranges from 18.9% to 34.5%, depending on the inclusion or exclusion of VA dissections.
All patients had the RNF213 p.Arg4810Lys variant. The small number of patients, the
inclusion of only patients of Asian descent and the small but non-negligible coexistence
with moyamoya disease familiarity might be limiting factors, requiring further studies to
confirm these preliminary findings and the embryological interpretation.
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