
Citation: Yu, L.; Yin, Y.; Wang, Q.;

Zhao, P.; Han, Q.; Liao, C. Impact of

Ae-GRD on Ivermectin Resistance and

Its Regulation by miR-71-5p in Aedes

aegypti. Insects 2024, 15, 453. https://

doi.org/10.3390/insects15060453

Academic Editor: Michael Kristensen

Received: 12 May 2024

Revised: 9 June 2024

Accepted: 10 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Impact of Ae-GRD on Ivermectin Resistance and Its Regulation
by miR-71-5p in Aedes aegypti
Lingling Yu 1,2,3, Yanan Yin 1,2,3, Qiuhui Wang 1,2,3, Peizhen Zhao 1,2,3, Qian Han 1,2,3,*
and Chenghong Liao 1,2,3,*

1 Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences,
Hainan University, Haikou 570228, China; gzzljszyyx@163.com (L.Y.); yinyanan@hainanu.edu.cn (Y.Y.);
19359281004@163.com (Q.W.); peizhen.zhao@hainanu.edu.cn (P.Z.)

2 Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
3 Hainan International One Health Institute, Hainan University, Haikou 570228, China
* Correspondence: liaochh@hainanu.edu.cn (C.L.); qianhan@hainanu.edu.cn (Q.H.)

Simple Summary: Ivermectin (IVM), a macrolide insecticide, targets the ionotropic gamma-aminobutyric
acid receptor (iGABAR) and plays a crucial role in controlling Aedes aegypti mosquitoes and re-
searching mosquito drug resistance. This study marks the first characterization of the GRD subunit
(Ae-GRD) of the Ae. aegypti iGABAR. We discovered that the expression of Ae-GRD is negatively
regulated by miR-71-5p, a finding supported by both in vitro cell studies and in vivo microinjection
experiments. Using RNA interference (RNAi) techniques and bioassays, we found that silencing Ae-
GRD through dsRNA microinjection decreased the susceptibility of Ae. aegypti to IVM. Additionally,
similar regulation of Ae-GRD by miR-71-5p altered the sensitivity of the mosquitoes to the insecticide.

Abstract: iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant
target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR.
However, little information about GRD in Ae. aegypti has been reported. In this study, we involved
cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis
indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other
insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting
in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults
with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics
prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter
assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p
mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing
mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor
decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD
expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential
target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling
pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and
consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical
evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance,
offering novel perspectives for mosquito control strategies.

Keywords: Aedes aegypti; iGABAaR; Ae-GRD; RNA interference; microRNA; ivermectin

1. Introduction

Aedes aegypti (Ae. aegypti) is a principal vector for arthropod-borne diseases [1], posing
significant threats to human health through the pathogen transmission activities of its
female adults, which feed on blood before and after mating [2]. With no effective vaccines
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or treatments currently available for many of these diseases, control strategies primarily
focus on vector management [1]. Chemical insecticides are central to mosquito control
efforts [3]. Unlike mammals, insects have a reduced capacity for detoxification, allowing
insecticides to persistently target neuronal pathways and exert prolonged neurotoxic
effects [4]. Neurotoxic insecticides, for instance, swiftly incapacitate or kill pests by targeting
multiple neural sites, categorized into four main groups: acetylcholinesterase (aChE),
nicotinic acetylcholine receptors (NaChRs), gamma-aminobutyric acid receptors (GABARs),
and voltage-gated sodium channels (VGSCs) [4].

GABA, an inhibitory neurotransmitter [5], predominantly mediates rapid inhibitory
neurotransmission and acts as an excitatory mediator during critical neuronal develop-
mental phases or under pathological conditions [6,7]. GABARs are part of the cysteine
loop ligand-gated ion channel superfamily (cys-loop LGICs) [8]. Insect ionotropic GABARs
(iGABARs) comprise a-type GABARs (GABAaR), c-type GABARs (GABAcR), and the
metabotropic b-type GABARs (GABAbR) [4]. This study focuses primarily on the GABAaR,
referred to hereafter as iGABAaR unless otherwise specified. The iGABAaR is mainly com-
posed of the N-terminal extracellular structural domain, four transmembrane structural
domains (M1–M4) consisting of α-helices, the “cys-loop” between the N-terminal and trans-
membrane structural domains, and the C-terminal extracellular structural domain. The
binding of GABA to the iGABAaR opens the pentameric ion channel and allows chloride
ions to flow inward, leading to hyperpolarization of the membrane potential (Figure 1).
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In insects, iGABAaR subunits primarily comprise RDL, GRD, LCCH3, and 8916
(Figure 1). Research has identified RDL as the primary binding site for insecticides [9]. In
Ae. aegypti, RDL was targeted by ivermectin and florellan [10]. When expressed in Xenopus
laevis oocytes, RDL formed pentameric anion-selective channels. Conversely, GRD and
LCCH3 alone did not form functional ion channels; however, their co-expression resulted
in heteropentameric cation-selective channels in Drosophila melanogaster, Apis mellifera, and
Pediculus humanus [11–13]. RDL also functioned as an anion channel when co-expressed
with either GRD or LCCH3 [11–13]. Furthermore, in Chilo suppressalis, 8916 interacted
with LCCH3 to form cation-selective channels sensitive to various insecticides [14]. These
findings suggest that additional iGABAaR subunits could also serve as potential targets for
insecticides [14].

iGABARs are critical targets for various insecticides [15], such as cyclopentadienes
(e.g., dieldrin), phenylpyrazoles (e.g., fipronil), and macrolides (e.g., ivermectin) [4,15].
Mutations in iGABAR are a leading cause of insecticide resistance among insects, under-
scoring the need for ongoing research into their modulation and resistance mechanisms.
The complexity of insecticide interactions with these receptors is further exemplified by the
mode of action of ivermectin (IVM), a derivative of the macrolide insecticide abamectin
(AVM), exhibiting higher activity compared with its abamectin [16]. This class of insec-
ticides disrupts normal GABA signaling by activating voltage-gated chloride ion (Cl−)
channels, resulting in the influx of Cl− ions. This influx causes hyperpolarization of the
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nerve membrane potential, placing the nerve membrane in an inhibitory state and blocking
nerve impulse conduction, ultimately leading to insect death. The insecticide represented
by abamectin has been found to act on almost all chloride channels, such as γ-aminobutyric
acid-gated chloride channels [17], glutamate-gated chloride channels [18], and glycine
ligand-gated chloride channels [19]. In Ae. aegypti, IVM not only targets the iGABAaR
subunit RDL for insecticidal action [10] but also impacts egg production and hatching rates
following treatment with various concentrations of IVM.

MicroRNA is a noncoding single-stranded RNA, typically comprising 18–25 nu-
cleotides [20], and most mosquito miRNAs are highly conserved in sequence [21]. A
single mRNA may contain multiple binding sites for the same or different miRNAs, allow-
ing several miRNAs to cooperatively repress gene expression. Consequently, differential
miRNA expression is frequently observed in studies related to mosquito growth, devel-
opment, reproduction, and insecticide resistance [22]. In Culex pipiens pallens, numerous
miRNAs displayed differential expression patterns before and after deltamethrin expo-
sure [23]. Notably, the downregulation of miR-71 was associated with increased mortality in
deltamethrin-resistant mosquitoes [23], while miR-279-3p was implicated in deltamethrin
resistance in Cx. pipiens pallens by targeting the CYP325BB1 gene [24].

In Ae. aegypti, only Ae-RDL and Ae-LCCH3 have been identified [25], while Ae-GRD
and Ae-8916 remain unvalidated. Despite evidence supporting the involvement of miRNAs
in the development of insecticide resistance in mosquitoes, there remains a significant
research gap concerning their role in Ae. aegypti. The specific targeting mechanisms of
miRNAs and their potential involvement in developing resistance to particular insecticides
in Ae. aegypti are yet to be fully explored.

This study aims to investigate the influence of the Ae-GRD subunit of the iGABAaR
in Ae. aegypti on the resistance mechanisms against the insecticide ivermectin (IVM)
and to elucidate the regulatory roles of miRNAs in this process. Given the critical role
of GABAergic neurotransmission in insecticide targeting and the emerging evidence of
miRNA involvement in gene regulation under insecticidal stress, understanding these
interactions at the molecular level could provide new avenues for controlling resistance
in mosquito populations. Utilizing comprehensive transcriptomic and genomic data, this
research focuses on the bioinformatics analysis of the full-length sequence of Ae-GRD and
investigates its functional implications in IVM resistance through advanced molecular
techniques such as RNA interference (RNAi) and dual-luciferase reporter assays. By
exploring both genetic and post-transcriptional modifications influencing Ae-GRD, this
study seeks to reveal novel insights into the mosquito’s adaptive responses to insecticides,
potentially guiding the development of more effective mosquito control strategies.

2. Materials and Methods
2.1. Mosquito Breeding

Ae. aegypti (the Rockefeller strain, provided by the Beijing Institute of Microbiology
and Epidemiology, Beijing, China) eggs, maintained by our laboratory, were incubated
under controlled environmental conditions at a temperature of 25 ± 2 ◦C, humidity of
80 ± 5%, and a light/dark cycle of 12 h/12 h. Larvae were reared in dechlorinated ionized
water and fed with mouse chow of specific pathogen-free (SPF) grade. Adults were housed
in mosquito cages and sustained on 8% sucrose solution. Female adult Ae. aegypti, reared
for two days post fledging, were selected for inclusion in the experiments.

2.2. Identification of Ae-GRD

GRD nucleotide sequences from various insects were retrieved from the National
Center for Biotechnology Information (NCBI) database and analyzed for homology. Primers
were designed based on sequences with high homology. Total RNA was extracted from
Ae. aegypti using the Trizol kit (Sangon Biotech, Shanghai, China), and RNA integrity was
assessed via 1% gel electrophoresis; RNA concentration was measured with a micro-nucleic
acid detector (Aoyi Instruments, Shanghai, China). Reverse transcription was performed
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on the total RNA using the SPARKscript II RT Plus kit (SparkJade, Shandong, China) to
synthesize first-strand cDNA. This cDNA served as the template for PCR amplification of
the Ae-GRD target fragment. The PCR reaction mixture included 12.5 µL of 5 High-Fidelity
2 × master mix, 1.25 µL of forward primer, 1.25 µL of reverse primer, 1 µL of cDNA, and
9 µL of ddH2O. The PCR program consisted of an initial denaturation at 98 ◦C for 2 min,
followed by 30 cycles of 98 ◦C for 10 s, 52 ◦C for 30 s, and 72 ◦C for 45 s, with a final
extension at 72 ◦C for 10 min. PCR products were purified using a kit from Sangon Biotech,
Shanghai, China. The purified Ae-GRD fragment was cloned into the pMD-18T vector
(Takara, Beijing, China) and transformed into DH5α Escherichia coli (E. coli) competent
cells (Weidi, Shanghai, China). Plasmids extracted from the DH5α E. coli cells using the
Plasmid Extraction Kit (Sangon Biotech, Shanghai, China) were sequenced to confirm
their sequences.

2.3. Bioinformatics Analysis and Potential miRNAs Prediction of Ae-GRD

As described previously, the Ae-GRD sequence obtained by cloning was subjected to
a BLAST (Basic Local Alignment Search Tool) comparison with the Ae. aegypti genome
sequence (NC_035107.1) available in the NCBI database, resulting in the acquisition of
the full-length Ae-GRD cDNA (LOC5566204). Amino acid sequences of GRD from var-
ious insects were also retrieved from the NCBI database. These sequences were com-
pared using DNAMAN 9.0 software, while transmembrane structural domains were
analyzed using TMHMM 2.0 software. A phylogenetic tree was constructed by the
neighbor-joining method [26,27] using MEGA11 [28,29]. To identify potential miRNAs
that might regulate Ae-GRD, the 3’ UTR sequence of Ae-GRD was obtained from the
NCBI database. Potential regulatory miRNAs were predicted using three online tools:
TargetScan (https://www.targetscan.org/vert_80/, accessed on 16 April 2023), RNAhy-
brid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid, accessed on 23 April 2023), and
miRanda (https://www.miranda.software/, accessed on 8 April 2023). Predictions from
these tools were intersected to identify likely miRNAs targeting the 3’ UTR of Ae-GRD in
Ae. aegypti.

2.4. In Vitro Synthesis and Microinjection of dsRNAs

The E. coli β-glucosidase gene (GUS) [30] served as a negative control, with DEPC-H2O
used as a blank control and dsRNA-Ae-GRD designated as the experimental group. Primers
specific for RNAi were designed for the coding region (CDS) of Ae-GRD using Primer 5.0,
incorporating the T7 promoter sequence (taatacgactcactataggg) at the 5’ end. Using Ae.
aegypti cDNA as a template, PCR was performed to amplify the target fragment, which
was then purified. The purified PCR fragments underwent in vitro dsRNA synthesis using
the T7 RNAi Transcription Kit (Vazyme, Nanjing, China), following the manufacturer’s
instructions. The dsRNA purification protocol involved combining 40 µL of dsRNA with
4 µL of 3 M sodium acetate (pH = 5.2) (Macklin, Shanghai, China) and 40 µL of isopropanol
(Mreda, Beijing, China), chilling the mixture in an ice bath for 10 min, followed by centrifu-
gation and supernatant removal. The residue was washed with 1 mL of 70% DEPC-treated
ethanol, centrifuged again, and the resulting precipitate was resolubilized in DEPC-treated
water to yield purified dsRNA.

Quality assessment of the PCR reactions and dsRNA was conducted as described in
Section 2.2. Female Ae. aegypti mosquitoes, normally fed for 2 days post feathering, were
subjected to a 24 h starvation period, then paralyzed by placement in a −20 ◦C refrigerator
for 3 min and subsequently arranged on ice [10,31,32]. Each mosquito was injected at
the thoracic–ventral junction using a microsyringe (Eppendorf, Hamburg, Germany) with
1 µL of purified dsRNA solution (2000 ng/µL) [10,33]. Three replicates were set for each
group, with 50 mosquitoes injected per replicate, and the experiment was conducted three
times. The expression level of Ae-GRD was analyzed 24 h post injection using real-time
quantitative reverse transcription PCR to assess the RNAi effect. Details of the primers
used in dsRNA interference experiments are provided in Table S1.

https://www.targetscan.org/vert_80/
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://www.miranda.software/
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2.5. Dual-Fluorescent Vector Construction

As outlined in Section 2.2, the full-length 3’ noncoding region (UTR) of Ae-GRD was
amplified by PCR using Ae. aegypti cDNA as a template. The amplified gene fragment
was initially cloned into the pMD-18T vector and subsequently transferred into DH5α
E. coli. Following this, the recombinant plasmid was extracted. The extracted plasmid
underwent double digestion with Xho I and Sca I restriction endonucleases (Thermo Fisher
Scientific, Pittsburgh, PA, USA). The digested fragments were then purified using the
SanPrep Column DNA Gel Extraction Kit (Sangyo, Shanghai, China) and subsequently
cloned into the pmirGLO Dual-Luciferase Expression Reporter Vector (Promega, Beijing,
China) to create luciferase constructs. The newly formed recombinant plasmids were
transformed into DH5α E. coli cells, which were cultured in a medium overnight to facilitate
plasmid amplification. Plasmid extraction was conducted using the SanPrep Endotoxin-
Free Plasmid Mini Kit (Bioengineering, Shanghai, China), followed by sequencing to
confirm the accuracy of the constructs.

2.6. HEK-293T Cell Line Culture and Dual-Luciferase Activity Assay

HEK293T cells, kindly provided by Mr. Dayong Wang from the School of Pharmaceu-
tical Sciences at Hainan University, were cultured in DMEM medium supplemented with
10% fetal bovine serum (Bio channel, Nanjing, China) and maintained at 37 ◦C in a 5% CO2
atmosphere. For transfection, cells were seeded into 24-well plates and allowed to culture
for 24 h. Transfection was carried out using FuGENE 6 transfection reagent (Promega,
Madison, WI, USA). Each well received 4 µL of reporter gene recombinant plasmid, 1.25 µL
of miRNA mimic or negative control (NC) (GenePharma, Shanghai, China), 2 µL of Fu-
GENE 6 transfection reagent, and 94.75 µL of DMEM medium without fetal bovine serum.
The sequences of the mimics and NC are listed in Table S1.

Forty-eight hours post transfection, 100 µL of 1x PLB cell lysate (Promega, Madison,
WI, USA) was added to each well to lyse the cells, which were then transferred to 1.5 mL
centrifuge tubes. The Dual-Luciferase® Assay System kit (Promega, Madison, WI, USA)
was employed to measure luciferase activity. Initially, 100 µL of Luciferase Assay Reagent
II was added to each tube to measure firefly luciferase activity, followed by 100 µL of Stop
& Glo® Reagent to measure Renilla luciferase activity. The results were normalized to the
ratio of firefly luciferase activity/sea kidney firefly luciferase. Each experimental condition
was replicated three times in the assay, and the experiment was conducted in triplicate to
ensure reproducibility.

2.7. Inhibition/Overexpression of miR-71-5p in Ae. aegypti

Overexpression and inhibition of miR-71-5p in Ae. aegypti were achieved through
microinjection of miR-71-5p mimics and inhibitors, respectively. As detailed in Section 2.2,
selected Ae. aegypti mosquitoes were paralyzed prior to injection. The miR-71-5p mimics,
mimics NC, miR-71-5p inhibitor, and inhibitor NC were injected under uniform conditions.
For each treatment group, three replicates were established, with 50 mosquitoes injected per
replicate, and the entire experiment was conducted three times to ensure consistency and
reliability. Twenty-four hours post injection, the relative expression levels of miR-71-5p and
Ae-GRD were quantified using real-time quantitative reverse transcription PCR (qRT-PCR).
The sequences for the inhibitors and their corresponding negative controls are detailed in
Table S1.

2.8. Real-Time qRT-PCR Analysis of Ae-GRD and miR-71-5p

Following microinjection in Ae. aegypti, total RNA was extracted using the Trizol kit as
described in Section 2.2. The relative expression levels of the target genes were assessed by
real-time fluorescence qPCR after reverse transcription. For the experimental and control
groups injected with dsRNA, 1 µg of total RNA was reverse transcribed to obtain the first
strand of cDNA using the SPARKscript II RT Plus Kit (SparkJade, Qingdao, China). For
the groups injected with miR-71-5p mimic and inhibitor, 1 µg of total RNA was reverse



Insects 2024, 15, 453 6 of 15

transcribed using the miRNA 1st Strand cDNA Synthesis Kit (by stem-loop) (Vazyme,
Nanjing, China).

Following the manufacturer’s instructions, the synthesized cDNA was used as a
template for qPCR employing 2× SYBR Green qPCR Mix (SparkJade, Qingdao, China).
The reactions were performed on a LightCycler 96. The qPCR reaction mixture comprised
5 µL of 2 × SYBR Green qPCR Mix, 0.5 µL each of forward and reverse primers, 3 µL of
ddH2O, and 1 µL of cDNA solution. The qPCR cycling conditions were set as follows:
initial denaturation at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 10 s, 55 ◦C for
10 s, and 72 ◦C for 30 s. Each sample group included three replicates, with three mosquitoes
per replicate, and four replicate wells per sample during the setup. RPS17 served as the
internal reference gene for Ae-GRD expression, while U6 was used for miR-71-5p expression.
The cycling thresholds (Ct) of U6 and RPS17 were utilized to normalize the Ct values of
miR-71-5p and Ae-GRD. Data analysis was conducted using the 2−∆∆ct method. Specific
primer sequences used in the qPCR reactions are detailed in Table S1.

2.9. Bioassays

Adult mosquitoes were collected from control groups and Ae-GRD knockdown groups
after microinjection. Thirty individuals were collected from each group (n = 3) and placed in
mosquito cages for subsequent dosing experiments. IVM (I811964), sourced from Macklin
(Shanghai, China), was dissolved in dimethyl sulfoxide (DMSO, QN0747, Biorebo Technol-
ogy Co., LTD, Shenzhen, China) [10,34,35] to prepare a 15 mg/mL solution. This solution
was then mixed with an 8% sucrose solution, and the mixture contained <1% organic sol-
vent [35], then 10 mL of the mixture was applied to each sponge block. These sponge blocks
were placed within mosquito cages to serve as feed for the injected Ae. aegypti mosquitoes.
The mortality rate of the mosquitoes was recorded 24 h after they were exposed to the
treated sponges.

2.10. GABA Content Determination

Twenty-four hours following dsRNA injection, experimental and control groups were
sampled. Fifteen Ae. aegypti mosquitoes were collected from each group, and 400 µL of
1xPBS (pH = 7.4) was added to each for lysis. Subsequently, the supernatant was collected
(5000 rpm, 15 min). The supernatants were then assayed for GABA content using an insect
GABA enzyme immunoassay kit (Spbio, Wuhan, China), following the manufacturer’s
instructions. This procedure was repeated three times to ensure the reliability of the results.

2.11. Statistical Analysis

All experimental data were statistically analyzed and graphed using GraphPad Prism
version 6.02 (GraphPad Software, San Diego, CA, USA). A t-test was employed for compar-
isons between two groups, while one-way ANOVA was used for comparisons among more
than two groups. A p-value of less than 0.05 was considered statistically significant, with
significance levels denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results
3.1. Cloning and Sequence Analysis of Ae-GRD

A 720-base-pair (bp) fragment of Ae-GRD was successfully amplified by PCR using
insect GRD conserved region primers and Ae. aegypti cDNA as the template. Subsequent
NCBI sequence analysis identified the full sequence of Ae-GRD (LOC5566204). The full-
length cDNA of Ae-GRD spans 3531 bp, encompassing a 2052 bp open reading frame (ORF)
that encodes 492 amino acids, a 682 bp 5’ untranslated region (UTR), and a 781 bp 3’ UTR.

Multiple sequence alignment demonstrated that Ae-GRD shares homologies of 91.73%,
77.98%, 65.45%, 58.08%, 28.83%, 33.10%, 30.47%, 31.59%, and 19.5% with GRDs from Aedes
albopictus, Culex quinquefasciatus, Anopheles sinensis, Anopheles gambiae, Culex pipiens pallens,
Varroa destructor, Tribolium castaneum, Apis mellifera, and Drosophila melanogaster in amino
acid sequences, respectively. Sequence analysis indicated that Ae-GRD, as part of the
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cysteine-loop ligand-gated ion channel family, shares common features with other insect
GRD subunits. Each subunit contains six N-terminal extracellular loop structures (loops
A-F) and four transmembrane regions (TM1-4), with a high degree of structural similarity
and conservation of amino acid sequences across these regions (Figure 2a).
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with ≥100% homology, pink for ≥75% homology, and light blue for ≥50% homology. Key structural
features are indicated: red arrows highlight two typical cysteine residues characteristic of the cys-loop
LGICs, gray underlining denotes signal peptide regions at the N-terminus, black boxes outline the
four transmembrane domains (TM1-TM4), and red boxes identify ligand-binding related structural
domains (loops A–F). (b) Phylogenetic tree of GRD proteins of Ae. aegypti and other insects. The
numbers above the branches represent the bootstrap values for each branch (1000 replications). The
black dot showed the sequence of Ae-GRD in our study. Taxonomically related organisms are shown
by the same color code.

GRD sequences of other insect species were downloaded from NCBI. The phylogenetic
relationships were analyzed using MEGA11 [29]. All compared GRD protein sequences
clustered together among themselves according to their taxonomic rank, and homologs of
related organisms showed closer relationships. Evolutionary trends supported their genetic
diversity and conserved relationships (Figure 2b). The amino acid numbers of species are
shown in Table S2.

3.2. RNAi Efficiency of Injected dsRNA-Ae-GRD against Ae. aegypti, with Changes in
Ivermectin Susceptibility

To elucidate the role of Ae-GRD in IVM resistance in Ae. aegypti, in vitro-synthesized
and purified dsRNA-Ae-GRD was microinjected, with corresponding control groups es-
tablished. The relative expression levels of Ae-GRD post-RNAi were quantified using
qPCR. Twenty-four hours following microinjection, there was no significant difference in
Ae-GRD expression between the dsRNA-GUS control group and the DEPC-H2O group.
However, transcript levels of Ae-GRD in the dsRNA-Ae-GRD group were significantly
reduced by 81.34% compared with the DEPC-H2O group and by 82.59% compared with the
dsRNA-GUS group, demonstrating effective RNAi knockdown (Figure 3a; **** p < 0.0001).
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Figure 3. Microinjection of dsRNA for RNAi in Ae. Aegypti: (a) RNAi significantly reduced the relative
expression of Ae-GRD mRNA. (b) After feeding on a mixture containing 15 mg/mL ivermectin and
8% sucrose solution for 24 h, the mortality rate in the dsRNA-Ae-GRD group was 40.37%, which
was lower than those observed in the blank and negative control groups. (c) GABA content in
Ae. aegypti was significantly increased following RNAi treatment. Data represent three biological
replicates, each consisting of three technical replicates. Statistical analysis was conducted using
one-way ANOVA. “ns” indicates no significant difference, while asterisks denote levels of statistical
significance: * p < 0.05, ** p < 0.01, **** p < 0.0001.

Subsequent to the RNAi procedure and 24 h of feeding on IVM-treated sponges,
mortality rates were observed as follows: 62.38% in the dsRNA-GUS group, 60.64% in the
DEPC-H2O group, and 40.37% in the dsRNA-Ae-GRD group. These findings indicate that
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the reduction in Ae-GRD expression significantly decreased the sensitivity of Ae. aegypti to
IVM, suggesting a potential mechanism of resistance (Figure 3b; ** p < 0.001).

3.3. Changes in GABA Content after RNAi

Following the RNAi-mediated reduction in Ae-GRD expression, GABA content was
assessed using an enzyme immunoassay to explore its impact on the Ae-GRD subunit
and the overall GABA signaling pathway. The standard curve derived from the assay
was represented by the regression equation y = 4.0221x − 0.3336 with a coefficient of
determination (R2) of 0.9824. GABA concentrations in both experimental and control
groups were calculated using this equation. The findings indicated that the alteration in
Ae-GRD expression influenced GABA levels in Ae. aegypti (Figure 3c). Specifically, after
dsRNA-Ae-GRD injection, GABA content increased by 29.57% compared with the dsRNA-
GUS group and by 26.04% compared with the DEPC-H2O group. There was no significant
difference observed between the two control groups.

3.4. Prediction of miRNAs Targeting Ae-GRD

To identify miRNAs potentially regulating the iGABAaR subunit Ae-GRD, three ma-
jor online databases, miRanda, Targetscan, and RNAhybrid, were utilized. The predic-
tions from these databases were analyzed by clustering and intersection (https://www.
omicstudio.cn/tool/6, accessed on 9 May 2023), as illustrated in Figure 4a. For accurate
target prediction, at least one region of the target mRNA’s 3′ UTR must be in base com-
plementary pairing with positions 2–8 (the seed sequence) of the miRNA’s 5′ end [36,37].
The analysis predicted twelve miRNAs by miRanda, ten by Targetscan, and seven by
RNAhybrid, with detailed predictions listed in Table S3.
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Figure 4. Prediction of miRNAs validated with dual-luciferase reporter assay: (a) Cluster analysis
and Wayne plots demonstrating the results of miRNA predictions targeting Ae-GRD. (b–d) Binding
sequences of highly scored miRNAs: miR-10, miR-315-5p, and miR-71-5p. (e) Results from the
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and asterisks denote levels of statistical significance: ** p < 0.01.
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Cluster analysis results suggest that five miRNAs might exert regulatory effects on
Ae-GRD: miR-71-5p, miR-315-5p, miR-10, miR-988-5p, and miR-1890. Notably, miR-71-5p,
miR-315-5p, and miR-10 emerged as the top candidates in the prediction results of all
three databases. These miRNAs exhibited full pairing in the seed sequence region with
the 3’ UTR of Ae-GRD, while showing incomplete pairing in the nonseed sequence regions
(Figure 4c–e).

3.5. Dual-Luciferase Validation

To examine the regulatory relationship between miRNAs and their target mRNAs,
dual-luciferase reporter assays were conducted. These assays verified the interaction
between Ae-GRD and miR-71-5p, miR-315-5p, and miR-10 at the cellular level. HEK
293T cells were co-transfected with the expression reporter vector pmirGLO-Ae-GRD and
miRNA mimics, with an NC group established for comparison. The results demonstrate
that co-transfection with miR-71-5p mimics and the pmirGLO-Ae-GRD vector led to a
22.93% reduction in luciferase activity relative to the NC group (Figure 4b; ** p < 0.01).
In contrast, the mimics of the other two miRNAs did not induce any significant changes
in dual-luciferase activity upon co-transfection (Figure 4b). Therefore, miR-71-5p was
confirmed to specifically target Ae-GRD in vitro.

3.6. miR-71-5p Regulates Ivermectin Resistance in Ae. aegypti

Previously, we demonstrated the impact of Ae-GRD on IVM resistance and its reg-
ulation by miR-71-5p. To further explore miR-71-5p’s role in ivermectin resistance and
confirm its regulatory relationship with Ae-GRD, we engineered Ae. aegypti mosquitoes to
overexpress or repress miR-71-5p via microinjection.

Initially, miR-71-5p mimics were microinjected into Ae. aegypti, with a mimics NC
group established for comparison. Assays of relative expression levels showed effective
overexpression of miR-71-5p in the experimental group compared with the mimics NC
group, with a 6.28-fold increase (Figure 5a; ** p < 0.01). This overexpression significantly
repressed the transcriptional level of Ae-GRD, resulting in a 51.56% decrease in Ae-GRD
expression compared with the control group (Figure 5b; *** p < 0.001). After feeding on an
IVM-treated solution for 24 h, the mortality rate of the miR-71-5p overexpression group
decreased by 34.52% compared with the control group (Figure 5c; ** p < 0.01).
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Subsequently, the miR-71-5p inhibitor was microinjected to suppress miR-71-5p ex-
pression in Ae. aegypti, with an inhibitor NC group serving as a control. Post injection,
the expression level of miR-71-5p was significantly reduced by 34.40% compared with
the inhibitor NC group (Figure 6a; ** p < 0.01). Conversely, inhibiting miR-71-5p led to a
2.15-fold increase in Ae-GRD expression relative to the control group (Figure 6b; * p < 0.05).
Interestingly, there was no significant change in mortality rates after IVM treatment com-
pared with the control group (Figure 6c). These findings confirm that miR-71-5p directly
targets Ae-GRD and plays a significant role in mediating IVM resistance in Ae. aegypti by
modulating Ae-GRD expression.
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Figure 6. Microinjection of miR-71-5p inhibitor: (a) Injection of the miR-71-5p inhibitor significantly
reduced the expression level of miR-71-5p by 34.40% compared with the control group. (b) Inhibition
of miR-71-5p resulted in an upregulation of Ae-GRD expression. (c) No significant change in mortality
was observed in the miR-71-5p inhibitor group after 24 h of ivermectin treatment. Data represent three
biological replicates, each consisting of three technical replicates. Statistical analysis was conducted
using the t-test. “ns” indicates no significant difference, and asterisks denote levels of statistical
significance: * p < 0.05, ** p < 0.01.

4. Discussion

In this study, we identified and characterized the iGABAaR subunit Ae-GRD in Ae.
aegypti for the first time. Using cDNA from female adult Ae. aegypti mosquitoes as a
template, we cloned a partial fragment of Ae-GRD, and leveraging available genomic data,
we obtained the full-length Ae-GRD. The gene and coding protein sequence of Ae-GRD were
bioinformatically analyzed to elucidate its molecular characteristics. Sequence analysis
revealed that Ae-GRD shares significant structural similarities with species such as the
Italian honeybee, providing a theoretical basis for subsequent functional validation.

iGABAaR are established targets for insecticides such as fipronil and ivermectin [15,38].
From a molecular perspective, iGABAaR comprises both cation-permeable and anion-
permeable channels [39]. Thus, in investigating the mechanisms of resistance between
iGABAaR and insecticides, it is also customary to examine the types of ion channels formed
by various combinations of iGABAaR subunits. iGABAaR subunits LCCH3 and GRD were
first identified and studied in Drosophila melanogaster [12]. To date, studies on iGABAR
subunits other than the RDL subunit in insects have been limited and are confined to
a few species, such as Drosophila, the honeybee, and Dictyostelium borer. Nonetheless,



Insects 2024, 15, 453 12 of 15

existing evidence underscores the significant role of LCCH3 and GRD in neural conduction
processes in insects [11,13,40].

Our observations revealed significant changes in the sensitivity of Ae. aegypti mosquitoes
to ivermectin following RNAi treatment targeting the Ae-GRD subunit. Notably, adult Ae.
aegypti exhibited a marked decrease in drug sensitivity, a finding that diverges slightly
from previous studies on GRD and LCCH3 in other species [12,40]. For example, silencing
RDL in Chilo suppressalis larvae significantly reduced their susceptibility to avermectin [40],
whereas downregulation of LCCH3 and GRD mRNA levels did not impact the insecticidal
activity of fluralaner [40]. Additionally, interference with RDL has been shown to alter drug
susceptibility in Ae. aegypti, highlighting the subunit’s role in mediating responses to IVM
and fluralaner [10]. In contrast, studies on the vermilion leaf mite demonstrated reduced
susceptibility to abamectin and IVM following RDL interference, yet no corresponding ion
channel function was detected under drug stimulation at the electrophysiological level [16].
To date, the functions of Ae-GRD and Ae-LCCH3 ion channels in Ae. aegypti has not been
thoroughly explored, leaving the exact mechanisms by which Ae-GRD influences IVM
sensitivity undetermined. Consequently, this study further investigated changes in GABA
content following transcriptional interference with Ae-GRD, revealing that silencing of
Ae-GRD led to a significant increase in GABA levels. This suggests that modifications in
IVM sensitivity induced by interfering with Ae-GRD could either result from alterations
in iGABA receptor-gated ion channel functions or adjustments within other components
of the GABAergic neural pathway. The precise mechanisms require further elucidation
through comprehensive electrophysiological studies and other experimental approaches.

Furthermore, miRNAs regulate gene expression by binding to the mRNAs of target
genes, leading to mRNA degradation or inhibition of translation processes [41]. Establishing
the relationship between miRNAs and target genes involves extensive predictive screening
and experimental validation of these predictions. In this study, we obtained the complete
sequence of the 3’ UTR region of Ae-GRD from the NCBI database. Target prediction
was performed using TargetScan, miRanda, and RNAhybrid, yielding high-scoring cross-
predictions for miR-71-5p, miR-315-5p, and miR-10. The dual-luciferase reporter assay
confirmed that miR-71-5p inhibited luciferase activity, indicating regulation of Ae-GRD by
miR-71-5p at the cellular level.

Further validation involved overexpressing and repressing miR-71-5p in Ae. aegypti
through microinjection. Overexpression of miR-71-5p significantly suppressed Ae-GRD
transcription, while repression of miR-71-5p markedly increased it. The involvement of
miRNAs in various physiological and functional processes of insect growth and develop-
ment is well documented, though reports on miR-71-5p in Ae. aegypti are scarce. Building
on findings from other species, we explored whether miR-71-5p’s regulation of Ae-GRD
expression contributes to IVM resistance development in Ae. aegypti through bioassays.
After manipulating miR-71-5p expression in adult Ae. aegypti, both miRNA and target
gene expression levels were analyzed. Overexpression of miR-71-5p significantly reduced
Ae-GRD expression, correlating with decreased mortality rates following IVM treatment.
miRNAs are integral to physiological activities in insects by regulating target gene expres-
sion. For instance, in the silkworm, miR-281 regulates molting by affecting the ecdysteroid
receptor [42]; in the Italian honeybee, miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p
are significantly associated with olfactory learning and memory [41]. Moreover, miR-2,
miR-13a, miR-13b, and miR-71 regulate egg formation in migratory locusts [43], while miR-
71 and miR-263 co-regulate chitin synthase and chitinase to control molting in locusts [44];
miR-223 offers neuroprotective effects by targeting glutamate receptors [45].

5. Conclusions

In this study, we successfully identified and characterized the iGABAR subunit Ae-
GRD in Ae. aegypti for the first time, revealing that it is highly homologous and well-
conserved across various species. Ae-GRD is a target gene of miR-71-5p, and there exists a
negative transcriptional correlation between them. The downregulation of Ae-GRD expres-
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sion leads to a decreased sensitivity of Ae. aegypti to IVM, suggesting a potential mechanism
for resistance. Furthermore, miR-71-5p appears to play a role in the development of IVM
resistance in Ae. aegypti by regulating the expression of Ae-GRD. These findings provide
insights into the molecular interactions affecting insecticide resistance, offering potential
targets for controlling this vector species more effectively.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/insects15060453/s1: Table S1: The primers used in this
experiment; Table S2: Sequence information of GRD in different species of insects; Table S3: Prediction
of miRNAs targeting Ae-GRD.
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