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Abstract: Renal cell carcinoma (RCC) is one of the most common malignant tumors of the kidney,
presenting significant challenges for clinical diagnosis and treatment. Macrophages play crucial roles
in RCC, promoting tumor progression and warranting further investigation. Previous studies have
identified LHFPL2 as a transmembrane protein associated with reproduction, but its relationship
with tumors or macrophages has not been discussed. This study utilized transcriptomic sequencing
data from 609 KIRC patients in the TCGA database and single-cell sequencing data from 34,326 renal
carcinoma cells for subsequent analysis. We comprehensively evaluated the expression of LHFPL2
and its relationship with clinical features, tumor prognosis, immune infiltration, and mutations.
Additionally, we further assessed the correlation between LHFPL2 and macrophage M2 polarization
using single-cell data and explored its potential as a cancer therapeutic target through molecular
docking. The results demonstrated that LHFPL2 is upregulated in RCC and associated with poor
survival rates. In clinical staging, the proportion of malignant and high-metastasis patients was
higher in the high-LHFPL2 group than in the low-LHFPL2 group. Furthermore, we found that LHFPL2
influences RCC immune infiltration, with its expression positively correlated with various immune
checkpoint and M2-related gene expressions, positively associated with M2 macrophage infiltration,
and negatively correlated with activated NK cells. Moreover, LHFPL2 showed specific expression
in macrophages, with the high-expression subgroup exhibiting higher M2 polarization, hypoxia,
immune evasion, and angiogenesis scores, promoting tumor progression. Finally, we predicted
several potential drugs targeting LHFPL2, such as conivaptan and nilotinib. Our analysis elaborately
delineates the immune characteristics of LHFPL2 in the tumor microenvironment and its positive
correlation with macrophage M2 polarization, providing new insights into tumor immunotherapy.
We also propose potential FDA-approved drugs targeting this gene, which should be tested for their
binding effects with LHFPL2 in future studies.

Keywords: LHFPL2; macrophages; M2 polarization; immune infiltration

1. Introduction

Tumors are currently one of the major causes of death, and the tumor microenviron-
ment (TME) plays a crucial role in the process of tumor development. Tumor-associated
macrophages (TAMs), as one of the most abundant immune cells in the TME, often ex-
hibit immunosuppressive tumor-promoting phenotypes when genetic alterations occur in
tumors, thereby promoting tumor progression, metastasis, and the development of drug
resistance [1]. The proportion of TAMs varies in different malignant tumors, with some
showing lower infiltration rates, such as glioblastoma, which is defined as a “cold” tumor
due to its low immune cell content [2]. Conversely, some tumors exhibit higher macrophage
infiltration. Multiple studies indicated that macrophages are the most common immune
cells in renal cell carcinoma [3–6]. Consequently, targeting TAMs has become a strategy in
cancer therapy.
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Currently, there are many approaches to tumor therapy focusing on TAMs, mainly
divided into two categories: inhibiting pro-tumor TAMs, including inhibiting TAM recruit-
ment and depleting TAMs, and activating anti-tumor TAMs, reprogramming pro-tumor
macrophages into anti-tumor macrophages [7]. For example, blocking CSF1/CSF1R sig-
naling or increasing Tregs activity in the TME directly depletes TAMs. However, the
depletion of macrophages is disadvantageous for maintaining tissue homeostasis, making
this treatment less effective. Similarly, drugs that block the CCL2/CCR2 pathway to prevent
macrophage recruitment to tumors have not shown clinical efficacy similar to preclinical
models in clinical trials [8]. The drawback of depleting TAMs is the loss of their potential
immunostimulatory effects as primary phagocytic cells and specialized antigen-presenting
cells within tumors. Therefore, reprogramming TAMs into an anti-tumor phenotype may
be a more effective immunotherapy strategy [9]. Currently, whether polarizing TAMs from
their original phenotype to an anti-tumor phenotype or targeting specific TAM functions
such as phagocytosis and immune suppression, although there has been some progress
in preclinical and clinical trials, there are limitations that need to be addressed [1]. New
targets for TAM activation need to be explored to find new treatment opportunities.

TAMs mainly exhibit the M2-like phenotype, playing a role in promoting tumor
development. This study aims to identify new M2-related targets and systematically
explore the role of these genes in tumors by integrating clinical data, sample information,
and tumor-related gene sets. Potential M2 polarization-related genes were screened using
the differential gene expression analysis of sequencing data, among which LHFPL2 was
identified. This gene encodes a transmembrane protein and belongs to the lipoma HMGIC
fusion partner (LHFP) gene family along with LHFP and LHFPL1, 3, 4, and 5 [10]. Since its
discovery, only a few studies have confirmed that members of this family may be related to
human hearing disorders [11,12] and renal developmental abnormalities [13], with limited
research available. Therefore, we further analyzed its expression and prognosis in tumors,
evaluated its potential as a tumor prognostic factor, and assessed its relationship with M2
macrophage polarization, investigating the mechanism by which LHFPL2 affects tumor
progression, thus providing new insights into tumor treatment directions.

2. Results
2.1. LHFPL2 Upregulation and Clinical Correlation Analysis in KIRC

The overall workflow of this study is illustrated in Figure 1. The proportion of
macrophages varies across different malignant tumors. Given the heightened enrichment
of macrophages in liver [3,14], renal [3,4,6], and gastric cancers [15], we designated the
Gene Set Variation Analysis (GSVA) score for the macrophage M2 polarization-related
gene set as the M2 score. We stratified cancer samples into high and low groups based
on the median M2 score, then observed the expression levels of various M2-related genes
in each group, identifying differential genes and singling out LHFPL2 as a target gene
(Supplementary Figure S1). The analysis of sequencing data and clinical information from
The Cancer Genome Atlas (TCGA) revealed significant upregulation of LHFPL2 transcrip-
tion levels in certain cancers compared to normal samples, particularly evident in kidney
renal clear cell carcinoma (KIRC) (Figure 2A). Receiver Operating Characteristic (ROC)
curves were employed to evaluate the potential as a tumor-predictive factor of LHFPL2.
The Area Under the Curve (AUC) values for LHFPL2 upregulation across five tumor
types were calculated, and the AUC values are consistently higher than a random value
(AUC > 0.5). Notably, the highest AUC value for LHFPL2 was observed in KIRC, reach-
ing 0.903 (Figures 2B and S2). Furthermore, Kaplan–Meier analysis illustrated a signifi-
cant association between elevated LHFPL2 expression and overall survival (OS) in KIRC,
where patients with high LHFPL2 expression exhibited significantly poorer prognosis
(p = 0.017, Figure 2C), contrasting with the absence of similar correlations in the other four
cancer types (Supplementary Figure S3). Therefore, our emphasis will be on investigating
the role of the LHFPL2 gene in KIRC.
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Figure 1. Flow chart of the research. The workflow diagram illustrates the specific process of screening 
the LHFPL2 gene and the subsequent research conducted on this gene. 
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Figure 2. Comprehensive analysis of LHFPL2 in cancer: expression, predictive capability, survival, 
and clinical correlations. (A) Sequencing data from tumor and normal tissues of patients with 33 
types of cancer in the TCGA were used to analyze the expression profile of LHFPL2 in human tu-
mors and normal tissues. Box plots displayed the transcript levels of LHFPL2 across various cancers, 
and the significance differences were calculated using the Wilcoxon Test. * p < 0.05, ** p < 0.01, *** p 
<0.001, **** p < 0.0001, ns, not significant. (B) The AUC value represents the predictive capability of 
LHFPL2 for KIRC. The larger the AUC value, the stronger the predictive ability for the tumor. The 
red curve in the figure represents the ROC curve. The black dashed line indicates the performance 
of a random guess classifier. If the modelʹs ROC curve is above this line, it indicates that the model 
has better discriminative ability than random guessing. (C) Survival curves were plotted with OS as 
the ordinate to demonstrate the impact of LHFPL2 expression on the survival rate of KIRC patients. 
The log-rank test was used to assess the differences between the two groups. p < 0.05 indicates a 
significant difference. (D) Clinical correlations associated with LHFPL2 expression levels in KIRC. 
The vertical axis of the bar chart represents the proportion of patients, while the horizontal axis 
represents the high and low groups of LHFPL2. 

The pathological stage of a tumor is a crucial indicator for determining treatment plans, 
predicting prognosis, and conducting clinical trials for cancer patients. By analyzing the pro-
portion of different tumor stages within the high and low LHFPL2 expression groups, we ex-
plored the relationship between gene expression and various aspects of tumors, such as size, 
lymph node involvement, and metastasis, to assess whether LHFPL2 influences tumor pro-
gression. The results indicate that the high LHFPL2 expression group exhibited a higher pro-
portion of advanced-stage tumors (stage III and IV), T4 tumors, M1 tumors, and N1 tumors, 
while the low LHFPL2 expression group had a higher proportion of patients with stable dis-
ease (Figure 2D). This suggests a potential association between high LHFPL2 expression and 
tumor progression and aggressiveness, while low expression may correlate with a more stable 
tumor status. Clinical characteristics of KIRC patients are detailed in Supplementary Table S1. 

Figure 2. Comprehensive analysis of LHFPL2 in cancer: expression, predictive capability, survival,
and clinical correlations. (A) Sequencing data from tumor and normal tissues of patients with
33 types of cancer in the TCGA were used to analyze the expression profile of LHFPL2 in human
tumors and normal tissues. Box plots displayed the transcript levels of LHFPL2 across various
cancers, and the significance differences were calculated using the Wilcoxon Test. * p < 0.05, ** p < 0.01,
*** p <0.001, **** p < 0.0001, ns, not significant. (B) The AUC value represents the predictive capability
of LHFPL2 for KIRC. The larger the AUC value, the stronger the predictive ability for the tumor. The
red curve in the figure represents the ROC curve. The black dashed line indicates the performance
of a random guess classifier. If the model's ROC curve is above this line, it indicates that the model
has better discriminative ability than random guessing. (C) Survival curves were plotted with OS as
the ordinate to demonstrate the impact of LHFPL2 expression on the survival rate of KIRC patients.
The log-rank test was used to assess the differences between the two groups. p < 0.05 indicates a
significant difference. (D) Clinical correlations associated with LHFPL2 expression levels in KIRC.
The vertical axis of the bar chart represents the proportion of patients, while the horizontal axis
represents the high and low groups of LHFPL2.

The pathological stage of a tumor is a crucial indicator for determining treatment plans,
predicting prognosis, and conducting clinical trials for cancer patients. By analyzing the
proportion of different tumor stages within the high and low LHFPL2 expression groups,
we explored the relationship between gene expression and various aspects of tumors, such
as size, lymph node involvement, and metastasis, to assess whether LHFPL2 influences
tumor progression. The results indicate that the high LHFPL2 expression group exhibited a
higher proportion of advanced-stage tumors (stage III and IV), T4 tumors, M1 tumors, and
N1 tumors, while the low LHFPL2 expression group had a higher proportion of patients
with stable disease (Figure 2D). This suggests a potential association between high LHFPL2
expression and tumor progression and aggressiveness, while low expression may correlate
with a more stable tumor status. Clinical characteristics of KIRC patients are detailed in
Supplementary Table S1.
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2.2. LHFPL2 Is Involved in Multiple Tumor-Related Pathways and Immune Infiltration in KIRC

To investigate how LHFPL2 affects tumor progression, the fifty hallmark gene sets
from the MiSgDB database were utilized to calculate GSVA scores on each sample from
five cancers. The results demonstrate that the majority of pathways in the hallmark gene
sets exhibit higher GSVA scores in the high-LHFPL2 expression group and lower scores
in the low-LHFPL2 expression group (Supplementary Figure S4A). Moreover, most of
these scores show a significant positive correlation with LHFPL2 expression levels (Sup-
plementary Figure S4B). These pathways predominantly include cancer-related processes
such as angiogenesis, hypoxia, and epithelial–mesenchymal transition. The upregulation
of these scores in the high LHFPL2 expression group suggests that under conditions of
high-LHFPL2 expression, numerous pro-carcinogenic pathways are altered, potentially
implicating LHFPL2 in tumor proliferation and immune response processes.

This is crucial for developing new cancer immunotherapy strategies to understand
immune cell infiltration. The proportions of 22 immune cell types were calculated to
assess the immune characteristics of the LHFPL2 gene in the tumor microenvironment. We
analyzed the proportions of each immune cell type in the high and low LHFPL2 expression
groups. Results revealed that in KIRC, the LHFPL2 high-expression group has a higher
proportion of M2 macrophages (Z = 5.714, p = 2 × 10−9) and a lower proportion of acti-
vated NK cells (Z = −3.603, p = 0.00012) compared to the LHFPL2 low-expression group
(Figure 3A–C). Correlation analysis showed a significant positive correlation between
LHFPL2 expression levels and M2 macrophage abundance in KIRC, while a significant
negative correlation was observed with the abundance of activated and resting NK cells
(Figure 3E). Furthermore, the correlation between LHFPL2 and 16 immune checkpoints
was examined, and the relationship between LHFPL2 and immune responses was assessed.
Statistically significant correlations were found between LHFPL2 and other immune check-
points, except for KIR2DL1 (Figure 3D). The correlation coefficients ranged from 0.15 to
0.71, with the highest correlation observed with SIGLEC7/9. These receptors are highly ex-
pressed in innate immune cells, particularly macrophages, facilitating immune suppression
in the tumor microenvironment.
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cated by light blue. The significance differences were calculated using the Wilcoxon Test. * p < 0.05, 
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Figure 3. Immune infiltration profiles of LHFPL2. (A) Abundance differences of six major subtypes
of immune cells between high and low expression groups of LHFPL2 in KIRC. The area of the
sectors represents the proportion of immune cell infiltration. (B,C) Variations in the proportion
of M2 macrophages (B) and activated NK cells (C) between high and low expression groups of
LHFPL2 in KIRC. *** p <0.001, **** p < 0.0001. (D) Correlation between LHFPL2 expression and the
expression levels of various immune checkpoint markers in KIRC. The size and color intensity of the
circles represent the correlation coefficients. Larger circle areas and deeper colors indicate stronger
correlations between two genes. Positive correlations are shown in red, while negative correlations
are shown in blue. * p < 0.05, ** p < 0.01, *** p < 0.001. (E) Heatmap illustrating the correlation between
LHFPL2 expression levels and the proportions of 22 types of immune cells in KIRC. The depth of
color represents the magnitude of the correlation coefficient, with positive correlation indicated by
orange and negative correlation indicated by light blue. The significance differences were calculated
using the Wilcoxon Test. * p < 0.05, ** p < 0.01, *** p <0.001; no asterisk indicates no significant
correlation. NA represents missing data, and the red dashed box highlights the renal cell carcinoma
we are studying.

2.3. The Expression Level of LHFPL2 Is Positively Correlated with the M2 Macrophages in KIRC

Based on the results of the immune infiltration analysis, we further explored the
relationship between the expression levels of LHFPL2 and the infiltration ratio of M2
macrophages. In KIRC, we observed significant differences in the expression levels of 37
genes between the high and low expression groups of LHFPL2, with 36 genes showing
higher expression in the high group compared to the low group (Figure 4A,B). Additionally,
the M2 scores were significantly higher in the LHFPL2 high-expression group (Figure 4C).
Correlation analysis revealed a positive correlation between LHFPL2 and M2 genes, with
correlation strengths ranging from weak to strong (Figure 4D). These results collectively indi-
cate an association between LHFPL2 and characteristic genes of M2 macrophages, suggesting
that LHFPL2 may influence tumor progression by affecting the expression of M2 genes. This
underscores the potential of LHFPL2 as a marker for M2 macrophage-related genes.

Cell clustering analysis was performed to examine the expression of LHFPL2 in each
cell cluster by using single-cell transcriptome sequencing data and integrating cell sub-
type gene sets. Additionally, single-sample gene set enrichment analysis (ssGSEA) scores
for macrophage M2 polarization, hypoxia, and immune escape were utilized to assess
the relationship between LHFPL2 and macrophage M2 polarization. The results demon-
strate that renal cell carcinoma can be divided into six cell types, with LHFPL2 exhibiting
specific expression in myeloid lineage cells and minimal expression in other cell types
(Figures 5A and S5A). The myeloid cells were isolated separately and subdivided into
10 subclusters based on different marker genes. Compared to monocytes and dendritic
cells, LHFPL2 showed specific expression in TAMs (Supplementary Figure S5B). Notably,
the FTL+ TAM subcluster exhibited the highest expression levels of LHFPL2, with a higher
proportion of LHFPL2 high-expressing cells. Additionally, this subcluster showed the
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highest scores for M2 polarization and immune evasion while also displaying relatively
high scores for hypoxia and angiogenesis (Figure 5B–F).
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Figure 4. Association of LHFPL2 expression levels with M2 macrophage. (A,B) Expression lev-
els of M2-associated genes in LHFPL2 high/low-expression groups. The significance differences
were calculated using the Wilcoxon Test. * p < 0.05, ** p < 0.01, **** p < 0.0001, ns, not significant.
(C) Differences in M2 scores between LHFPL2 high/low-expression groups. **** p < 0.0001.
(D) The correlation coefficient between the expression levels of LHFPL2 and M2-related genes.
*** p < 0.001. The numbers in the figure represent correlation coefficients. The size of the sectors indicates
the magnitude of the correlation coefficients. Positive correlations are shown with red shading, while
negative correlations are shown with blue shading. The darker the color, the stronger the correlation.
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Figure 5. Single-cell data analysis reveals the association between LHFPL2 gene and M2 polarization
in renal clear cell carcinoma. (A) UMAP visualization of myeloid cells in renal cell carcinoma patients.
Myeloid cells are divided into 10 clusters, including various dendritic cells (DCs), tumor-associated
macrophages (TAMs), and monocytes, which are distinguished by different colors. (B) Proportions
of high- and low-LHFPL2-expressing cells in six TAM subclusters. (C–F) ssGSEA scores of M2
polarization (C), immune escape (D), hypoxia (E), and angiogenesis (F) in TAM subclusters.

The TCGA and single-cell data were divided into two groups based on the expression
levels of LHFPL2, followed by differential gene expression analysis. The upregulated and
downregulated genes were then subjected to GO and KEGG analyses separately. The
results revealed the enrichment of immune-related pathways among the upregulated and
downregulated genes in both datasets, elucidating the association between LHFPL2 and
tumor immunity (Supplementary Figures S5C–F and S6).

2.4. LHFPL2 Is Related to Novel Genomic Alterations in KIRC

TCGA data reveal that the frequency of LHFPL2 SNV is close to zero in the KIRC.
Therefore, we focused on LHFPL2-related changes in high- and low-LHFPL2 groups instead
of exploring LHFPL2’s self-genomic alterations. A comparison of SNV profiles between
the high- and low-LHFPL2-expression groups is depicted in waterfall plots (Figure 6A,B).
Missense mutations were found to be the predominant mutation type in both high- and
low-LHFPL2 expression groups (Supplementary Figures S7 and S8). Additionally, the
mutation status of genes in both groups was analyzed. It was observed that there were
significant genomic alterations in both groups, with genes like VHL, PBRM1, and TTN
exhibiting higher mutation rates (Figure 6A–D). However, genes like PXDN, EPHA5,
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BAP1, ABCA10, and CADPS showed relatively higher mutation frequencies in the high-
LHFPL2-expression group (Figure 6E). Heatmap results also indicated that the strongest
co-occurring gene mutation pair in the high-LHFPL2 expression group was AHNAK2-
MUC16, while the strongest mutually exclusive gene mutation pair was SYNE1-VHL
(Figure 6F). Conversely, the strongest co-occurring gene mutation pair was PBRM1-VHL in
the low LHFPL2 expression group (Figure 6G).
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tween the high- and low-LHFPL2-expression groups is depicted in waterfall plots (Figure 
6A,B). Missense mutations were found to be the predominant mutation type in both high- 
and low-LHFPL2 expression groups (Supplementary Figures S7 and S8). Additionally, the 
mutation status of genes in both groups was analyzed. It was observed that there were 
significant genomic alterations in both groups, with genes like VHL, PBRM1, and TTN 
exhibiting higher mutation rates (Figure 6A–D). However, genes like PXDN, EPHA5, 
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LHFPL2-expression group (Figure 6E). Heatmap results also indicated that the strongest 
co-occurring gene mutation pair in the high-LHFPL2 expression group was AHNAK2-
MUC16, while the strongest mutually exclusive gene mutation pair was SYNE1-VHL (Fig-
ure 6F). Conversely, the strongest co-occurring gene mutation pair was PBRM1-VHL in 
the low LHFPL2 expression group (Figure 6G). 
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illustrates the top 10 frequently mutated genes in high- (A) and low-LHFPL2 (B) expression groups
in KIRC. Genes are arranged in descending order based on mutation frequency, and mutations are
categorized and labeled with different colors. (C,D) The box plot illustrates the overall distribution
of six different transformations in high- (C) and low-LHFPL2 (D) expression groups, presented as
stacked bar charts to display the conversion ratios in each sample. (E) The forest plot displays the
top 16 significantly mutated genes in the high-LHFPL2 group relative to the low-LHFPL2 group. OR
represents the ratio of mutation frequencies between the high- and low-LHFPL2 expression groups.
“Inf” indicates infinity. * p < 0.05, ** p < 0.01. (F,G) The heatmap displays the co-occurrence or mutual
exclusivity of 25 mutated genes between the high- (F) and low (G)-LHFPL2 groups. Green and
brown represent the probabilities of two genes undergoing either co-occurrent mutations or mutually
exclusive mutations, with darker colors indicating higher probabilities.
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2.5. Molecular Docking Landscape against LHFPL2 and Prediction of Potential Drugs

To further understand the potential of LHFPL2 as a drug target, we docked the pro-
tein structure with over 800,000 compounds and 1614 FDA-approved drugs to screen
for compounds with inhibitory potential against LHFPL2 (Figure 7A). Based on the pre-
dicted structure of LHFPL2 protein, six molecular docking pockets were identified using
Discovery Studio software. The two largest pockets were selected for subsequent docking
operations, named Pocket 1 and Pocket 2 (Figure 7B,C). Subsequently, UniDock was used
to dock LHFPL2 with a dataset of one million compounds from the zinc compound library
and 3000 drugs from the FDA database, calculating the affinity scores between the protein
and different ligands. Lower docking scores indicate stronger binding between compounds
and the protein. Results revealed that, for Pocket 1, FDA drugs Conivaptan (vasopressin
receptor antagonist), Nilotinib (Bcr-Abl tyrosine kinase inhibitor), and Olaparib (PARP
inhibitor) had the highest affinity scores, with values of −9.47, −9.35, and −9.31, respec-
tively (Figure 7D). Among compounds, subTS_HIT102125848, subTS_HIT104720933, and
subTS_HIT101532189 exhibited the highest affinity scores, with values of −12.48, −11.69,
and −11.55, respectively (Supplementary Figure S9A). For Pocket 2, FDA drugs Dihy-
droergotamine, Avodart, and Azelastine had the highest affinity scores, with values of
−8.14, −7.79, and −7.77, respectively (Figure 7D), while compounds subTS_HIT213615638,
subTS_HIT213008249, and subTS_HIT213824420 had the highest affinity scores, with val-
ues of −9.65, −9.48, and −9.44, respectively (Supplementary Figure S9A). The binding
poses and sites are shown in Figure 7E,F and Supplementary Figure S9B,C. The interaction
between the LHFPL2 protein and compounds or FDA-approved drugs was also depicted
with a 2D diagram (Supplementary Figure S10).
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Figure 7. The screening of FDA-approved drugs. (A) Flowchart of drug screening. (B,C) LHFPL2
protein-binding pocket 1 (B) and pocket 2 (C) predicted by DS. The blue-purple section represents the
predicted protein structure of LHFPL2, while the green section represents the predicted binding site.
(D) Heatmap illustrating the docking affinity scores between the LHFPL2 protein and FDA-approved
drugs. The lower the affinity score, the stronger the affinity. (E) The molecular docking results of the
top three FDA-approved drugs with the highest affinity scores for docking with pocket 1, labeled
from left to right as Conivaptan, Nilotinib, and Olaparib. (F) The molecular docking results of the top
three FDA-approved drugs with the highest affinity scores for docking with pocket 2, labeled from
left to right as Dihydroergotamine, Avodart, and Azelastine. The dashed lines represent hydrogen
bonds, the numbers indicate the hydrogen bond lengths, and the hydrogen bonds connect the drug
to the amino acid residues on the protein.
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3. Materials and Methods
3.1. The Collection and Processing of Sequencing and Clinical Data

The transcriptome data utilized in this study were obtained from The Cancer Genome
Atlas (TCGA) database (https://www.cancer.gov/ccg/research/genome-sequencing/tcga,
accessed on 1 April 2024), comprising TPM and counts data, tumor staging, as well as
patient demographics including age, gender, and overall survival time across 33 cancer
types. Single-cell data for renal cell carcinoma were acquired from the SingleCellPortal
platform (https://singlecell.broadinstitute.org/, accessed on 1 April 2024), originating
from studies by Wu SZ [16] and Bi K [17], among others. The mutation data used for SNP
analysis also originate from the TCGA database.

3.2. Differential Gene Expression in Cancer and Clinical Feature Analysis

Gene expression in tumor and normal tissues from TCGA were analyzed using the
“ggplot” (version 3.3.5) and “ggpubr” (version 0.4.0) packages of R (version 4.3.1). A
comparison was conducted between the two groups. Pathological staging refers to the
severity assessment of tumors based on tissue samples obtained from surgery or biopsy,
categorized into stages I through IV. The American Joint Committee on Cancer (AJCC)
classifies cancer based on the size and extent of the primary tumor (T0, T1, T2, T3, T4),
regional lymph node involvement (N0, N1, N2, N3), and the presence of distant metastasis
(M0, M1). Tumors are classified based on their response to drugs into clinical progressive
disease, complete response, partial response, radiographic progressive disease, and stable
disease. Analyzing the proportion of different statuses in the LHFPL2-high and -low
groups according to these classification criteria reveals the relationship between LHFPL2
and the clinical characteristics of tumors. Specific classification information is sourced from
https://link.springer.com/chapter/10.1007/978-1-4614-2080-4_1 (accessed on 1 April 2024).

3.3. Gene Set Variation Analysis (GSVA) and Single-Sample Gene Set Enrichment Analysis
(ssGSEA)

The calculation of GSVA and ssGSEA was performed using packages such as “GSVA”
(version 1.40.1), “GSEABase” (version 1.55.1), “msigdbr” (version 7.4.1), “limma”
(version 3.36.5), “Seurat” (version 5.1.0), and “readr” (version 2.1.5) in the R software
(version 4.3.1). The gene sets used in this study are detailed in Supplementary Table S2.
The specific calculation formula for GSVA scores is as follows, where Xik represents the
expression level of gene “k” in sample “i”. Mean(S.j) denotes the mean expression level of
gene set “j” across all samples, and sd(S.j) indicates the standard deviation of gene set “j”
across all samples.

S′
ij =

∑k∈genesetj
Xik − mean(S.j)

sd(S.j)

The ssGSEA score is calculated using the following formula, where ES(g,S) is the
enrichment score of gene set “S” on gene “g”, Rank(g,i) is the rank of gene g in sample “i”,
“wi” is the weight of sample “i”, and “n” is the number of samples:

ES(g, S) = ∑n
i=1 Rank(g, i)× wi

∑n
i=1 wi

3.4. Assessment of Tumor Predictive Factors and Survival Analysis

Using the “pROC” (version 1.18.5) package in R software (version 4.3.1), the expression
level of LHFPL2 and sample tissue type (tumor, normal) were taken as input values. With
a confidence interval of 95%, the direction parameter in the roc() function was set to
determine the direction of the ROC curve. The ROC curve was then plotted, and the AUC
value was calculated. The formula for calculating the AUC is as follows: where “xi” and

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://singlecell.broadinstitute.org/
https://link.springer.com/chapter/10.1007/978-1-4614-2080-4_1
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“yi” are the coordinates of the i-th point on the ROC curve, and “n” is the total number of
points on the ROC curve.

AUC =
n−1

∑
i=1

(x i+1−xi)(y i + yi+1
)

2

Based on evaluation criteria, the predictive value of the model was assessed. TCGA
data on LHFPL2 expression levels and clinical information were processed. Using the
“survival” (version 3.6.4) and “survminer” (version 0.4.9) packages on Hiplot website
(https://hiplot.cn/, accessed on 1 April 2024), the Kaplan–Meier method was applied
to estimate patient survival rates and plot survival curves. The specific formula for the
survival rate in the survival curve is as follows: “ti” is the i-th event time point, “di” is the
number of events occurring at time “ti”, and “ni” is the number of individuals still under
study at time “ti”.

S(ti) = S(ti − 1)(1 − di
ni
)

The log-rank test was utilized to compare the survival differences between the high-
and low-LHFPL2 expression groups. The calculation formula is as follows: where “O” is
the sum of observed event counts (e.g., death events), and “E” is the sum of expected event
counts, calculated based on the overall risk of the two or more groups of survival data. A
p-value less than 0.05 indicates statistical significance in the difference [18].

χ2 =
[O − E]2

E

3.5. Immune Infiltration Analysis

The details of the immune checkpoint molecules used in this study are provided
in Table 1, including the names of the factors and their specific sources. The gene fea-
ture matrix from the “Cibersort” (https://cibersortx.stanford.edu/, accessed on 7 April
2024) was utilized for the investigation of immune cell infiltration proportions, containing
547 genes capable of distinguishing 22 human cell phenotypes [19]. Based on this matrix,
the infiltration proportions of 22 immune cells were calculated.

Table 1. The sources of immune checkpoint molecules.

Checkpoint Sample Count Source

PD1/PDCD1 Programmed Cell Death Protein 1

Morad et al. [20]

PDL1/CD274 Programmed Death-Ligand 1
TIM3/HAVCR2 Hepatitis A virus Cellular Receptor 2

CTLA4 Cytotoxic T-Lymphocyte-Associated Protein 4
LAG3 Lymphocyte-Activation Gene 3

VISTA/VSIR V-domain Ig Suppressor of T Cell Activation

TIGIT T Cell Immunoreceptor with Ig and ITIM Domains Rotte et al. [21]

siglecs-7/9 Sialic Acid-Binding Ig-Like Lectin 7/9 Stanczak et al. [22]

NKG2A/KLRC1 Natural Killer Group 2A

Archilla-Ortega et al. [23]CD200 Cluster of Differentiation 200
BTLA B and T Lymphocyte Attenuator
CD47 Cluster of Differentiation 47

CD96 Cluster of Differentiation 96 Sivori et al. [24]

KIR2DL1 Killer Cell Immunoglobulin-Like Receptor, Two Domains, Long
Cytoplasmic Tail, 1 Liu et al. [25]

B7-H3/CD276 B7 Homolog 3 Getu et al. [26]

https://hiplot.cn/
https://cibersortx.stanford.edu/
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3.6. Correlation Analysis

Spearman’s rank correlation coefficient “r” is calculated using the following formula:
where “d” is the difference between the ranks of corresponding variables, and “n” is the
number of observations.

r = 1 − 6∑ d2

n(n2 − 1)

The strength of correlation is classified as follows: a correlation coefficient greater than
0.7 indicates a strong correlation, between 0.5 and 0.7 indicates a moderate correlation,
between 0.3 and 0.5 indicates a weak correlation, and a correlation coefficient less than 0.3
suggests no correlation. The Spearman rank correlation coefficient assessed the relationship
between different datasets using the cor.test() function. The statistical significance of
correlation is determined by the size of the p-value. The specific formula is as follows:
where “r” represents the Spearman correlation coefficient and “n” denotes the sample size.

p =
r√
1−r2

n−2

3.7. Single-Cell Data Analysis

Seurat (version 5.1.0) is a toolbox for single-cell data analysis, used for cell clustering
and differential analysis. After creating a Seurat object, low-quality cells are filtered
based on the number of genes and the proportion of mitochondrial genes. Counts are
then normalized, and highly variable genes between cells are selected for subsequent
clustering, followed by normalization and dimensionality reduction. In this study, a manual
annotation approach was employed, combining specific genes and gene sets collected from
the literature for each cell cluster, annotating cell clusters based on the expression of genes
in different clusters [27]. Additionally, differential expression analysis was conducted
between the high- and low-expression groups of LHFPL2 in TAMs using the FindMarkers
function, with a threshold of 0.25.

3.8. Functional Enrichment Analysis

In this study, functional enrichment analysis was conducted by using two databases:
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The GO
enrichment pathway analysis was divided into three parts: Biological Process (BP), Cell
Component (CC), and Molecular Function (MF). Differential expression genes identi-
fied in our study were analyzed for functional enrichment using the “clusterProfiler”
(version 3.18.1) package in R software (version 4.2.1), and the findings were visualized
using Hiplot website (https://hiplot.cn/, accessed on 1 April 2024).

3.9. Single-Nucleotide Variant Analysis

The single-nucleotide variant (SNV) data for KIRC in TCGA was downloaded from
the GDC data portal using the R package “TCGAbiolinks” (version 2.18.0). After merging
and organizing the information with the grouping of target genes, the R package “maftools”
(version 2.10.1) was utilized to visualize the SNP profiles in different groups.

3.10. Compound and FDA-Approved Drug Analysis

The predicted structure of the LHFPL2 protein was obtained from the AlphaFold
protein structure database (https://alphafold.ebi.ac.uk/, accessed on 1 April 2024). Com-
pounds for molecular docking, as well as FDA-approved drugs, were downloaded from
the Topscience database and the ZINC20 database (https://zinc.docking.org/, accessed on
1 April 2024), respectively. Binding site prediction was performed using Discovery Studio
software (version 4.5). Preprocessing of protein structures and ligands was conducted
using Autodock software (version 4.1) and OpenBabel software (version 2.3.1), respectively.
Molecular docking was performed using UniDock software (version 1.1), with visualization
of docking results carried out using PyMOL (version 2.5.7).

https://hiplot.cn/
https://alphafold.ebi.ac.uk/
https://zinc.docking.org/
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3.11. Statistical Analysis

All statistical analyses were conducted using R software (version 4.2.1). Spearman
correlation coefficient was employed for correlation analysis. The Wilcoxon Test was
utilized to compare the differences between any two groups of continuous variables.
Kaplan–Meier survival analysis was conducted to evaluate the prognostic significance of
LHFPL2 expression. Survival curves were compared using the log-rank test to determine
statistically significant differences between groups. A significance level of p < 0.05 was
considered statistically significant and denoted by an asterisk (*). Specifically, * indicated
p < 0.05, ** indicated p < 0.01, and *** indicated p < 0.001, representing different levels
of significance.

4. Discussion

RCC, a malignant tumor originating from renal tubular epithelial cells [28], accounts
for about 85% of all malignant kidney tumors and significantly impacts human health.
Current treatments benefit few patients, underscoring the need for effective therapies [29].
TAMs in TME, mainly M2 phenotype, play a major role in tumor progression and immune
evasion [30–32]. Their immunosuppressive and tumor-promoting effects hinder RCC
therapy. Targeting TAMs to modulate their phenotype and function may lead to new
therapeutic strategies. This study identified a novel M2 macrophage-related gene, LHFPL2,
by calculating the GSVA score of M2 macrophages. We analyzed its clinical characteristics
and computed its significant correlations with the abundance of various immune cells,
expression levels of M2 marker genes, immune checkpoint levels, and tumor-related
pathways by using gene expression matrices from 33 tumor types in the TCGA database
and clinical information from RCC tumor samples. These findings were further validated
using single-cell transcriptome data, thereby confirming the potential of this gene as a
therapeutic target for treating RCC associated with M2 macrophages.

The upregulation of LHFPL2 is associated with clinical characteristics and tumor
progression. We observed that LHFPL2 expression is significantly upregulated in some
tumor tissues such as renal cancer, liver cancer, gastric cancer, and head and neck squamous
cell carcinoma, demonstrating good predictive ability in these cancers, though it cannot yet
serve as a prognostic factor for cancers other than RCC. The specificity of LHFPL2 in RCC
may be related to its function. For instance, LHFPL5, another protein in the LHFP gene
family and the most studied one has been shown to be associated with kidney dysplasia
in boys when disrupted [13]. This suggests that the LHFP family might have a special
influence on kidney development and changes. This increase is associated with poor OS
in RCC patients, and most tumor samples with high-LHFPL2 expression are at high-risk
pathological stages with high metastasis rates compared to the low-LHFPL2 expression
group. We hypothesize that LHFPL2 may promote the development and poor prognosis of
RCC by modulating immune infiltration within the TME.

LHFPL2 affects immune infiltration in RCC. There are also immune cells in the body be-
sides tumor cells. The immune system can inhibit tumor growth through mechanisms such
as immune surveillance, but it can also aid tumors in achieving immune evasion through
specific mechanisms. Understanding immune cell infiltration is crucial for developing new
cancer immunotherapy strategies. This study confirmed the significant difference in the
infiltration proportions of activated NK cells and M2 macrophages between the high- and
low-LHFPL2 expression groups by analyzing the differences in infiltration proportions and
associating LHFPL2 expression levels with these proportions. Activated NK cells primarily
exert tumor immune surveillance function. They infiltrate tumor regions and are positively
correlated with extended patient survival [33]. NK cells can directly eliminate cancer cells
by interacting with death receptors on target cells or by secreting cytokines to directly
inhibit tumor proliferation or induce apoptosis [34]. M2 macrophages promote tumor
progression and exert immunosuppressive functions through various pathways, mediating
the secretion of factors like VEGF and CCL18 to promote tumor angiogenesis [35]. Current
research indicates that TAMs and NK cells interact to limit antitumor immunity [36,37].
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In our study, LHFPL2 expression was positively correlated with M2 macrophages and
negatively correlated with activated NK cells, aligning with the existing view that these
cells interact to influence antitumor responses. LHFPL2 may play a crucial role in this
reciprocal regulation, mediating tumor development. We hypothesize that LHFPL2 might
participate in tumor progression in various TME contexts by regulating different immune
cells. In renal cancer, it likely influences tumor progression primarily by modulating the
quantity and status of macrophages and NK cells and their interactions, thereby affecting
immune suppression and promoting tumor development.

LHFPL2, as a gene associated with M2 polarization of macrophages, influences the
progression of RCC. In this study, the analysis of immune infiltration results revealed
that LHFPL2 expression is positively correlated with the infiltration proportion of M2
macrophages. To validate the relationship between LHFPL2- and M2-associated genes,
we compared the differences in M2 scores between high- and low-LHFPL2 expression
groups, further confirming the connection between LHFPL2 and M2 macrophage polar-
ization. Compared to the low-LHFPL2 expression group, the high-LHFPL2 expression
group had higher M2 scores and higher expression of M2-associated genes, with LHFPL2
significantly positively correlated with M2-associated genes. Additionally, among the
37 genes with significantly different expression levels between the high and low groups,
36 genes were expressed higher in the high group. Moreover, LHFPL2 was positively corre-
lated with M2 marker genes, with correlation strengths ranging from weak to strong. This
indicates that LHFPL2 is associated with M2 macrophage genes and may influence tumor
progression by affecting the expression of M2 genes. These findings were also confirmed
in single-cell data analysis. The FTL+ TAM subpopulation with the highest M2 score also
exhibits the highest expression levels of LHFPL2, with a higher proportion of cells showing
high expression of LHFPL2. The FTL gene encodes a subunit of ferritin, and studies have
shown its overexpression in malignant tumors such as hepatocellular carcinoma, malignant
mesothelioma, and glioblastoma, which may lead to poor prognosis in patients [38–40].
Additionally, it is involved in the regulation of iron homeostasis in the body, responsible
for iron storage and release. Single-cell data from The Human Protein Atlas database
also reveals that among the top 15 genes significantly positively correlated with LHFPL2,
besides M2 marker genes like MS4A4A, CTSB, CD163, and C1QB, it includes HMOX1,
a protein-encoding factor that promotes both the M2 polarization of macrophages and
ferroptosis [41,42]. Some studies have found that in the tumor microenvironment, ferropto-
sis promotes M2 polarization of macrophages by releasing iron and ROS, thereby support-
ing tumor growth and immune evasion [43]. Therefore, it is possible that LHFPL2 regulates
M2 polarization of macrophages by participating in the regulation of iron metabolism,
which may influence factors involved in iron metabolism, such as HMOX1 and FTL.

LHFPL2 holds significant potential as a therapeutic drug target. Pharmacological
inhibition of specific targets is considered a potential effective treatment strategy to pre-
vent tumor metastasis. In this study, we screened several small-molecule drugs that
may inhibit LHFPL2, including Nilotinib, Olaparib, and Azelastine. These drugs have
been proven effective in treating various cancers [44–46], including renal cancer, and are
used in clinical settings. Additionally, some of these drugs can modulate macrophage
functions. For instance, Olaparib can reprogram TAMs, enhancing their cytotoxicity and
phagocytic activity [47]. Avodart treatment can inhibit the increase in pro-inflammatory
macrophage density [48]. Azelastine can inhibit macrophage chemotaxis and phagocytic
activity in vitro [49]. These findings support the potential of LHFPL2 as a viable drug
target. However, the docking simulations were conducted under idealized conditions,
which do not fully reflect the complexity of the intracellular environment. In real cells,
macromolecular crowding and confined spaces (such as pores) significantly affect molecu-
lar interactions [50]. In the crowded environment of the cytoplasm, the presence of high
concentrations of macromolecules like proteins and nucleic acids can influence the binding
affinity and dynamics of drug molecules [51]. Additionally, many cellular reactions occur
in confined spaces where spatial constraints can alter the conformational flexibility and
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accessibility of both the drug and the target protein [52,53]. Compared to bulk solutions,
these restricted environments can lead to changes in binding affinities and kinetic proper-
ties. Further experimental validation is required to determine whether the protein encoded
by this gene can indeed bind to the drugs we have screened, and this will be a primary
focus of our future work.

As a transmembrane protein, LHFPL2 belongs to the LHFP gene family [54]. It has been
relatively understudied, with only a few studies highlighting its importance in reproductive
tract development and infertility research [10]. Our study is the first to link LHFPL2
with tumors and the immune microenvironment, systematically revealing the expression
of LHFPL2 in renal cell carcinoma and its significant correlation with tumor immune
infiltration, especially M2 macrophage infiltration. By utilizing omics data, we validated
its specific high expression in TAMs and its association with macrophage M2 polarization,
demonstrating its potential as a therapeutic target for renal cell carcinoma. However, there
are still some limitations in this study. Firstly, our research relies mainly on bioinformatics
analysis and publicly available databases, which cover a limited range of databases and
cancer types and do not involve protein or metabolic-level results. Secondly, our study is
limited to renal cell carcinoma, and the role of LHFPL2 in other types of tumors remains
unclear. Lastly, the identified genes were only studied at the bioinformatics level, without
corresponding wet lab experiments or in vivo validations. In the future, we aim to further
evaluate the potential of LHFPL2 as a therapeutic target for RCC related to M2 macrophages
at the experimental level and develop new drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25126707/s1.
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