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Abstract: (1) Background/Objectives: Dexmedetomidine is a sedative for patients receiving invasive
mechanical ventilation (IMV) that previous single-site studies have found to be associated with
improved survival in patients with COVID-19. The reported clinical benefits include dampened
inflammatory response, reduced respiratory depression, reduced agitation and delirium, improved
preservation of responsiveness and arousability, and improved hypoxic pulmonary vasoconstriction
and ventilation-perfusion ratio. Whether improved mortality is evident in large, multi-site COVID-19
data is understudied. (2) Methods: The association between dexmedetomidine use and mortality
in patients with COVID-19 receiving IMV was assessed. This retrospective multi-center cohort
study utilized patient data in the United States from health systems participating in the National
COVID Cohort Collaborative (N3C) from 1 January 2020 to 3 November 2022. The primary out-
come was 28-day mortality rate from the initiation of IMV. Propensity score matching adjusted for
differences between the group with and without dexmedetomidine use. Adjusted hazard ratios
(aHRs) for 28-day mortality were calculated using multivariable Cox proportional hazards models
with dexmedetomidine use as a time-varying covariate. (3) Results: Among the 16,357,749 patients
screened, 3806 patients across 17 health systems met the study criteria. Mortality was lower with
dexmedetomidine use (aHR, 0.81; 95% CI, 0.73–0.90; p < 0.001). On subgroup analysis, mortality
was lower with earlier dexmedetomidine use—initiated within the median of 3.5 days from the
start of IMV—(aHR, 0.67; 95% CI, 0.60–0.76; p < 0.001) as well as use prior to standard, widespread
use of dexamethasone for patients on respiratory support (prior to 30 July 2020) (aHR, 0.54; 95%
CI, 0.42–0.69; p < 0.001). In a secondary model that was restricted to 576 patients across six health
system sites with available PaO2/FiO2 data, mortality was not lower with dexmedetomidine use
(aHR 0.95, 95% CI, 0.72–1.25; p = 0.73); however, on subgroup analysis, mortality was lower with
dexmedetomidine use initiated earlier than the median dexmedetomidine start time after IMV (aHR,
0.72; 95% CI, 0.53–0.98; p = 0.04) and use prior to 30 July 2020 (aHR, 0.22; 95% CI, 0.06–0.78; p = 0.02).
(4) Conclusions: Dexmedetomidine use was associated with reduced mortality in patients with
COVID-19 receiving IMV, particularly when initiated earlier, rather than later, during the course
of IMV as well as use prior to the standard, widespread usage of dexamethasone during respira-
tory support. These particular findings might suggest that the associated mortality benefit with
dexmedetomidine use is tied to immunomodulation. However, further research including a large
randomized controlled trial is warranted to evaluate the potential mortality benefit of DEX use in
COVID-19 and evaluate the physiologic changes influenced by DEX that may enhance survival.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over
7 million deaths worldwide as of March 2024 [1]. Mortality in critically ill patients with
coronavirus disease 2019 (COVID-19) is high [2–5], so there is a need to improve survival
in critically ill patients with COVID-19.

Dexmedetomidine (DEX) is an alpha-2 adrenergic receptor (α2-AR) agonist that was
introduced in 1999 as a sedative in the intensive care unit (ICU) for patients receiving
mechanical ventilation [6]. Since introduction, interest has mounted over whether DEX
improves outcomes including survival compared to gamma-aminobutyric acid (GABA)
receptor ligand sedatives such as propofol or benzodiazepines for ICU patients [6,7]. One
of the foundational reasons for this interest is the immunomodulatory effects of DEX [6,8,9].
While there is a rationale for targeting the inflammatory response as a survival strategy
for ICU patients with sepsis or acute respiratory distress syndrome (ARDS), random-
ized controlled trials (RCTs) have demonstrated mixed outcomes with anti-inflammatory
pharmacologic strategies such as corticosteroids [10] or DEX [7] outside of the COVID-19
population. The COVID-19 pandemic created a global urgency for investigations, leading
to improved mortality outcomes for patients with SARS-CoV-2 infection. A key finding
was that COVID-19 deaths are in part attributed to an inflammatory response [11], and
RCTs demonstrated a reduction in mortality with corticosteroid use among those receiving
IMV or oxygen support [12,13].

No large RCTs have evaluated DEX use in COVID-19 outcomes. The potential for DEX
to improve COVID-19 outcomes has been proposed through dampening the inflammatory
response [14–16] such as through sympatholytic and vagomimetic pathways [6,14–16],
maintaining endothelial cell junction and microcirculatory integrity [17–19] as well as other
direct and indirect effects on immune cells and other cells types [14–16,20]. Other reported
benefits of DEX as a sedative option include the lack of significant respiratory depres-
sion [21], analgesic properties with an opioid-sparing effect [22], reduced agitation and
delirium [23], preserving a degree of responsiveness and arousability [24] as well as poten-
tial improvements in hypoxic pulmonary vasoconstriction and the ventilation–perfusion
ratio [15,25].

DEX is reported to improve COVID-19 outcomes including improved oxygen satura-
tion (SpO2) [25], improved partial pressure of arterial oxygen to the fraction of inspired
oxygen (PaO2/FiO2) [26], shortened duration of mechanical ventilation [27], and reduced
mortality [28,29]. However, these investigations have been limited in both scope and size.
For this study, we utilized the National Institutes of Health’s National COVID Cohort
Collaborative (N3C) Data Enclave that houses electronic health record (EHR) data for
over 6 million COVID-19 positive patients across over 70 health systems in the United
States [30,31]. In this retrospective multi-center cohort study, we hypothesized that DEX
use would be associated with improved survival in critically ill patients with COVID-19
receiving IMV in the N3C database.

2. Materials and Methods
2.1. Study Design

This retrospective multi-center cohort study was performed using EHR data in the N3C
Data Enclave hosted by the National Center for Advancing Translational Sciences (NCATS).
Patients were included if they had: (i) a diagnosis of COVID-19 or laboratory confirmed
SARS-CoV-2 on polymerase chain reaction or antigen test results [32]; (ii) hospitalization
within 21 days of first positive COVID-19 indication; (iii) ARDS, related diagnosis, or
viral pneumonia; and (iv) received IMV and sedation. The median time between first
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COVID-19 indication and hospitalization are provided in Table S1. Exclusion criteria
included: (i) younger than 18 years of age; (ii) diagnosis of autoimmune disease; and
(iii) history of solid organ transplant. Phases of enrollment, exclusion, and data analysis
are provided in Figure 1. This study was approved by the institutional review boards at
Rush University Medical Center (22032001-IRB01), University of Chicago (IRB22-0681),
and the NCATS N3C Data Access Committee (DUR-DODE010). The authors used the
Strengthening the Reporting of Observational Research Studies in Epidemiology (STROBE)
guidelines [33].
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Figure 1. Flow diagram depicting the phases of enrollment, exclusion, and data analysis for Model 1
and Model 2. a Patients with implausible data points such as a COVID-19 diagnosis in 2017 or
individuals in whom the date of death predated their date of hospital admission were excluded.
b If a patient was missing a specific covariate for the Cox model, they were excluded for complete
case analysis. These specific covariates included age, body mass index, modified Charlson comor-
bidity index, and modified Sequential Organ Failure Assessment score (central nervous system and
respiratory component removed). c Compared to Model 1, additional Model 2 covariates included
PaO2/FiO2 and modified Sequential Organ Failure Assessment score with respiratory component
added for complete cases analyses. d Unmatched patients between the dexmedetomidine group and
no dexmedetomidine group on propensity score calculation were removed.
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2.2. Data Collection

The N3C aggregates and harmonizes EHR data for patients with laboratory confirmed
or suspected COVID-19 during any encounter after 1 January 2020 from data partners
(i.e., sites) across the U.S. [30,31]. Within the N3C, sites are asked to upload two years
of health histories before the earliest COVID-19 test date for each patient. The design,
sampling, and harmonization methods used in the N3C Enclave have been described
previously [31]. This investigation used the N3C Limited Dataset (LDS) [30], which retained
the dates of clinical services without shifting for all patients meeting the inclusion criteria.
External (i.e., non-site) mortality data were incorporated by the N3C Privacy-Preserving
Record Linkage [34]. Data collection within the N3C Data Enclave was performed from
1 January 2020 to 3 November 2022.

2.3. Outcomes

Cohorts included patients that received DEX (DEX group) and patients that did not
receive DEX (no DEX group). The DEX group was defined as patients that received DEX
between the start time of IMV and 28 days thereafter. Patients that started DEX before
IMV were included but only if DEX was continued between the start of IMV and 28 days
later. The primary outcome was 28-day mortality rate from the initiation of IMV. This
outcome was calculated by performing propensity score matching between the DEX and
no DEX group followed by multivariable Cox regression analysis. Based on our previous
investigation [28], we hypothesized that DEX use would be associated with a lower 28-day
mortality rate.

2.4. Covariates

Propensity score matching between the DEX and no DEX group was performed to
adjust for significant covariate differences at hospital admission and ICU variables; pre-
propensity score matched covariates at hospital admission and in the ICU are provided in
Tables S2 and S3. A significant difference between groups was identified as a standardized
mean difference (SMD) > 0.2 [35]. In addition, relevant clinical variables were identified a
priori that could have the greatest confounding influence on mortality and were included
in the multivariable Cox (proportional hazards) regression analysis for 28-day mortality,
in addition to DEX use, as described previously [28]. These variables included factors
at hospital admission: age, body mass index (BMI), and modified Charlson comorbidity
index (mCCI). The mCCI was calculated as described by Quan et al. (2011) [36]. Additional
variables included PaO2/FiO2 and modified Sequential Organ Failure Assessment (mSOFA)
scores at the start time of IMV as well as dexamethasone and remdesivir use during
hospitalization [28]. The PaO2/FiO2 ratio and mSOFA score were calculated as the worst
value over 24 h from the start time of IMV [37]. In all mSOFA score calculations, the
central nervous system component was removed, since patients were assessed while under
sedation. Within the Cox models, DEX use was treated as a time-varying covariate to adjust
for immortal time bias [28,38].

Interleukin-6 (IL-6) receptor antagonists (tocilizumab and sarilumab), Janus kinase
(JAK) inhibitors (baricitinib and tofacitinib), and COVID-19 vaccination status prior to a
COVID-19 diagnosis were initially identified as covariates due to their immunomodulatory
effects and potential influences on mortality. However, between 0 and 6% of the patients
received these treatments in either group in our models in the N3C database with no
significant differences between groups (Tables S4–S6) and were removed as covariates
and used in propensity score matching and Cox regression. Following propensity score
matching, these variables remained between 0 and 6% between groups with no significant
difference between groups (Tables S7–S9).

2.5. Subgroup Analysis

As a subgroup analysis, evaluation of the influence of the earlier or later initiation
of DEX on survival was performed as previously described [28]. Earlier DEX start time
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was defined as DEX use initiated earlier than the median start time of DEX use relative
to the start of IMV amongst the entire DEX group; later start time was defined as DEX
use after the median start time. We hypothesized that earlier DEX start times relative to
IMV initiation would be associated with a greater reduced risk of death, as previously
found [28], which may be due to promoting early immunomodulatory benefits around the
time of IMV, dampening COVID-19 progression.

This investigation was performed between 1 January 2020 and 3 November 2022. Start-
ing in July 2020, there was a shift toward the standard usage of corticosteroids, in particular
dexamethasone, at the time of IMV or oxygen support in patients with COVID-19, based
on the RCT findings [12,13]. Since we hypothesized that DEX may have immunomodu-
latory benefits in critically ill patients with COVID-19, we questioned whether the shift
in treatment protocols, starting around July 2020 incorporating dexamethasone, a pow-
erful immunosuppressant, around the time of IMV, influenced the associated mortality
benefit of DEX; dexamethasone may provide powerful immunosuppression to a degree
where the addition of the immunomodulatory benefits of DEX are diminished. To further
evaluate the impact of the current dexamethasone guidelines on the association between
DEX use and mortality, we used the same propensity score matching and Cox regression
models incorporating patients either prior to 30 July 2020 (pre-dexamethasone era) or post
30 July 2020 (current dexamethasone era).

2.6. Statistical Analysis

Data acquisition and analysis were performed using Palantir Foundry (Palantir Tech-
nologies Inc., Denver, CO, USA), Python (Python Software Foundation), version 3.6, and R,
version 4.0.2 (R Foundation for Statistical Computing) using the survival package [39,40]
hosted within the N3C Enclave. Continuous variables are presented as the mean and stan-
dard deviation (SD). Categorical variables were calculated as the number and percentage
of patients; if the number was less than 20, the number and percentage was not reported
for reasons of person privacy and N3C policy. For all variables, an SMD was calculated.

The 28-day mortality rate as an outcome was evaluated using propensity score match-
ing followed by Cox regression. Propensity score matching was performed using 1:1
nearest neighbor matching, without replacement, with a caliper [41]. Model 1 (primary
model) adjusted for variables at hospital admission and ICU variables with an SMD > 0.2
with propensity score matching and further adjusted a priori selected covariates in Cox
regression including: (1) DEX use as a time-varying covariate, (2) age, (3) BMI, (4) mCCI,
(5) mSOFA (central nervous system and respiratory component removed), (6) dexametha-
sone use, and (7) remdesivir use. The Model 2 (secondary model) covariates were identical
to Model 1 with the addition of PaO2/FiO2 and the mSOFA respiratory component in the
Cox regression model. The majority of sites in the N3C Enclave did not have PaO2/FiO2
data available, primarily because the N3C did not require that sites submit data on venti-
lator settings, where FiO2 is often documented. As of fall 2022, only six sites nationwide
in the N3C Data Enclave had PaO2/FiO2 data, with 42.9% of that data coming from a
single site. Due to this limitation, we removed the requirement of PaO2/FiO2 data for our
primary model (Model 1). In both models, adjustment for site differences was performed
by including a categorical variable with levels for each data partner that represented > 5%
of our population and another level for all other sites grouped together [42].

Simple imputation using the mean of the immediate preceding and succeeding most
severe value over 24 h was used for missing values for the component mSOFA scores
(Model 1 and 2) and PaO2/FiO2 (Model 2) within the 24 h time period of interest—from
initiation of IMV [37]. Within both models, a complete case analysis was performed, with
exclusion of any patient with a missing covariate or implausible data points such as a
COVID-19 diagnosis in 2017 or individuals in whom the date of death predated their date
of hospital admission within the N3C database (Figure 1). Mortality outcome data over
28 days are presented as adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs)
with p < 0.05 considered significant.
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3. Results

For the primary analysis (Model 1), among the 16,357,749 patients screened, there
were a total of 17 health systems that included 6109 patients, with 3002 patients in the
DEX group and 3107 patients in the no DEX group meeting the inclusion and exclusion
criteria. Following propensity score matching, there were 1903 patients in the DEX group
and 1903 patients in the no DEX group (Figure 1). The mean age in Model 1 was 62.6 years;
61.6% were male, 17.4% were Black, 59.3% were White, and 17.7% were Hispanic. In the
restricted analysis (Model 2), where only sites that provided PaO2/FiO2 data were included,
there were six health system sites that included 955 patients (Figure 1), with 615 patients in
the DEX group and 340 patients in the no DEX group meeting the inclusion and exclusion
criteria. Following propensity score matching, there were 288 patients in both the DEX and
no DEX group (Figure 1). The mean age in Model 2 was 63.6 years; 63.5% were male, 4.0%
were Black, 77.8% were White, and 12.8% were Hispanic.

3.1. Covariate Balance before and after Propensity Score Matching

In Model 1, the SMDs before propensity score matching were considered signifi-
cant (>0.2) in one out of twenty-eight variables at hospital admission (3.6%) and five out
of twenty-five ICU variables (20.0%) (Tables S2 and S3). In Model 2, the SMDs before
propensity score matching were considered significant (>0.2) in two out of twenty-eight
variables at hospital admission (7.1%) and six out of twenty-six ICU variables (23.1%)
(Tables S2 and S3). After propensity score matching was performed, all variables at hos-
pital admission and the ICU variables were similar between groups, with an SMD less
than 0.2 (Tables 1 and 2).

Table 1. Variables at hospital admission, propensity score matched cohort (1 January 2020 to 3
November 2022).

Model 1 a Model 2 b

n = 3806 n = 576

Variable No DEX (n = 1903) DEX (n = 1903) SMD No DEX (n = 288) DEX (n = 288) SMD

Age (SD) 63.7 (13.6) 61.6 (14.5) 0.14 64.0 (12.7) 63.1 (13.4) 0.07

Male sex (%) 1169 (61.4) 1176 (61.8) 0.01 188 (65.3) 178 (61.8) 0.07

Race (%)

Black 325 (17.1) 337 (17.7)

0.08

<20 * <20 *

0.11
Other 63 (3.3) 82 (4.3) <20 * <20 *

Unknown 354 (18.6) 387 (20.3) 37 (12.8) 41 (14.2)

White 1161 (61.0) 1097 (57.6) 227 (78.8) 221 (76.7)

Ethnicity (%)

Hispanic 329 (17.3) 344 (18.1)

0.03

43 (14.9) 31 (10.8)

0.13Not Hispanic 1479 (77.7) 1454 (76.4) 240 (83.3) 251 (87.2)

Unknown 95 (5.0) 105 (5.5) <20 * <20 *

Active cancer (%) 179 (9.4) 163 (8.6) 0.03 24 (8.3) 22 (7.6) 0.03

Cardiovascular disease (%)

Hypertension 1424 (74.8) 1355 (71.2) 0.08 205 (71.2) 206 (71.5) 0.01

Coronary artery disease 435 (22.9) 414 (21.8) 0.03 71 (24.7) 62 (21.5) 0.07

Congestive heart failure 465 (24.4) 457 (24.0) 0.01 80 (27.8) 71 (24.7) 0.07
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Table 1. Cont.

Model 1 a Model 2 b

n = 3806 n = 576

Variable No DEX (n = 1903) DEX (n = 1903) SMD No DEX (n = 288) DEX (n = 288) SMD

Chronic respiratory disease (%)

Asthma 225 (11.8) 217 (11.4) 0.01 32 (11.1) 30 (10.4) 0.02

COPD 590 (31.0) 573 (30.1) 0.02 97 (33.7) 92 (31.9) 0.04

Interstitial lung disease 49 (2.6) 39 (2.0) 0.04 <20 * <20 * 0.07

Obstructive sleep apnea 370 (19.4) 355 (18.7) 0.02 53 (18.4) 64 (22.2) 0.10

Immunosuppression (%)

HIV <20 * <20 * 0.03 <20 * <20 * 0.08

Kidney disease (%)

Chronic 495 (26.0) 451 (23.7) 0.05 64 (22.2) 52 (18.1) 0.10

End-stage 75 (3.9) 80 (4.2) 0.01 <20 * <20 * 0.03

Liver disease (%)

Cirrhosis 65 (3.4) 62 (3.3) 0.01 <20 * <20 * 0.04

Hepatitis B <20 * <20 * 0.05 <20 * <20 * 0.08

Hepatitis C 37 (1.9) 63 (3.3) 0.09 <20 * <20 * 0.07

Metabolic disease

Obesity (%) 763 (40.1) 764 (40.1) 0.00 118 (41.0) 109 (37.8) 0.06

Morbid obesity (%) 359 (18.9) 355 (18.7) 0.01 47 (16.3) 54 (18.8) 0.06

BMI (SD) 33.3 (9.6) 33.4 (9.4) 0.01 33.0 (9.6) 33.5 (9.5) 0.05

Diabetes (%) 876 (46.0) 895 (47.0) 0.02 127 (44.1) 121 (42.0) 0.04

mCCI (SD) 2.49 (2.39) 2.41 (2.39) 0.03 2.31 (2.30) 2.14 (2.15) 0.08

Abbreviations: BMI = body mass index; COPD = chronic obstructive pulmonary disease, DEX = dexmedetomidine;
HIV = human immunodeficiency virus; mCCI = modified Charlson comorbidity index; SD = standard deviation;
SMD = standardized mean difference. a Model 1: Health system sites included that lacked PaO2/FiO2 data.
b Model 2: Only health system sites that had PaO2/FiO2 data were included. * Values less than 20 denoted as <20
as per N3C policy. Ranges used for complementary values to prevent <20 calculation.

Table 2. ICU variables, propensity score matched cohort (1 January 2020 to 3 November 2022).

Model 1 a Model 2 b

n = 3806 n = 576

Variable No DEX (n = 1903) DEX (n = 1903) SMD No DEX (n = 288) DEX (n = 288) SMD

PaO2/FiO2 (SD) -- -- 85.5 (57.1) 84.8 (44.8) 0.01

mSOFA score (SD) c 4.75 (2.37) 4.78 (2.23) 0.01 8.74 (1.94) 8.66 (1.75) 0.04

Sedative use (%)

GABA receptor ligand (%) 1901 (99.9) 1878 (98.7) 0.14 288 (100.0) 278 (96.5) 0.27

Propofol 1637 (86.0) 1696 (89.1) 0.09 223 (77.4) 232 (80.6) 0.08

Midazolam 1483 (77.9) 1581 (83.1) 0.13 221 (76.7) 234 (81.2) 0.11

Lorazepam 922 (48.4) 1004 (52.8) 0.09 153 (53.1) 167 (58.0) 0.10

Ketamine 283 (14.9) 365 (19.2) 0.11 50 (17.4) 68 (23.6) 0.16
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Table 2. Cont.

Model 1 a Model 2 b

n = 3806 n = 576

Variable No DEX (n = 1903) DEX (n = 1903) SMD No DEX (n = 288) DEX (n = 288) SMD

Opioid use (%) 1850 (97.2) 1858 (97.6) 0.03 280 (97.2) 281 (97.6) 0.02

Corticosteroid (any) use (%) 1559 (81.9) 1567 (82.3) 0.01 231 (80.2) 217 (75.3) 0.12

Methylprednisolone 314 (16.5) 364 (19.1) 0.07 55 (19.1) 48 (16.7) 0.06

Dexamethasone 1221 (64.2) 1249 (65.6) 0.03 173 (60.1) 171 (59.4) 0.01

Hydrocortisone 301 (15.8) 303 (15.9) 0.00 46 (16.0) 53 (18.4) 0.06

Prednisone 157 (8.3) 199 (10.5) 0.08 33 (11.5) 38 (13.2) 0.05

Remdesivir use (%) 598 (31.4) 558 (29.3) 0.05 71 (24.7) 68 (23.6) 0.02

Antibiotic (any) use (%) 1733 (91.1) 1762 (92.6) 0.06 228 (79.2) 238 (82.6) 0.09

Anticoagulant (any) use (%) 1833 (96.3) 1868 (98.2) 0.11 272 (94.4) 269 (93.4) 0.04

Heparin 1365 (71.7) 1409 (74.0) 0.05 191 (66.3) 207 (71.9) 0.12

LMWH 1285 (67.5) 1354 (71.2) 0.08 169 (58.7) 174 (60.4) 0.04

Factor Xa inhibitor 318 (16.7) 346 (18.2) 0.04 47 (16.3) 44 (15.3) 0.03

Direct thrombin inhibitor 50 (2.6) 78 (4.1) 0.08 <20 * <20 * 0.08

Warfarin 52 (2.7) 68 (3.6) 0.05 <20 * <20 * 0.05

Inhaled NO Use (%) <20 * <20 * 0.02 <20 * <20 * <0.01

Vasopressor Use (%) 1569 (82.4) 1685 (88.5) 0.17 254 (88.2) 263 (91.3) 0.10

Paralytic/NMB (%) 1503 (79.0) 1587 (83.4) 0.11 204 (70.8) 213 (74.0) 0.07

RRT (%) 93 (4.9) 159 (8.4) 0.14 29 (10.1) 30 (10.4) 0.01

ECMO (%) 42 (2.2) 78 (4.1) 0.11 <20 * <20 * 0.14

Abbreviations: DEX = dexmedetomidine; ECMO = extracorporeal membrane oxygenation; GABA = gamma-
aminobutyric acid; LMHW = low molecular weight heparin; mSOFA = modified Sequential Organ Failure
Assessment; NMB = neuromuscular blockade; NO = nitric oxide; PaO2/FiO2 = partial pressure of arterial oxygen
to the fraction of inspired oxygen; RRT = renal replacement therapy; SD = standard deviation; SMD = standardized
mean difference. a Model 1: Health system sites included that lacked PaO2/FiO2 data. b Model 2: Only health
system sites that had PaO2/FiO2 data were included. c mSOFA score in model 1 had the central nervous system
and respiratory component removed; mSOFA score in model 2 had the central nervous system component
removed. * Values of less than 20 denoted as <20 as specified by the N3C Data Enclave policy.

3.2. Outcomes

Of the 3806 patients included in Model 1 following propensity score matching, 57.2%
died between the start of IMV and 28 days thereafter. The percentage of patients that died
was lower in the DEX group compared to the no DEX group (47.4% vs. 67.0%; relative
risk reduction, 29.3%, p < 0.001). In Model 1, the 28-day mortality rate was lower with
DEX use on multivariable regression (aHR, 0.81; 95% CI, 0.73–0.90; p < 0.001). Similarly,
the 28-day mortality rate was lower with DEX use on univariable regression (aHR, 0.90;
95% CI, 0.81–0.99; p = 0.04) (Table 3). Of the 576 patients included in Model 2 following
propensity score matching, 55.4% died between the start of IMV and 28 days thereafter. The
percentage of patients that died was lower in the DEX group compared to the no DEX group
(49.7% vs. 61.1%; relative risk reduction, 18.7%, p < 0.01), but DEX use was not associated
with a significantly lower 28-day mortality rate with multivariable regression (aHR, 0.95;
95% CI, 0.72–1.25; p = 0.73) or univariable regression (aHR, 1.05; 95% CI, 0.80–1.36; p = 0.74
(Table 3). The survival curves between cohorts in Model 1 and Model 2 using multivariable
regression are provided in Figures S1 and S2. The aHRs for all covariates in Model 1 and
Model 2 are provided in Tables S10 and S11.
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Table 3. The 28-day mortality rate from initiation of invasive mechanical ventilation with dexmedeto-
midine use, propensity score matched cohort (1 January 2020 to 3 November 2022).

Model 1 a Model 2 b

n = 3806 n = 576

Cox Regression Model aHR (95% CI) p aHR (95% CI) p

Multivariable (DEX use) c 0.81 (0.73, 0.90) <0.001 0.95 (0.72, 1.25) 0.73

Univariable (DEX use) d 0.90 (0.81, 0.99) 0.04 1.05 (0.80, 1.36) 0.74
Abbreviations: aHR = adjusted hazard ratio; DEX = dexmedetomidine; 95% CI = 95% confidence interval.
a Model 1: Health system sites included that lacked PaO2/FiO2 data. b Model 2: Only health system sites that
had PaO2/FiO2 data were included. c Model 1 adjusted for (i) dexmedetomidine as a time-varying covari-
ate, (ii) age, (iii) BMI, (iv) mCCI, (v) mSOFA (central nervous system and respiratory component removed),
(vi) dexamethasone use, and (vii) remdesivir use; Model 2 adjusted for (i) dexmedetomidine as a time varying
covariate, (ii) age, (iii) BMI, (iv) mCCI, (v) PaO2/FiO2, (vi) mSOFA (central nervous system component removed),
(vii) dexamethasone use, and (viii) remdesivir use. In both models, adjusting for site differences was performed
by including a categorical variable with levels for each data partner representing >5% of our population and
then all others grouped together. d Model 1 and Model 2 adjusted for dexmedetomidine use as a time-varying
covariate only.

3.3. Subgroup Analysis

The median start time of DEX from the initiation of IMV was 3.5 days (interquartile
range (IQR), 7.0 days) in Model 1 and 4.0 days (IQR, 5.0 days) in Model 2. Within the
respective models, we evaluated whether the 28-day mortality rates were influenced by
DEX start times earlier or later than the median start time of DEX from the initiation of IMV.
Earlier DEX start time was associated with a reduction in the 28-day mortality rate in both
Model 1 (aHR, 0.67; 95% CI, 0.60–0.76; p < 0.001) and Model 2 (aHR, 0.72; 95% CI, 0.53–0.98;
p = 0.04) (Figure 2A,B). Later DEX start time was associated with a lower mortality rate
in Model 1 (aHR, 0.71; 95% CI, 0.61–0.83; p < 0.001) but not Model 2 (aHR, 0.97; 95% CI,
0.65–1.45; p = 0.87) (Figure 2A,B). In both models, earlier DEX start times compared to later
DEX start times were associated with a lower aHR (Figure 2A,B). The aHRs for all covariates
in this subgroup analyses are provided in Tables S10 and S11. The unadjusted percentage of
patients who died in the DEX group in Model 1 was 56.7% (early treatment) and 38.0% (late
treatment) compared to 67.0% in the no DEX group (Table S12); in Model 2, the unadjusted
percentage of patients who died in the DEX group was 54.4% (early treatment) and 43.8%
(late treatment) compared to 61.1% deaths in the no DEX group (Table S12).

To further evaluate the impact of the current dexamethasone guidelines on the associa-
tion between DEX use and mortality, we used the same Model 1 and Model 2 incorporating
patients either pre-dexamethasone era (1 January 2020 to 30 July 2020) or during the current
dexamethasone era (30 July 2020 to 3 November 2022). There were substantially lower aHRs
for DEX use in the pre-dexamethasone era as opposed to the current dexamethasone era in
both Model 1 (pre-dexamethasone era aHR 0.54; 95% CI, 0.42–0.69; p < 0.001 vs. current
dexamethasone era aHR 0.89; 95% CI, 0.79–1.00; p = 0.06) and Model 2 (pre-dexamethasone
era aHR 0.22; 95% CI 0.06–0.78; p = 0.02 vs. current dexamethasone era 1.03; 95% CI,
0.77–1.38; p = 0.83) (Figure 2C,D). The aHRs for all covariates in this subgroup analyses
are provided in Tables S13–S16. The unadjusted percentage of patients who died in the
DEX group vs. no DEX group in Model 1 was as follows: 36.2% DEX group vs. 62.7%
no DEX group (pre-dexamethasone era) and 51.2% DEX group vs. 68.2% no DEX group
(current dexamethasone era) (Table S17). In Model 2, the percentage of patients who died
in the current dexamethasone era was 51.0% DEX group and 61.4% no DEX group; in the
pre-dexamethasone era, the no DEX group had 59.5% deaths, and the DEX group had less
than 20 patients that died, and therefore the percentage was masked to protect patient
privacy as per the N3C policy (Table S17).
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Figure 2. Subgroup analysis examining 28-day mortality rate based on start time of dexmedetomidine
as well as dexmedetomidine use pre-dexamethasone era vs. current dexamethasone era. (A,B) Shown
are the prespecified subgroup analyses for Model 1 and Model 2 by dexmedetomidine start times
pre or post median start time of dexmedetomidine from the start of invasive mechanical ventilation
(IMV). The median start time of DEX is shown for both Model 1 and Model 2. (C,D) Shown are the
prespecified subgroup analyses for Model 1 and Model 2 by dexmedetomidine use pre-dexamethasone
era (1 January 2020 to 30 July 2020) vs. dexmedetomidine use during the current dexamethasone era
(30 July 2020 to 3 November 2022). Within the models, propensity score matching and multivariable
Cox regressions were performed, and the total number of patients are displayed for each subgroup. The
adjusted hazard ratios for each subgroup are plotted as an inverted triangle, and 95% CIs are plotted as
horizontal lines. p values < 0.05 are considered significant and correspond to an aHR and 95% CI below
1. Abbreviations: aHR = adjusted hazard ratio; 95% CI = 95% confidence interval.

4. Discussion

In this retrospective multi-center cohort study including 3806 patients (Model 1;
primary model) in the N3C database with COVID-19 receiving IMV, DEX use was associated
with a lower aHR for 28-day mortality from the start time of IMV. Within Model 1, on
subgroup analysis, earlier initiation of DEX—DEX use within the median of 3.5 days
from the start of IMV—was associated with a lower aHR; furthermore, DEX use prior
to 30 July 2020 was associated with a lower aHR. In the secondary model (Model 2) that
included 576 patients, with restriction to clinical sites providing PaO2/FiO2 data, mortality
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was not lower with DEX use; however, similar to Model 1, on subgroup analysis, associated
mortality was lower with earlier initiation of DEX use and DEX use prior to 30 July 2020.

The differences between Model 1 and Model 2 with regard to overall associated
mortality outcomes between the DEX and no DEX group could be multifactorial. Model 2
was restricted to substantially fewer patients and clinical sites due to the requirement of
PaO2/FiO2 data, which was limited across many sites in the N3C database. Furthermore,
these PaO2/FiO2 data as well as further incorporation of these data by the addition of
the respiratory component in the mSOFA score were factored into the propensity score
matching and multivariable Cox regression in Model 2. Therefore, while Model 2 had
fewer patients and sites, it better accounted for COVID-19 severity. Intriguingly, while
both Model 1 and Model 2 showed reduced mortality with early DEX use or use prior to
30 July 2020, the dichotomy in mortality outcomes compared to later DEX initiation time
or DEX use post 30 July 2020 was greater within Model 2 than Model 1. As previously
discussed, this dichotomy may be related to differences in the sample size, total clinical
sites, or key covariates incorporated into the model.

Our findings are consistent with other observational studies that found lower mortality
with DEX use in critically ill patients with COVID-19 [28,29]. The lower 28-day mortality
rate with earlier DEX use relative to IMV is consistent with our previous investigation at
Rush University System for Health (RUSH) hospitals [28]. Lower mortality with earlier
DEX use might be attributed to the immunomodulatory effects of DEX [6,14–19]. Failure
of the initial clearance of SARS-CoV-2 infection and/or a dysfunctional immune response
can result in an inflammatory cascade, contributing to severe lung pathology and a major
systemic inflammatory response [43]. Earlier initiation of DEX use relative to start time of
IMV may further limit organ dysfunction, irreversible organ damage, and death.

If DEX improves COVID-19 mortality outcomes through immunomodulatory effects,
we hypothesized that the incorporation of immunosuppressant corticosteroids, in particular
dexamethasone, around the time of respiratory support would reduce the association between
DEX and lower mortality—dexamethasone may suppress the immune response to a degree
where immunomodulation by DEX provides limited added benefit. Starting in July 2020,
there was a shift toward the standard usage of corticosteroids, in particular dexamethasone,
at the time of IMV or oxygen support in COVID-19, based on RCT findings [12,13]. In
dramatic fashion, the associated mortality benefit with DEX was the greatest during the
pre-dexamethasone era (prior to 30 July 2020) in both Model 1 and Model 2. These results
potentially suggest that DEX and dexamethasone might have overlapping effects that reduce
mortality such as through dampening the inflammatory response.

The use of α2-AR agonists such as DEX have been widely reported to dampen the
inflammatory response [14–16] such as through sympatholytic and vagomimetic path-
ways [6,14–16] and other direct and indirect effects on immune cells and other cells
types [14–16,20]. Furthermore, α2-AR agonists have direct effects on the vascular en-
dothelium [17–19] with the limitation of circulating leukocyte (neutrophil) extravasation
to the site of inflammatory stimulus and tissue [17,44]. The use of corticosteroids, while
beneficial around the time of respiratory support in COVID-19, has been of concern as a
“double-edged sword” due to the potential to reduce anti-viral immunity and viral clear-
ance through immunosuppression [45–47]. For specific infectious diseases, due to concerns
of reduced pathogen clearance, DEX may provide an immunomodulatory effect that is
overall less immunosuppressive than corticosteroids; however, this was not addressed in
this investigation.

While the lowest aHRs for mortality with earlier DEX use relative to IMV and use prior
to the current dexamethasone era may suggest an immunomodulatory effect, we cannot rule
out alternative potential benefits of DEX use influencing reduced mortality. Other reported
benefits of DEX as a sedative option, which could influence mortality, include the following:
lack of significant respiratory depression [21], reduced agitation and delirium [23], preserving
a degree of responsiveness and arousability [24], and potential improvements in hypoxic
pulmonary vasoconstriction and ventilation–perfusion ratio [15,25].
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Other studies have predominately evaluated short-term outcomes of DEX use in
patients with COVID-19 with severe or critical illness [25–27]. A case report found im-
provement in oxygen saturation (SpO2) on high flow nasal cannula with DEX use in the
emergency room setting [25]. In the ICU, the initiation of DEX was associated with im-
provement in PaO2/FiO2 in a retrospective cohort analysis [26]. In a small double-blinded
controlled clinical trial in the ICU, the DEX group compared to the propofol control group
had a shorter duration of mechanical ventilation [27]. Clinical trials listed underway in-
vestigating DEX use in COVID-19 outcomes include NCT04358627, NCT04413864, and
NCT05233605 (ClinicalTrials.Gov, accessed on 5 April 2024). Alternatively, the α2-AR
agonist clonidine, which is used as an antihypertensive, appeared to limit the progression
of moderate to severe COVID-19 in a case series, when initiated before or at the time of the
requirement of oxygenation or hospitalization [48].

This study had a number of strengths including being a multi-center design, sub-
stantial sample size, with rigorous control for differences between the DEX and no DEX
groups using propensity score matching and multivariable Cox regression. Following
propensity score matching, there were no significant differences between the DEX and no
DEX group with regard to variables at hospital admission or ICU variables. Furthermore,
Cox regression further adjusted for a priori selected covariates that could have had the most
confounding influence on mortality outcomes, which were the following: age, BMI, mCCI,
mSOFA, dexamethasone use, remdesivir use as well as the addition PaO2/FiO2 and the
incorporation of the respiratory component in the mSOFA score in Model 2. Furthermore,
within the Cox regression models, DEX use was treated as a time-varying covariate to
adjust for immortal time bias [28,38].

This study also had certain limitations. This work was retrospective in nature, and
the N3C database has limitations with regard to the covariates that can be assessed. Due
to ventilator setting data being available in the N3C database at only a limited number
of sites, we removed the requirement of PaO2/FiO2 from the primary model (Model 1)
but included PaO2/FiO2 in the restricted secondary model (Model 2); this restriction
decreased the overall sample size and number sites in Model 2. Sample size was also
further restricted on subgroup analysis in particular for Model 2 when assessing the pre-
dexamethasone era vs. current dexamethasone era. The pre-dexamethasone era was the
most restricted in sample size and took place from the initial start of the pandemic in
the U.S. from 1 January 2020 to 30 July 2020, while the current dexamethasone era in this
study (30 July 2020–3 October 2022) had more patients enrolled over a greater window
of time. Prone positioning use was initially part of the variables selected for the Cox
models as previously described [28] due to its reported benefits of improved oxygenation,
which might improve survival in patients with COVID-19 [49]. However, these data
were not available within the N3C Data Enclave. The ability to look at dose-dependent
associated mortality outcomes with DEX was initially planned for assessment; however,
this assessment was not possible in the N3C database. Alwakeel et al. (2024) was able to
incorporate the association of individual sedative (propofol, ketamine, midazolam, and
DEX) dose and in-hospital mortality in patients with COVID-19 requiring IMV in a multi-
center retrospective investigation, and only DEX was associated with decreased odds of
mortality, while the remaining sedatives were not associated with an increase or a decrease
in odds of mortality [50].

Because this was an observational study, the timing of DEX use with regard to the
start of the study (IMV) and assessment over 28 days was not standardized. Patients that
started DEX later after IMV had to survive before starting DEX, which resulted in immortal
time bias. Not adjusting for immortal time bias can cause substantial overestimations
and underestimations of mortality outcome data [38,51–53]. Indeed, in this study, when
looking at early vs. late DEX start times with regard to IMV, percent deaths were lower with
later as opposed to earlier DEX treatment in Model 1 and Model 2; however, when DEX
was treated as a time-varying covariate to adjust for immortal time bias in multivariable
Cox regression, aHRs were lower with early rather than later DEX start times with regard

https://clinicaltrials.gov/
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to IMV. In this investigation, the basis of our conclusions were made treating DEX as a
time-varying covariate to adjust for immortal time bias.

Addressing specific DEX associated immunomodulatory biomarkers was not planned
or performed in this investigation. In clinical studies predominately evaluating DEX as a
sedative in the perioperative environment or for use in critically ill patients with sepsis,
DEX has been reported to decrease inflammatory markers and mediators including but not
limited to the following: tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β),
interleukin-6 (IL-6), and C-reactive protein (CRP) [8,54]. Many of these inflammatory
markers or mediators would not be possible to assess in the N3C database. However, given
the overall finding of greatest lowered mortality in patients with earlier DEX use relative
to IMV and the use of DEX prior to the standard utilization of dexamethasone, it would
be of interest in the future to specifically evaluate markers and mediators of inflammation
in this subgroup of patients. Clinical trials listed underway investigating DEX use in
COVID-19 and immunomodulation with specific assessment of markers and mediators
of inflammation include NCT04413864 and NCT05233605 (ClinicalTrials.Gov, accessed on
5 April 2024).

This investigation focused on mortality outcomes, and the consideration of adverse
effects with DEX use was not evaluated. However, DEX can increase the risk of transient
hypertension with rapid administration, bradycardia, and hypotension due to the periph-
eral vasoconstrictive and sympatholytic properties of the drug [55,56]. Therefore, DEX
should be used with caution in specific patients [55,56].

5. Conclusions

In this retrospective multi-center cohort study, DEX use was associated with a reduced
risk of death in patients with COVID-19 receiving IMV, particularly when initiated earlier
relative to the start time of IMV and used prior to the current dexamethasone era (prior
to 30 July 2020). These particular findings might suggest that DEX is improving the
mortality outcomes through immunomodulatory effects. However, the immunomodulatory
effects associated with DEX use were not assessed in this investigation and require further
exploration. Results from a large RCT are warranted to clarify the potential mortality
benefit of DEX use in COVID-19 and evaluate the physiologic changes influenced by DEX
that could provide a mortality benefit.

6. Patents

J.L.H and M.A.W have filed a patent related to these studies (PCT/US2021/056580).
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November 2022), Propensity Score Matched Cohort. Table S15. Model 2: Multivariable Cox Regres-
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