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Abstract: A fundamental task in computer vision is the process of differentiation and identification of
different objects or entities in a visual scene using semantic segmentation methods. The advancement
of transformer networks has surpassed traditional convolutional neural network (CNN) architectures
in terms of segmentation performance. The continuous pursuit of optimal performance, with respect
to the popular evaluation metric results, has led to very large architectures that require a significant
amount of computational power to operate, making them prohibitive for real-time applications,
including autonomous driving. In this paper, we propose a model that leverages a visual transformer
encoder with a parallel twin decoder, consisting of a visual transformer decoder and a CNN decoder
with multi-resolution connections working in parallel. The two decoders are merged with the aid
of two trainable CNN blocks, the fuser that combined the information from the two decoders and
the scaler that scales the contribution of each decoder. The proposed model achieves state-of-the-art
performance on the Cityscapes and ADE20K datasets, maintaining a low-complexity network that
can be used in real-time applications.

Keywords: semantic segmentation; transformer networks; convolutional neural networks; deep
learning; scene understanding

1. Introduction

Semantic segmentation is a computer vision task that classifies each pixel of an image
into a predefined set of categories, or “classes”. The assigned pixel labels constitute regions
of different semantic categories, essentially forming the shapes of the objects that appear on
the image. Autonomous driving, medical imaging, satellite imagery and augmented reality
are some of the popular application fields on which semantic segmentation is employed.

Convolutional neural networks with encoder–decoder blocks have been the primary
architectural choice for addressing the semantic segmentation task since the emergence of
deep learning. As a next step, Google adapted the transformer architecture to computer vision
tasks (classification) with the vision transformer (ViT) model [1] and opened the way for a
more extensive use of transformers on other visual tasks, including semantic segmentation.

A major concern in the process of producing new state-of-the-art models for the
task is the increased computational complexity. The number of parameters has already
grown to immense levels, which range from hundreds of millions to even billions. As
a consequence, inference on architectures of that magnitude requires many, expensive,
and energy-consuming hardware components (GPUs), which renders large-scale real-time
applications prohibitive. For example, real-time semantic segmentation for autonomous ve-
hicles cannot be realized, if the inference task requires seconds or hundreds of milliseconds
to complete, even on a high-end GPU.

For this reason, research on high-performance yet low-cost architectures is both not
only popular but also necessary. Before focusing on low complexity, real-time architectures,
we present some top performing convolutional or transformer-based networks, as they have
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appeared and progressed in recent years, irrespective of the network size. First, PSPNet [2]
(Pyramid Scene Parsing Network) is a semantic segmentation model that utilizes pyramid
pooling modules to capture contextual information at different scales. It effectively ad-
dresses challenges in scene parsing by aggregating global context information and integrat-
ing it into the segmentation process. It can utilize various backbone architectures for feature
extraction that render the network either real-time or non-real-time. DeepLabV3+ [3] is a
DeepLab family network extension with features, such as atrous spatial pyramid pooling
(ASPP), encoder–decoder structures, and depthwise separable convolutions for achieving
high-quality segmentation results. InternImage [4] is a large-scale CNN that incorporates
deformable convolution [5] variants that allow for capturing long-range dependencies
with adaptive spatial aggregation. The HSSN framework, introduced in [6], adapts exist-
ing segmentation networks to incorporate hierarchy information for improved network
learning. It forms a tree-structured hierarchy of the latent class dependencies, representing
concepts and relationships, which is used in training for mapping pixels and their classes
and in inference for finding the best path from root to leaf in the class hierarchy. Finally,
ref. [7] suggests the use of the Supervised Contrastive Segmentation method that combines
supervised learning with contrastive learning to achieve better segmentation results. The
method can be used to train architectures containing existing base networks for mapping
input to image embedding representations and networks for producing segmentation maps
over the class space, without interfering with the base networks during inference.

The emergence of transformers [8] has revolutionized deep learning-based classi-
fication, especially with the emergence of the Vision Transformer (ViT) [1]. The Swin
Transformer [9] is a hierarchical Transformer, whose representation is computed by lever-
aging shifted windows that offer the ability to model at various scales. SETR [10] is another
transformer-based architecture, which employs a standard transformer encoder [8] and
different convolutional decoders. The SETR-PUP variation progressively upsamples the
encoded information until producing the output segmentation masks, while the SETR-MLA
aggregates streams from different decoder layers. Segmenter [11] is a Vision Transformer
(ViT) [1]-based semantic segmentation model, with a standard ViT encoder and either a
point-wise linear or a transformer (multi-head self-attention)-based decoder. Several model
scales are presented, ranging from tiny to large, with varying performance and complexity,
with the tiny architectures being suitable for real-time inference. The SegFormer model [12]
consists of a hierarchical Transformer encoder that generates high-resolution coarse features
and low-resolution fine features and an MLP decoder for fusing the multi-level information.
It uses smaller (4× 4) sized patches compared to the standard ViT encoder patches (16× 16)
and sequences reduced self-attention blocks for faster yet efficient processing. The model is
constructed at different scales from MiT-B0 to MiT-B5, with MiT-B0 being small enough for
real-time applications. BiSeNet [13] is a versatile semantic segmentation model that offers a
good trade-off between efficiency and accuracy, making it well suited for various computer
vision tasks, where real-time performance is crucial. It consists of two separate pathways,
one for capturing global contextual information and one for fine-grained spatial details,
which are combined with the bilateral fusion module. SwiftNetRN-18 [14] is a SwiftNet
variation that employs a ResNet-18 backbone along with SwiftNet family features, such
as depthwise separable convolutions, channel attention mechanisms, and feature fusion
modules, in order to achieve accurate semantic segmentation with real-time efficiency.
DDRNet [15] (dilated dense residual network) is another convolutional neural network
architecture for semantic segmentation that uses dilated convolutions, residual blocks with
dense connections, where each layer is connected to every other layer in a feed-forward
manner and hierarchical feature fusion mechanisms that capture multi-scale information
by combining features from different network layers. The authors present versions of the
architecture with varying levels of complexity, one of which, the DDRNet-23-slim, qualifies
for accurate real-time inference. LETNet [16] is a CNN encoder–decoder architecture with a
transformer-based bottleneck block and skip connections between the encoder and decoder.
The authors also propose the lightweight dilated bottleneck (LDB), a block positioned in



J. Imaging 2024, 10, 125 3 of 15

the encoder and decoder parts, which is a series of convolutional layers, with residual
connections, channel attention, and shuffling mechanisms for collecting more feature in-
formation while keeping the number of layers low. RegSeg [17] is based on SE-ResNeXt
architectural blocks, which use dilated convolutions for a larger effective field-of-view
and optimize the dilation rates with gradient descent applied over a differentiable neural
architecture search method. PIDNet [18] is another convolutional approach focusing on
real-time performance. The architecture consists of three branches (P, I, and D), aiming
to extract high-resolution feature maps, long-range dependencies, and boundary regions,
respectively, which are aggregated with multistage convolutional architectural blocks until
producing the segmented feature maps. CLUSTSEG [19] views the image segmentation
tasks as pixel clustering problems. The proposed framework applies a recursive clustering
procedure with a transformer-based cross-attention acting as a cluster solver where queries
are considered cluster centers. A different approach, based on prototype-based classifica-
tion, is adopted by [20]. The authors suggest a model that can be based on either CNN or
transformer backbones, where a set of non-learnable class prototypes are used for making
dense predictions. Segmentation is achieved by pixel-wise prediction based on distance
between pixels and class prototypes.

In this paper, we present a low-cost deep learning architecture, featuring transformer
and CNN architectural features, that combines relatively a low computational cost with a
robust semantic segmentation performance. The novel offerings are:

• A novel low-cost real-time architecture based on transformers and CNN that achieves
the best performance among the state-of-the-art peers.

• A complete ablation study that explores the offerings of convolutional blocks in a
transformer framework.

• The introduction of a multi-resolution framework in a transformer-based architecture.
• Automated tuning of hyper-parameters using specialized networks, such as the fuser

and the scaler.

An outline of the paper is given as follows. In Section 2, the novel architecture
MResTNet is presented. In Section 3, we ablate over a number of architectural options in
order to determine the optimal structure of the proposed network. In Section 4, the final
results on the Cityscapes and ADE20K datasets are presented. Section 5 concludes the
paper summarizing the offerings.

2. The Proposed MResTNet

The proposed architecture is primarily an encoder–decoder model influenced from
both transformer and convolutional architectures. It leverages scalability, parameter effi-
ciency, and improved performance relative to the architecture scale. The proposed architec-
ture is outlined in Figure 1.

Figure 1. The proposed MResTNet architecture uses a ViT encoder and decoder, along with a
convolutional multi-resolution decoder and two networks (scaler and fuser) that estimate a method
hyperparameter (scaler) and combine the two decoders (fuser).
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By focusing on architectural modifications on the decoder side, rather than the encoder,
we circumvent the need for extensive pre-training of a new encoder architecture. This
strategic choice helps us sidestep significant overhead and computational expenses associ-
ated with training large-scale models from scratch. By prioritizing changes in the decoder,
we can efficiently leverage the learned representations from existing pre-trained encoders,
thereby streamlining the experimentation process and accelerating model development.
Moreover, this approach allows us to iteratively refine and optimize the segmentation
model architecture, leading to quicker iterations and the more efficient utilization of com-
putational resources. The benefit of using available pre-trained ViT models to various
downstream tasks has also been emphasized in [21].

2.1. Encoder

The encoder (Figure 2a) is a ViT encoder [1] that offers improved global context
modeling by capturing long-range dependencies across the entire image without the
convolutional layer complexity that would have been otherwise necessary.

The encoder was pre-trained on the ImageNet-21k dataset, according to [22], with
regularization and data augmentation. The concept of pre-training and transferring to
downstream tasks has also been extensively studied in [23], where pre-training on even
larger-scale upstream tasks has been investigated.

We summarize here the standard ViT encoder process [1], which our encoder follows.
The image is split into non-overlapping 16 × 16 patches through a 2D convolution, which
also extends the number of filters to the chosen model dimensionality (192). The spatial
dimensions of the resulting feature map are then flattened and a trainable class token of
the same dimensionality is added. Finally, trainable positional embeddings are added,
to capture the spatial information, that would otherwise be lost due to the nature of the
transformer inductive bias (positional agnostic). The encoder then sequentially applies
a number (12) of encoder blocks (Figure 2b), with each block normalizing its input and
applying multi-head self-attention. The result is finally added to the input, using a residual
connection, and normalized again before passing through a feed-forward network, with
a final residual connection before the output. A drop path regularization is added before
each residual connection. The encoder output is finally normalized and forwarded to the
decoding stage.

(a) The encoder architecture. (b) The encoder block
Figure 2. The proposed ViT encoder architecture used in MResTNet.

2.2. Decoder

The decoder consists of a ViT [1] and a multi-resolution (MultiRes) decoder in parallel.
The ViT decoder (Figure 3a) applies a series of decoder blocks (2) and reduces the output
dimensionality to the number of the dataset classes by multiplying the output with a
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trainable matrix, named “Tokenizer”, before normalizing the result. The Tokenizer matrix
is of dimension DxK where D is the model dimensionality and K is the number of classes.
The decoder blocks operate in the same manner as the blocks of the encoder. When the
decoding is completed, the output is a 1D vector, as is in the case of Transformer decoders,
which is then rearranged to a 2D shape. In addition to that, since in the beginning of
the information flow in the Transformer encoder–decoder architecture, the input image is
subject to patching, the resulting shape is not the same as that of the input image or the
ground truth segmentation masks. For example, as in the case of Cityscapes dataset, the
input images of shape 768 × 768 are patched to the feature maps of shape 48 × 48. The
feature maps must be upscaled to the proper dimensions. In our case, this is performed
using bilinear interpolation.

The MultiRes decoder (Figure 3b) consists of a series of spatially upscaling and channel
contracting MultiRes blocks (Figure 4) that aim to provide the spatial information that was
lost during the encoding process and refine the segmentation predictions. As Ibtehaz and
Rahman propose in [24], the MultiRes block is a replacement of Inception blocks without
any of the increased complexity of the larger (5 × 5 and 7 × 7) convolutions. As also shown
in [25], Detsikas et al. supported the improved performance of the MultiRes block, with
a comparatively insignificant overhead, and extended experimentation in the document
image binarization task.

(a) ViT decoder (b) MultiRes decoder
Figure 3. The decoder of the proposed MResTNet architecture comprising the ViT decoder and the
MultiRes decoder.

Figure 4. The MultiRes block inside the MultiRes decoder.
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2.3. Aggregation

The two decoder outputs are aggregated, employing the scaling and fusing blocks.
The scaler (Figure 5a) produces a single scalar factor for each patch by gradually reducing
the input spatial dimensions through convolutional layers. The scaling factor α (and 1 − α,
respectively) acts as a balancing weight between the two decoder outputs. The reason for
not using a separate scaling block for each decoder output is to avoid excessive network
complexity. As seen in Table 1, the scaler adds 0.2 M parameters. In addition to that,
we also aim to induce a complementary character to the two decoder outputs, which
reflects the natural complementary benefits offered by the Transformer- and CNN-based
architectures (transformers better model long range dependencies and capture global
context, while CNNs better capture spatial information and local patterns and structures).
The network consists of several 2D-convolutional layers that feature the ReLU activation,
batch normalization [26], and dropout [27] with a ratio denoted by variable D.

Table 1. Architectural variants of the proposed architecture determine the optimal architectural
selection (performed on Cityscapes dataset).

Variant Parameters Mean IoU

Baseline 6.2 M 72.29
Extended decoder 6.7 M 72.44

Convolutional decoder 6.1 M 56.99
Dual decoder 6.3 M 72.93

Dual MultiRes decoder 6.5 M 73.18
Dual decoder with fuser 6.5 M 73.3

Dual decoder with scaler and fuser 6.7 M 73.59

On the other hand, the Fuser block (Figure 5a) is a convolutional module that merges
the concatenated scaled decoder outputs and produces the final output segmentation maps.
The module consists of a 2D convolutional layer, a batch normalization layer, and a final
2D convolutional layer.

Both aggregation blocks operate on feature maps with restored 2D spatial dimensions
and channel depth equal to the number of classes. In other words, each decoder output is a
representation that no longer contains encoded information. The aggregation blocks are a
mechanism of fine tuning the decoded information in order to exploit the benefits of the
Transformer and CNN worlds. The transformer decoder recovers the encoded information,
exploiting the long-range dependencies captured from the ViT encoder, while the MultiRes
(CNN) decoder restores the spatial information lost during the encoding.

(a) The fuser network. (b) The scaler network.
Figure 5. The decoding aggregation modules.

3. Ablation Study

The design choices and architectural components of a semantic segmentation model
significantly impact the performance and the generalization ability of the network. In
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this study, we systematically analyze the contributions of various components within our
semantic model. We aim to gain insights into the effect of individual design choices in
terms of performance and network computational complexity.

This study was conducted over the Cityscapes dataset [28] and the networks were
trained for 216 epochs, employing the SGD optimizer, with a polynomial decay rate,
initialized at 0.01, of power 0.9, decaying at every step. The final selected model was
trained for 864 epochs, with the same optimizer and learning rate parameters, with the
exception of the decaying step size, which was set to 4. The model was developed in
Python 3.10.12 using PyTorch 1.7.1 on a PC with i9-11900F, 64 GB RAM, an NVidia RTX
A6000 GPU 48 GB, running Ubuntu Linux 22.04.

The baseline model for the study is an encoder–decoder model containing only the de-
scribed ViT encoder and transformer decoder parts. First, we studied several architectural
variants by adding a parallel MultiRes decoding path to the baseline model and extending
it with the fuser and scaler blocks. We also experimented with the scaler architecture, since
it allowed for several options that significantly affected the model performance. We then
studied the effect of the loss function on the model training. We used a cross-entropy loss
as well as a combination of cross-entropy and dice loss. Finally, in an attempt to create the
smallest possible model that would maintain a high prediction performance, with respect
to the dominant metrics of the field (mean intersection over union—mIoU), in comparison
to other SOTA methods, we created and evaluated significantly smaller models.

3.1. Architectural Variants

Our baseline model is a ViT encoder–decoder model, with the previously described
encoder and decoder. We gradually added MultiRes blocks, scaler, and fuser to evaluate
performance against complexity scaling. For evaluating architectures without Scaler and
Fuser, we simply added the two parallel decoded outputs.

As depicted in Table 1, each of these blocks gradually improves the performance,
without large model-size overhead. In particular, the fuser and the scaler have a relatively
insignificant size impact. Our primary goal is to extend the decoding capability of the
model’s decoder side. We focus on the decoder side, since we do not need pre-training,
while encoder side changes are not treated fairly without pre-training.

We firstly extend the existing decoder with more decoder blocks. The baseline decoder
has two blocks and we add two more. It is natural to assume that the extra network
decoder capacity alone, due to the additional blocks, would be enough to improve the
output accuracy metrics. If more network capacity was the only target, simply adding
ViT decoder layers with the same additional parameters would still bring performance
improvements. As seen in Table 1, this “extended decoder” architecture does not yield
any significant improvements, while the “dual decoder” does. It is reasonable to deduce
that the convolutional decoder preserves and restores the encoded spatial information and
feature arrangement, while their inherent gradual upscaling operation recovers fine details.

Replacing the standard decoder convolutions with MultiRes blocks introduces yet
another significant performance improvement, considering the scale of the model. By
processing multiple resolutions in a hierarchical manner, MultiRes blocks can decode both
fine-grained details and coarse contextual information more efficiently. Table 1 supports
this upgrade, by showing the number of parameters and the mean intersection over union
(mIoU) (semantic segmentation quality index).

Summarizing all the above, so far, we evaluated the dual decoder against the single
transformer decoder, but not against the single convolutional decoder. However, in order
to establish the necessity of both decoders, we have to evaluate this dual-model against
the convolutional decoder alone. The “convolutional decoder” of Table 1 shows exactly
that it yields no improvement. The Transformer decoder cannot be left out of the model,
since it incorporates global context into the segmentation process more effectively, since
transformers excel at capturing long-range dependencies between pixels. Semantic seg-
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mentation does require capturing contextual information from the distant regions of the
input image to accurately classify each pixel.

The power of the two approaches can be better harvested with the fuser and scaler
blocks. Looking at Table 1, it is clear that the Fuser improves the performance. The fuser
block (Figure 5a) convolutionally merges the two decoded outputs.

The scaler block increases even more the accuracy metric (mIoU), since it acts as a
balancing factor between the decoded outputs, selecting the best elements each one has to
offer in the overall decoding. The scaler produces a 2D feature map that has the same size
as that of the input after patching has been applied. The scaler output values end up in the
range of 0.6–0.7, with a mean value of ∼0.65. This shows that the scaler output is neither
too small (∼0) nor too high (∼1), cases that would have rendered the use of one of the two
decoders unnecessary.

In Table 2, we compare the effect of using the actual predicted scaler output against
using fixed scaler values. We make our evaluation on the Cityscapes validation set. The
first column shows the result of using the scale produced by the scaler, while for all the
other columns, a fixed scaler value was used instead. The experiment clearly shows that
the predicted scaler output produces better results by appropriately scaling both decoders.
Setting a fixed value produces sub-optimal results and degrades the performance.

In addition, Figure 6 visualizes the scaler output, resized to the original image size
(the actual scaler output size is the same as that after input patching, which in this case
is 48 × 48). The first column shows the actual output, while in the second, the values are
linearly normalized to [0, 255] for better visualization. The final column is the input image.
The scaler acts differently on image features and it is evident that edge information receives
higher scaler values, for the transformer decoder.

Table 2. Scaler impact on mIoU for different fixed scaler values (Cityscapes dataset). Scaler(I) is the
output of the scaler when applied to the input image. The remaining values are arbitrary constant
values that replace the scaler predicted value.

α =
Scaler(I) α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

73.59 13.73 26.27 47.7 63.22 70.17 72.27 72.92 72.81 72.17

Scaler output Full gray-scale range Input image

Figure 6. Resized scaler output visualization for various images. The first column shows the actual
scaler output, the second column shows the output normalized for better visualization, and the third
is the input image.

3.2. Scaler Variants

As seen in Table 1, the use of fuser and scaler enhances the performance, without any
significant complexity overhead. We can investigate further alternative structures for these
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blocks in order to experiment with further performance improvements. The Fuser does
not leave much room for investigation, since it is a block that is applied to the decoded
2D masks. The simplest and most obvious choice is the one already made. However, the
Scaler, which is applied to the input, or in a more abstract description, to the information
before the encoding, does allow for architectural experimentation.

The Scaler design (Figure 5b), that was described earlier on, can be replaced by a
feed-forward network (Figure 7). Applying the scaler to the flattened 2D input would
require a very large feed-forward network, so it is more appropriate to apply it to the
patch-embedded input, which is already flattened and much smaller in dimension. Since
encoding can benefit from the positional embeddings (lost inductive bias), we can assume
that using the positional embeddings in the scaler block would be beneficial as well.
Consequently, we gather that we can apply the feed-forward scaler after the positional
embedding addition, just before the encoding. The feed-forward scaler consists of three
dense contracting layers, which reduce the dimensionality to a single scaler value that later
scales the decoded outputs.

Figure 7. The proposed feed-forward scaler block.

The results are depicted in Table 3. The complexity shown in the Table reflects the
whole model, incorporating the respective scaler. The CNN scaler performs better, with an
overhead that we can afford to spend.

Table 3. Scaler variants ablation (studied on the Cityscapes dataset).

Variant Parameters mIoU

(Convolutional) scaler 6.7 M 73.59
Feed-forwardscaler 6.5 M 62.67

3.3. Loss Function Ablation

We have trained our model using the cross-entropy loss and with a weighted combi-
nation of cross-entropy and dice loss. The dice loss alone proved incapable of providing
considerable results.

The cross-entropy loss is a standard for classification problems with multiple classes

LCE = − 1
N

N

∑
i=1

C

∑
c=1

yi,c log(ŷi,c) (1)

where

• LCE is the cross-entropy loss.
• N is the total number of pixels.
• C is the number of classes.
• yi,c is the ground truth label (1 if the pixel belongs to class c, 0 otherwise) for pixel i

and class c.
• ŷi,c is the predicted probability of pixel i belonging to class c.
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The Dice loss for multiple classes is formulated as follows:

Dice Loss = 1 − 2 ∑N
i=1 yi ŷi

∑N
i=1 yi + ∑N

i=1 ŷi
(2)

where:

• N is the total number of pixels.
• yi is the ground truth label for pixel i.
• ŷi is the predicted label for pixel i.

The dice loss usually alleviates the class imbalances present in the data. In the datasets
used in our experiments, not all classes are equally represented. Thus, we would have
expected that employing the dice loss would improve performance. Unfortunately, this did
not happen in our simulations (see Table 4). Most likely, the answer is related to the fact
that the dice loss itself is not as smooth as other loss functions, such as cross-entropy, an
issue that becomes more serious in multiple-class classification problems. Optimizing the
loss function in such a scenario is more challenging, especially when using gradient-based
methods, such as stochastic gradient descent (SGD), which is used in our experiments.

Table 4. Loss function ablation on the Cityscapes dataset. Optimization does not benefit from any
combination of cross-entropy with the dice loss.

Loss Mean IoU

Cross-entropy 73.59
Cross-entropy + Dice Loss 73.32

Cross-entropy + 0.2 × Dice Loss 73.02

3.4. Model Size Ablation

Table 5 depicts the complexity of each architectural block used. It is clear that the
encoder is the dominant part in terms of complexity and it is the ideal candidate for
intervention in order to scale down the model. For this reason, we trained a scaled-down
version of the model, using 8 instead of 12 encoder blocks.

Table 5. Architectural blocks complexity (studied on Cityscapes dataset).

Block Parameters

Encoder 5,338,752
ViT decoder 893,414

MultiRes decoder 251,471
Scaler 292,257
Fuser 13,851

Table 6 shows the results of scaling the model down. This smaller model presents
a direction of further improving an even more scaled-down model. Nonetheless, in the
context of this study, we proceed with the larger of the two in order not to lose performance.

Table 6. Model size ablation on Cityscapes dataset.

Model Mean IoU

Proposed MResTNet (12 enc blocks) 73.59
8 enc blocks 71.9

4. Experimental Results

Once we confirmed the final proposed architecture of MResTNet, we evaluated our
model against other state-of-the-art methods that also have tiny scale variants for two popu-
lar semantic segmentation datasets: the Cityscapes [28] and the ADE20K [29]. The proposed
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MResTNet is implemented in Python 3.10.12 using PyTorch 1.7.1 and is publicly available
(https://github.com/detsikas/MResTNet, accessed on 20 May 2024).

4.1. Cityscapes

Cityscapes is a semantic segmentation dataset consisting of 5000 fine-annotated, high-
resolution images with 19 categories in urban driving environments. The dataset consists
of 2975 training, 500 validation, and 1525 test images.

In our comparison, most of the referenced methods have variants in multiple com-
plexity scales. There are models with billions of parameters, models with hundred millions
of parameters, and some models with some millions of parameters that are usually re-
ferred to as real-time variants [12]. For example, DeepLabV3+ also has a variant, based
on ResNet-101, with 62.7 million parameters, while the model we compare here has only
15.4 and is based on MobileNetV2. In these cases, we only consider the real-time variants,
since the aim of the proposed architecture is to build an efficient, real-time model. In our
comparison, we also omitted methods that indeed have a top metric performance, but also
have a complexity that is far from the real time domain (>15 M). Such methods are the
InternImage-H [4] with 1.08 B parameters and 87.0 MIoU and the SETR [10] with 318.3 M
parameters and 82.2 MIoU.

Table 7 shows the comparison results on the Cityscapes dataset with respect to other
SOTA methods of real-time scale (up to ∼15 M parameters). The methods are compared in
terms of the number of parameters, floating point operations per second (GFLOPS), and
mean intersection over union (MIoU) for classification accuracy. MResTNet ranks first in
the MIoU metric among all the methods, while at the same time, it maintains a very low
and well within real-time constraints calculation complexity, as shown in both the number
of model parameters and floating point operations at the inference time. LETNet [16] is the
most light-weight from the compared methods, but its performance is far inferior to the
other methods. A very close runner-up to the proposed method is RegSeg [17], which has a
lot fewer number of parameters, but a slightly higher number of GFLOPS and a slightly
inferior classification performance.

Table 7. Comparison on the Cityscapes dataset.

Method Parameters GFLOPS MIoU

PSPNet
(MobileNetV2) [2] 13. 7 M 1 423.4 1 70.2 1

DeepLabV3+
(MobileNetV2) [3] 15.4 M 1 555.4 1 75.2 1

SegFormer [12] 3.8 M 125.5 76.2
Segmenter [11] 7.1 M 38.54 72.66

BiSeNet [13] 5.8 M 14.8 (at 1536 × 768) 68.4
SwiftNetRN-18 [14] 11.8 M 104 75.5

LETNet [16] 0.95 M 13.6 72.8
RegSeg [17] 3.34 M 39.1 78.5
PIDNet [18] 7.6 M 46.3 78.8
MResTNet 6.79 M 38.44 78.89

1 Source: [12].

Figures 8–10 show comparisons of visual semantic segmentation results between the
proposed MResTNet and other runner-up methods. It can be noticed that MResTNet
produces clearer and more distinct area boundaries with fewer errors in detection.

https://github.com/detsikas/MResTNet
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MResTNet DeepLabV3+ [3] SegFormer [12] Ground Truth

Figure 8. Comparison with SegFormer and DeepLabV3+ on the Cityscapes dataset. Yellow rectangles
show regions where our method predicts more precise region outlines while the red rectangle shows
an area that was partially filled. Different colors show different classes.

MResTNet SwiftNetRN-18 [14] Ground Truth

Figure 9. Comparison with SwiftNetRN-18 on the Cityscapes dataset. The proposed method captures
masks with more accurate boundaries and exhibits less false detections and noise as shown by the
yellow rectangles. Different colors show different classes.

MResTNet RegSeg [17] Ground Truth

Figure 10. Comparison with SegFormer and RegSeg on the Cityscapes dataset. Yellow rectangles
show areas where our method produces less false detections and smoother regions. Different colors
show different classes.

4.2. ADE20K

The ADE20K dataset contains densely annotated images covering a wide range of
indoor and outdoor scenes covering 150 object classes and consisting of 20,210 training
images, 2000 images for validation, and 3352 images for testing.

Table 8 shows the comparison results on the ADE20K dataset with respect to other
state-of-the-art methods of real-time scale. Again, MResTNet ranks first in mIoU metric
among all the methods with a small computational complexity, well below the real-time
boundary. This shows that the proposed MResTNet architecture is a robust semantic
segmentation architecture that can operate efficiently on other datasets/applications, apart
from Cityscapes. Figure 11 shows indicative comparison results of MResTNet with other
SOTA methods evaluated on the ADE20K datasets, while Figure 12 focuses on the inference
quality degradation that is sometimes exhibited by MResTNet on ADE20K dataset. Overall,
our method is comparable to the rest of the top ranked methods, detecting more objects
with occasionally less-precise object boundaries.
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MResTNet PSPNet [2] Ground Truth

Figure 11. Comparison with PSPNet on the ADE20K dataset. PSPNet detects clearer boundaries but
MResTNet detects considerably more objects. Different colors show different classes.

MResTNet PSPNet [2] Ground Truth

Figure 12. Inference quality degradation (against PSPNet) on the ADE20K dataset. Different colors
show different classes.

Table 8. Comparison on the ADE20K dataset.

Method Parameters GFLOPS MIoU

PSPNet
(MobileNetV2) [2] 13.7 M 1 52.9 1 29.6 1

DeepLabV3+
(MobileNetV2) [3] 15.4 M 1 69.4 1 34.0 1

SegFormer [12] 3.8 M 8.4 37.4
Segmenter [11] 7.1 M 6.72 38.8

MResTNet 6.79 M 17.09 39.19
1 Source: [12].

5. Conclusions

In this paper, we presented a lightweight and efficient architecture, the MResTNet,
for performing semantic segmentation. Through systematic experimentation and ablation
study, we observed several key findings that led to the formation of the proposed model.
Firstly, we observed that the inclusion of an additional parallel MultiRes decoder, which
incorporates an extracting convolutional decoding operation with the use of MultiRes
blocks, significantly improves the segmentation efficiency. Additionally, we observed that
the introduction of aggregation blocks effectively combines the benefits of both Transformer
and CNN domains, leading to an insignificantly better model performance in terms of the
real-time efficiency of the architectural overhead. The proposed model features the best
performance compared to other SOTA models with similar number of parameters and
GFLOPS, which demonstrates that it can perform well both in terms of performance and
real-time implementation.
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In general, this study provides valuable insights into improving the transformer
semantic segmentation model performance with the CNN architectural blocks, while
prioritizing the compact network size suitable for real-time applications.
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