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Abstract: X-ray Fluorescence Computed Tomography (XFCT) is an emerging non-invasive imag-
ing technique providing high-resolution molecular-level data. However, increased sensitivity with
current benchtop X-ray sources comes at the cost of high radiation exposure. Artificial Intelligence
(AI), particularly deep learning (DL), has revolutionized medical imaging by delivering high-quality
images in the presence of noise. In XFCT, traditional methods rely on complex algorithms for back-
ground noise reduction, but AI holds promise in addressing high-dose concerns. We present an
optimized Swin-Conv-UNet (SCUNet) model for background noise reduction in X-ray fluorescence
(XRF) images at low tracer concentrations. Our method’s effectiveness is evaluated against higher-
dose images, while various denoising techniques exist for X-ray and computed tomography (CT)
techniques, only a few address XFCT. The DL model is trained and assessed using augmented data,
focusing on background noise reduction. Image quality is measured using peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM), comparing outcomes with 100% X-ray-dose
images. Results demonstrate that the proposed algorithm yields high-quality images from low-dose
inputs, with maximum PSNR of 39.05 and SSIM of 0.86. The model outperforms block-matching and
3D filtering (BM3D), block-matching and 4D filtering (BM4D), non-local means (NLM), denoising
convolutional neural network (DnCNN), and SCUNet in both visual inspection and quantitative anal-
ysis, particularly in high-noise scenarios. This indicates the potential of AI, specifically the SCUNet
model, in significantly improving XFCT imaging by mitigating the trade-off between sensitivity and
radiation exposure.

Keywords: deep learning (DL); artificial intelligence (AI); X-ray fluorescence (XRF); XFCT; nanoparticles;
cancer

1. Introduction

In recent times, X-ray fluorescence (XRF) imaging has garnered significant interest as
a promising tool for in vivo preclinical studies due to its ability to quantify and determine
the biodistribution of labeled nanoparticle-based contrast agents at high resolution [1–4].
For this purpose, various imaging approaches have been proposed with different scan-
ning methodologies and X-ray sources for the excitation of characteristic X-ray photons
from specific metallic nanoparticles [1,5]. Some studies have measured the distribution
of nanoparticles in mice using monochromatic X-rays from synchrotron sources [6–9].
Meanwhile, other studies have applied conventional X-ray tubes with polychromatic X-
rays for specific biomedical applications at the laboratory scale [3,4,10–18]. To name a
few, Cong et al. [16] effectively reconstructed gold nanoparticles by employing a fan-beam
X-ray source and parallel single-hole collimation. Deng et al. [12] employed a conventional
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X-ray tube to observe the distribution of gadolinium nanoparticles within mouse kidneys.
Specifically, X-ray fluorescence computed tomography (XFCT), which leverages the princi-
ples of XRF imaging within a computed tomography (CT) framework, has been studied in
several previous works [10,11,15,17,18].

In both approaches, the primary source of background noise is the appearance of
Compton-scattered photons in the signal region, causing a low signal-to-noise ratio and
reduced detection sensitivity. Contributions from Rayleigh scattering are, typically, mini-
mal due to predominant scattering in forward directions, away from the detectors. Hence,
enhancing image quality involves the essential task of minimizing Compton background
noise to solve the mentioned problem. Approaches available for extracting XRF signals
from Compton-scattered photons, including minimization of the latter, involve, e.g., special
background-reduction schemes through spatial filtering algorithms and subtraction tech-
niques, among others [3,9,15,17,18]. Specifically, subtraction techniques require consistency
in the positioning and posture of the measured object, necessitating two scans (with and
without contrast agents, such as nanoparticles) [13,14,19]. This may increase radiation dose,
potentially leading to detrimental effects, such as radiation-induced cancer and metabolic
abnormalities, among others [19]. Meanwhile, other methods can be cumbersome, may
require highly specialized operational knowledge, or require significant user intervention.
This motivates a shift from traditional noise suppression techniques to new AI-based
approaches, like deep learning denoising, offering promising advantages and moving
towards automation.

Recently, deep learning denoising methods have been widely used in the field of
biomedical imaging and image processing [20–23]. The convolutional neural network
(CNN) architecture can extract features from low to high levels, resulting in better iden-
tification and understanding of patterns [24]. The methods show a high performance of
image-to-image translation issues [25,26]. For example, achieving a high-quality (high-
dose) image from a low-dose image by removing image noise [25]. In contrast to the
assumption made in non-blind image denoising, which presupposes knowledge of the
image noise type and level, blind denoising addresses scenarios in which either the noise
level, the specific noise type, or both are unknown. Zhang et al. [26] show that a deep
model is capable of managing Gaussian denoising across different noise levels. Mean-
while, Chen et al. [27] suggest employing generative adversarial networks (GAN) for noise
modeling from clean images. The generated noise is then used to create paired training
data for subsequent training purposes. Guo et al. [28] introduce a convolutional blind
denoising network, which incorporates a subnetwork for estimating noise. They further
suggest training the model using both a practical noise model and pairs of real-world
noisy–clean images. Krull et al. [29] introduce a method using variational inference for
blind image denoising. This method unifies both noise estimation and image denoising
within a Bayesian framework. Sun and Tappen [30] introduce a non-local deep learning
approach that combines the benefits of block matching and 3D filtering (BM3D) and non-
local means (NLM). Furthermore, the conventional BM3D technique is expanded into
a four-dimensional space (BM4D), leading to enhanced preservation of image edge and
texture intricacies Zhang et al. [31], Xu et al. [32]. Lefkimmiatis [33] creates an unrolled net-
work capable of executing non-local processing, leading to enhanced denoising outcomes.
Liang et al. [34] show improvement in peak signal-to-noise ratio (PSNR) performance
achieved by a specific method, i.e., image restoration using the Swin transformer (SwinIR),
compared to denoising convolutional neural network (DnCNN) on a benchmark dataset.
Liu et al. [35] employ a transformer-based method, the shifted window transformer (Swin),
as the primary building block. They demonstrate that the Swin model exhibits improved
performance when handling images with repetitive structures, verifying the effectiveness of
the transformer in enabling non-local modeling capabilities [35]. A further study proposed
a new blind denoising network architecture named Swin-Conv-UNet (SCUNet), applied it
to a real image dataset, and designed it for improved practical usage and enhanced local
and non-local modeling abilities [26].
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In this study, our objective is to employ a blind hybrid deep learning model, SCUNet,
and enhance its capability for denoising XFCT images. The model is a result of combining
the U-net [36] and Swin [26] models, utilizing both local and non-local modeling. These
two networks have individually shown promising denoising performance. The XRF
images of a Gadolinium (Gd) contrast agent were generated from high-dose and low-
dose measurements to estimate the effect of the radiation dose on background noise by
applying the blind hybrid denoising method. The model is created to combine two specific
abilities, i.e., the local modeling ability of a residual convolutional layer and the non-local
modeling ability of a Swin transformer block. This combined block is suggested for use
as a fundamental component within the image-to-image translation UNet architecture,
potentially enhancing its performance or capabilities. However, this architecture alone
does not suffice for attaining optimal results. Consequently, we incorporated a compound
loss function to enhance the network’s performance, specifically addressing the intricacies
associated with denoising medical images.

2. Materials and Methods
2.1. Experimental Setup

The data used in this study consists of XRF images acquired in a previous study
using small-animal-sized phantoms consisting of contrast-agent-filled target tubes [10].
The following briefly describes the experimental setup and image acquisition procedure
for completeness.

Gadolinium (Gd) at varying concentrations, derived from Gadoteric acid (C16H25-
GdN4O8), was utilized as the contrast agent. The small-animal-sized surrogate phantoms
(mimicking a size-scale on the order of, e.g., mice) consisted of water-filled hexagonal
borosilicate glass containers with a maximum diameter of 50 mm and a height of 60 mm. To
accommodate 3D breast cancer models immersed in the cell-culture growth medium, the
phantoms were chosen with a diameter exceeding that of a typical mouse’s torso (i.e., about
20–25 mm) The Gd–filled polypropylene microcentrifuge tubes, 8 mm in diameter, were
embedded inside these water-filled phantoms. Gadolinium (Gd) was used as a contrast
agent for various reasons. High atomic number (high-Z) elements, such as Gd (K-alpha
emission around 43 keV), exhibit a relatively weaker energy-dependent photon attenuation
compared to lower atomic number (low-Z) elements, e.g., iodine (K-alpha emission around
28.4 keV) at this size-scale. Additionally, cadmium telluride (CdTe) pixel detectors were
used for the XFCT imaging that exhibits high sensor-intrinsic X-ray fluorescence (i.e., K-
shell emission from Cd and Te), making the low energy range (roughly, 19–32 keV) unusable.
Consequently, high-Z contrast agents become more favorable at this scale, making Gd a
better choice over low-Z elements. These phantoms were used in the previous study
to investigate the suitability and feasibility of cone-beam XFCT for both preclinical in
vivo imaging of small animals and in vitro surrogate investigations with non-destructive
analysis of biological samples [10]. The Gd tubes had concentrations ranging from 0 to
3.1 mg/mL (0, 0.031%, 0.1%, 0.2%, and 0.31% Gd by weight (wt. %), see Figure 1). The
first row of Figure 1 shows a representative illustration of the varying Gd concentration,
and the second row shows an example of the XFCT scan in the presence of different Gd
concentrations.

Attenuation images, acquired using cone-beam computed tomography (CBCT), were
used to correct for attenuation in the XRF images. The images were acquired using cone-
beam polychromatic X-rays generated from a tungsten-target microfocus X-ray tube (Ox-
ford Nova 600, Oxford Instruments X-ray Technology, Scotts Valley, CA, USA). The incident
polychromatic X-rays with 90 kVp, a maximum beam current of 0.9 mA, 0.3 mm copper (Cu)
filtration, and X-ray focal spot size of 14–20µm were used as an excitation source for both
CBCT and XFCT imaging. The source-to-isocenter distance was 40.5 cm and the distance
from source to transmission detector was 55.7 cm. Figure 2 shows a schematic illustration
of the experimental benchtop imaging system, consisting of both CBCT and XFCT imaging
configurations. For attenuation images, a total of 30 projections were captured with an
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angular interval of 12◦ between each projection, and approximately 6 s exposure time
per projection.

Figure 1. Gadolinium-contrast-filled small-animal phantoms with Gd concentrations ranging from 0
to 3.1 mg/mL.

The XFCT imaging system consisted of a Timepix3 HPCD (Minipix TPX3, Advacam,
Prague, Czech Republic), with a pixel size of 55µm, an active detection area of approx-
imately 14 mm× 14 mm, 1 mm thick CdTe sensor, and an energy resolution of around
4–6 keV FWHM at Gd XRF energies. The detector was exposed to radiation using a circular-
aperture single-pinhole arrangement. The pinhole collimator was constructed from lead,
with an aperture diameter of 0.4 mm and a thickness of 1.5 mm. To conduct full-field
scanning within a geometrically/mechanically constrained large CT detector arrangement,
the distance between the X-ray source and the rotation isocenter was adjusted to 14 cm.
Distances of 5.5 cm from the X-ray source to the isocenter were set, with a pinhole-to-
detector distance of 1.5 cm. For XFCT imaging, a sparse-view image acquisition approach
was employed to reduce radiation exposure. This strategy involved taking 10 angular
projections within a 360◦ scan, each with an exposure time of 150 s per projection.

Figure 2. Schematic representation of the experimental benchtop XFCT system.

2.2. Deep Blind Image Denoising Model
2.2.1. Dataset

To estimate the effect of radiation dose on background noise, images with various
noise levels are generated (i.e., corresponding to radiation doses from high to low). The
noisy datasets are generated by reducing the photon counts in raw data (i.e., where 100%
correspond to high-dose images) by a factor of 25%, 50%, and 75% (corresponding to
the low-dose images). Additionally, for each image, three bin widths corresponding to
0.05 keV, 0.1 keV, and 0.5 keV are used. Herein, smaller bin widths correspond to a finer
sampling grid, however, with a reduced number of entries per XRF signal bin. Furthermore,
to address the limitation posed by the small dataset, we employed a data augmentation
technique known as rotation. Data augmentation involves creating additional training
samples by applying various transformations to the existing data. While augmentation
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techniques like rotation, flipping, or scaling increase the dataset size, the generated im-
ages primarily remain highly correlated with the original images. They have not been
seen to introduce truly new anatomical variations or disease presentations. DL models
generally perform better when they are trained on a diverse set of data that reflects the
real-world variations that would be encountered during deployment. However, geometric
augmentations may not fully provide this diversity. Rotating medical images can disrupt
the correct anatomical orientation of organs and structures. This can make interpretation
difficult or misleading for clinicians. Additionally, if the image labels are not adjusted after
rotation, the model may learn incorrect associations between features and labels, leading
to errors. Furthermore, certain imaging modalities might be more sensitive to rotations
than others due to their specific acquisition and representation of data. However, it must
be noted that these aspects cannot be fully investigated currently as the XFCT technique is
only at a nascent stage. More data would be required to fully understand the impact of
these augmentations.

In our case, rotation augmentation was chosen to enhance the diversity of the dataset.
Rotation augmentation entails rotating the original images by certain angles to generate
new perspectives and variations. We specifically chose rotation angles of 90◦, 180◦, and 270◦

for several reasons. Firstly, these angles represent orthogonal transformations, allowing the
model to learn diverse features and patterns that may be present in different orientations.
Secondly, these angles align with common geometric transformations, capturing potential
variations that could be encountered in real-world scenarios. The SCUNet training pipeline
involves utilizing denoised images as targets and noisy images as input for the model.
Through this approach, the sample size was effectively increased by approximately tenfold.
Within the training pipeline, a hold-out strategy was implemented, allocating 20% of the
samples for testing in each category and utilizing the remaining 80% for training purposes.
The DL model is trained using augmented data and evaluated for background noise
reduction via the proposed denoising approach.

2.2.2. Proposed Model

One of the key challenges currently in X-ray fluorescence imaging, particularly when
using benchtop/clinical-grade X-ray sources, is the high radiation exposure required to
reach high sensitivity. This currently hinders the broader adoption of this technique for in
vivo preclinical studies and its translation into future clinical applications. In this study, a
blind denoising method was employed to remove noise present in the low-dose images. In
blind image denoising, the process of obtaining an estimated clean image involves solving
a specific Maximum A Posteriori (MAP) problem using an optimization algorithm. This
allows us to estimate the original (clean) image X from noisy observations, a critical step in
enhancing XFCT image quality, by employing the following optimization technique:

X = argmin
x

D(x, y) + λP(x), (1)

where D(x, y) represents the data fidelity component, P(x) represents the prior term,
and λ is the trade-off parameter [26]. At this point, it becomes evident that the crux of
addressing blind denoising is twofold: modeling the degradation process of a noisy image
and designing the image prior to a clean image. Conceptually, by regarding the deep model
as a condensed unrolled inference of Equation (1), the overarching objective of deep blind
denoising typically involves tackling the following bi-level optimization problem [37,38].
The effectiveness of the deep blind learning model is largely dependent on its network
architecture and the quality of the training data. The presence of noisy images in the
training dataset significantly influences the model’s understanding of the degradation
process. Improvements in the network architecture and the inclusion of clean images
within the training dataset play a crucial role in shaping this understanding. Improving the
quality of clean data is achievable, but additional investigation is necessary to enhance and
develop network architecture.
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The network of the SCUNet model is shown in Figure 3. SCUNet (Spatial and Channel-
wise Attention U-Net) specifically incorporates attention mechanisms to identify and pre-
serve relevant image features while suppressing noise effectively. This is highly beneficial
for the complex data generated by XFCT. The U-Net architecture, integrated within SCUNet,
is particularly adept at medical image segmentation and denoising tasks. Its ability to ana-
lyze information at multiple scales ensures the preservation of both fine details and broader
image context. By integrating the power of deep learning with the specific advantages of
SCUNet, our study aims to provide a crucial solution for reducing radiation exposure in
XFCT. This has the potential to enhance XFCT imaging, moving towards complete solutions
that could enable its broader adoption into research and future medical applications. The
core concept behind SCUNet involves merging the complementary network architecture
designs from dilated-residual U-Net (DRUNet) and SwinIR. The central technical contri-
bution of our study lies in the development of the optimized SCUNet model. This hybrid
architecture uniquely combines the strengths of Convolutional Neural Networks (CNNs),
and transformer-based models, Specifically, SCUNet incorporates novel swin-conv (SC)
blocks into a UNet backbone [36]. The novel SC block is the heart of SCUNet. It inte-
grates a Swin transformer for non-local modeling with a residual convolutional block for
local modeling. This combination allows the model to effectively capture complex image
features and noise patterns for superior denoising. The SC blocks are integrated into a
multiscale UNet architecture. This enables the model to process information at varying
resolutions, enhancing its ability to preserve fine details while suppressing noise across
different scales. The hybrid design of SCUNet suggests that it may be more adaptable
to the diverse noise characteristics present in XFCT data compared to models relying
solely on convolutional or transformer-based architectures. The use of 1 × 1 convolutions
within the SC block facilitates seamless information exchange between the transformer
and convolutional components, likely improving denoising performance. In accordance
with DRUNet [39], SCUNet’s UNet backbone consists of four scales, each featuring a resid-
ual connection between 2× 2 strided convolution (SConv)-based downscaling and 2× 2
transposed convolution (TConv)-based upscaling. The channel counts in each layer vary
from 64 in the first scale to 512 in the fourth scale. A key distinction between SCUNet and
DRUNet lies in the adoption of four SC blocks, as opposed to four residual convolution
blocks, in each scale of the downscaling and upscaling processes. The images of the XRF
photons including Compton scattered photons were inputted into the network with a size
of 256× 256 pixels, and the output images were all the same size. The transformer layer
SwinIR model consists of shallow feature extraction, deep feature extraction, and high-
quality image reconstruction. We treat each patch as a token and 2× 2 strided convolution
with stride 2. The UNet backbone of our model has four scales, each of which has a residual
connection between 2× 2 SConv-based downscaling and TConv-based upscaling. The
number of channels in each layer, from the first scale to the fourth scale, is 64, 128, 256, and
512, respectively.

The second box in Figure 3 illustrates an SC block that combines a Swin trans-
former (SwinT) block [35] with a residual convolutional (RConv) block [40,41] through two
1× 1 convolutions, split and concatenation operations, and a residual connection. Specifi-
cally, for an input feature tensor, it undergoes an initial 1× 1 convolution. Following this,
the tensor is evenly divided into two feature map groups, namely X1 and X2. This entire
process can be expressed as follows:

X1, X2 = Split(Conv1× 1(X)) (2)

Subsequently, X1 and X2 are individually inputted into a SwinT block and an RConv
block, leading to:

Y1, Y2 = SwinT(X1), RConv(X2) (3)
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Finally, Y1 and Y2 are concatenated to form the input of a 1× 1 convolution, which
establishes a residual connection with the initial input tensor, X. Consequently, the ultimate
output of the SC block is expressed as:

Z = Conv1× 1(Concat(Y1, Y2)) + X (4)

Our proposed SCUNet exhibits several advantages attributed to its innovative module
designs. Firstly, the SC block integrates the local modeling capability of the RConv block
with the non-local modeling ability of the SwinT block. Secondly, the local and non-local
modeling capabilities of SCUNet are further enhanced through the incorporation of a
multiscale UNet. Thirdly, the 1× 1 convolution plays a crucial role in effectively and
efficiently facilitating information fusion between the SwinT block and the RConv block.
Fourthly, the split and concatenation operations serve as a form of group convolution with
two groups, contributing to the reduction in computational complexity and the number
of parameters. The parameters are optimized by minimizing the L1 loss with the Adam
optimizer [42]. The learning rate starts from 1 × 10−4 and decays by a factor of 0.9 for each
iteration for 40 epochs. The batch size is set to 2. We first train the model with a 25 % noise
level and then fine-tune the model for other noise levels. All experiments are implemented
using PyTorch 2.0.1. It takes about 20 h to train a denoising model on an NVIDIA GTX 1080.

Figure 3. Architecture of the proposed denoising network method.

It is noteworthy that SCUNet operates as a hybrid CNN–Transformer network, inte-
grating features from both architectures. Similar approaches exist in the literature, where
researchers have explored the combination of CNNs and Transformers for effective network
architecture design. It is significant to highlight the distinctions between our proposed
SCUNet and two recent works, namely Uformer [43] and Swin-Unet [44].

Firstly, the motivation behind each approach differs significantly. SCUNet is inspired
by the observation that state-of-the-art denoising methods, DRUNet [39] and SwinIR [34],
leverage distinct network architecture designs. As a result, SCUNet seeks to integrate the
complementary features of DRUNet and SwinIR. Conversely, Uformer and Swin-UNet aim
to merge transformer variants with UNet, serving a different motivation.

Secondly, the primary building blocks employed in each model are distinct. SCUNet
incorporates a novel swin-conv block, which integrates the local modeling capability of the
residual convolutional layer [40] with the non-local modeling ability of the Swin transformer
block [35] through 1× 1 convolution, split, and concatenation operations. In contrast,
Uformer adopts a novel transformer block by combining depth-wise convolution layers [45],
while Swin-UNet utilizes the Swin transformer block as its primary building block.

In this research two evaluation metrics, i.e., peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM), are utilized as they offer advantages and better perfor-
mance over traditional metrics like Mean Squared Error (MSE) in perceptual quality [46].
Specifically, SSIM, for its feature and structural measures, has been used in several applica-
tion areas such as denoising, pattern recognition, image restoration, image compression,
and more [46]. Both PSNR and SSIM, have shown to perform well in predicting and
reflecting the visual quality of images [46].
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3. Results

As outlined in Section 2.2, enhancing the performance of the deep blind denoising
model relies on the optimization of both the network architecture and the training data. In
this section, we evaluate the performance of our model qualitatively and quantitatively
and compare it with other deep and non-deep learning methods.

To achieve optimal denoising results, we initiated our model training by utilizing the
official pre-trained weights of SCUNet. Subsequently, we fine-tuned the model on our
specific dataset, enhancing its adaptability to our unique denoising requirements. During
this training process, a compound loss function was employed to synergistically improve
the overall performance of the model. Figure 4 shows examples of images in our dataset
with varying noise levels and bin widths. In the first row, we present our original data with
100% of the initial number of photons. Subsequently, we reduce the number of photons
by a factor of 25% in each following row, simultaneously increasing the sampling rate to
0.05, 0.1, and 0.5. In this figure, the highest quality image is the one with a noise level of
0% and maximum bin width (BW) of 0.5 (see first row and third column), and the lowest
quality image is the one with a 75% noise level and bin width of 0.005. An enlarged image
is shown in this figure for clarity, having an image size of 256× 256 pixels.

Figure 4. Examples from our dataset illustrating four different noise levels and three different bin
widths (BW-0.005, BW-0.1, BW-0.5).

Figures 5, 6, and 7 show the predicted denoising qualitative results for various methods
at noise levels of 25%, 50%, and 75%, respectively. These tables compare state-of-the-art
techniques with our proposed model on our dataset. Results for the BM3D method are
presented in the second row of each table. BM3D, a 3D block-matching algorithm primarily
used for noise reduction in images, is an extension of the NLM methodology [47]. In the
third column, the results for an enhanced version of MD3D are illustrated, which integrates
a combination of BM4D within the 3D shearlet transform realm, alongside a generative
adversarial network, for image denoising [31]. The fourth column displays the outcomes
of the NLM method, which involves calculating the mean value for all pixels in the images,
with weights assigned based on the similarity of each pixel to the target pixel [48]. Moving
to the fifth column, we observe the results for the DnCNN [49]. This method aims to
recover the clean image x from the noisy image y = x + v, assuming v is additive white
Gaussian noise (AWGN). The network can handle Gaussian denoising with an unknown
noise level. In general, image denoising methods can be categorized into two major groups:
model-based methods, like BM3D, which are flexible in handling denoising problems with
various noise levels but are time-consuming and require complex priors, and discriminative
learning-based methods, like DnCNN, developed to overcome these drawbacks. In the
sixth column, we present the results for blind image denoising via the SCUNet method [50],
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while existing methods rely on simple noise assumptions, such as AWGN, the SCUNet
method is designed to address all unknown noise types that remained unsolved in previous
methods. The last column shows the results of our method, which extends the performance
of the SCUNet method. The qualitative results of the proposed model consistently yield
superior visual outcomes across all different bin widths, while BM3D exhibits better visual
results, it tends to produce smoother images, consequently removing important details.
In contrast, the proposed method generates images that closely resemble the original (0%
noise level) image. Conversely, DnCNN produces results that closely match images at the
same noise level.

Figure 5. Visual comparison: predicted results of our method alongside those of other methods (noise
level 25%).

Figure 6. Visual comparison: predicted results of our method alongside those of other methods (noise
level 50%).

Figure 8 presents the comparison results of predicted denoising for various methods
at a 75% noise level with reference to the 0% noise condition. The findings indicate that
our proposed model exhibits significantly improved visual results, closely resembling the
original image even under high and low sampling rates.
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Figure 7. Visual comparison: predicted results of our method alongside those of other methods (noise
level 75%).

Figure 8. Visual comparison: predicted results of our method alongside those of other methods with
the original image (noise level 0%).

In addition to the qualitative comparison of different methods, we present the quanti-
tative results for noise levels of 25%, 50%, and 75%, based on two measurement factors,
PSNR and SSIM, respectively, in Tables 1 and 2. The compared methods are BM3D, BM4D,
NLM, DnCNN, and SCUNet. It can be observed that our proposed method achieved
significantly better PSNR and SSIM results than other methods for the highest noise levels.
Except in comparison with BM3D and DnCNN, which have in some cases higher PSNR
and SSIM for the two noise levels of 25% and 50%, our method outperformed the others in
terms of PSNR and SSIM. However, possible reasons for the better performance of DnCNN
could be because of its match with the same noise level. We can see from the results of both
tables that the SCUNet method achieves lower quantitative metrics (i.e., PSNR and SSIM)
at all noise levels compared to our proposed model. The computational time performance
for other methods, such as the SCUnet model, is around 0.072 s, whereas the computational
time for BM4D inference is around 0.064 s, indicating a negligible increase in performance.
The proposed model’s computational time is at around 0.059 s. Thus, the time performances
of these methods are roughly on the same order magnitude.
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Table 1. Quantitative results of the various denoising methods based on PSNR.

Bin Widths Noise Level BM3D BM4D NLM DnCNN SCUNet Proposed
Model

BW-0.05
25% 13.93 31.44 27.92 36.82 22.77 29.68
50% 13.91 28.61 25.16 31.07 24.51 26.97
75% 13.89 29.18 24.58 24.75 25.29 31.44

BW-0.1
25% 13.70 29.78 32.42 38.88 22.87 35.48
50% 13.70 31.20 28.19 34.50 27.82 29.06
75% 13.67 27.02 27.71 27.75 26.77 29.33

BW-0.5
25% 11.76 28.18 39.94 49.35 22.54 31.81
50% 11.75 33.27 38.77 43.66 22.74 32.67
75% 11.75 31.22 36.75 38.40 25.58 39.05

Table 2. Quantitative results of the various denoising methods based on SSIM.

Bin Widths Noise Level BM3D BM4D NLM DnCNN SCUNet Proposed
Model

BW-0.05
25% 0.073 0.7902 0.7435 0.9430 0.4661 0.7868
50% 0.0720 0.7710 0.739 0.872 0.5177 0.8369
75% 0.071 0.7917 0.7156 0.7431 0.6472 0.8654

BW-0.1
25% 0.0716 0.7425 0.7985 0.8594 0.6153 0.8284
50% 0.0715 0.7154 0.7984 0.8023 0.6206 0.8658
75% 0.0712 0.7556 0.7801 0.7867 0.6453 0.8218

BW-0.5
25% 0.0617 0.8349 0.8029 0.9139 0.5773 0.8786
50% 0.0616 0.8314 0.7626 0.9014 0.4972 0.8466
75% 0.0615 0.8424 0.7611 0.7582 0.5290 0.8638

4. Discussion and Conclusions

In this study, we refined the SCUNet deep learning model to enhance its applicability
for background noise reduction in XFCT images. To optimize the application to our
image data, we implemented a compound loss function [51] aimed at capturing shape-
aware weight maps, addressing specific challenges posed by medical images within the
SCUNet architecture. Our approach, as indicated in Tables 1 and 2, demonstrated improved
outcomes, showcasing the effectiveness of the compound loss function [51].

To assess the efficacy of our approach, we conducted comparative analyses against
five existing models BM3D, BM4D, NLM, DnCNN, and the original SCUNet. These
comparisons demonstrate the efficiency of our blind deep learning model in eliminating
all types of noise, including unknown noise, alongside known image noise such as AGN.
Our overarching goal is to produce clean XFCT images from concurrent noisy images,
corresponding to low-dose image acquisition, in order to enable low-dose XFCT imaging.

To facilitate our research, we curated a dataset comprising reconstructed images de-
rived from sparse-view benchtop XFCT images. The deep learning model underwent
training and evaluation, utilizing two key metrics, PSNR and SSIM. The results on experi-
mental data provide insights into the effectiveness of our proposed method for denoising
Gaussian noise and suggest the potential practicality of the trained deep blind model in
handling real noisy images. In this study, we only present the preliminary results of our
proposed method due to the constraints imposed by the limited availability of training data.

Analysis of the results, as illustrated in Figure 8, shows the robust performance of our
model across varying noise levels and low-dose scenarios, transcending three different
bin widths. Conversely, other methods exhibited performance dependency on bin width
values and noise levels. Further insights from Figures 5, 6, and 7 showcased the output of
all models under different noise levels of 25%, 50%, and 75%, respectively.
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Quantitative assessments of noise removal demonstrated better performance of our
proposed model compared to BM3D, NLM, and the original SCUNet. Our method demon-
strated notable proficiency in handling images with high noise levels and sparse sampling,
surpassing other studied methods, including SCUNet. Finally, our method achieved a
maximum PSNR of 39.05 and SSIM of 0.86, indicating the improved performance of our
model. We believe this framework offers a strong foundation for further optimization and
tailoring of the SCUNet model specifically for the complexities of XFCT image denoising.
However, our study has several limitations, primarily arising from the limited XFCT data
available for model training. The presented results consider data and augmented sam-
ples from only a single phantom shape and size, corresponding to the small-animal-size
scale. These phantoms are homogeneous water-filled borosilicate containers with hexag-
onal outer shapes, embedding contrast-filled targets. Additionally, we only have data
corresponding to a single contrast agent (i.e., gadolinium at varying concentrations) and
target size (i.e., around 8 mm diameter polypropylene microcentrifuge tubes filled with
Gd). Correspondingly, due to the limited availability of training and reference data, unlike
established anatomical imaging methods like CT and MRI, our present study has limits in
comprehensively identifying potential artifacts and describing the detailed impact of our
denoising model on the shape, size, and other properties of both target and background
features. To improve upon current limitations and extend the model’s capabilities, our
future work could investigate the proposed method on a wider range of X-ray fluorescence
data generated using Monte Carlo simulations. This data could encompass a variety of
target and background shapes, sizes, and features, as well as different nanoparticle-based
contrast agents. This would also enable us to investigate the various influencing factors,
physical or algorithmic, affecting image quality and overall noise removal performance.

Author Contributions: N.M. and M.R. developed the methodology. M.F., K.K. and C.H. conceived
the project and designed experiments. M.F. and K.K. acquired data. N.M. analyzed and interpreted
data. N.M., M.R., K.K. and M.F. wrote, reviewed, or revised the manuscript. A.A.I. provided the
results of the literature methods. C.H. supervised the study. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used within this study can be obtained here: https:
//zenodo.org/records/11243130 (accessed on 7 March 2024). All other related raw data and datasets
supporting the results and conclusions of this article will be made available by the authors without
undue reservations.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

XFCT X-ray fluorescence computed tomography
XRF X-ray fluorescence
AI Artificial Intelligence
DL Deep Learning
SCUNet Swin-Conv-UNet
CT Computed Tomography
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BM3D Block-Matching and 3D filtering
BM4D Block-Matching and 3D filtering
MSE Mean Squared Error
NLM Non-local means
DnCNN Denoising Convolutional Neural Network
CNN Convolutional Neural Network
GAN Generative Adversarial Networks
Gd Gadolinium
wt Weight
Swin Shifted window Transformer
keV Kilo electron volt
mA milliampere
CBCT Cone-Beam Computed Tomography
MAP Maximum A Posteriori
DRUNet Dilated-Residual U-Net
SwinIR Image Restoration Using Swin Transformer
SConv Strided Convolution
TConv Transposed Convolution
RConv Residual Convolutional
SwinT Swin Transformer
BW Bin width
AWGN Additive White Gaussian Noise
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