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E C O L O G Y

Changes in global terrestrial live biomass over  
the 21st century
Liang Xu1, Sassan S. Saatchi1,2*, Yan Yang1, Yifan Yu1, Julia Pongratz3,4, A. Anthony Bloom1, 
Kevin Bowman1, John Worden1, Junjie Liu1, Yi Yin1,5, Grant Domke6, Ronald E. McRoberts7, 
Christopher Woodall8, Gert-Jan Nabuurs9, Sergio de-Miguel10,11, Michael Keller1,12, 
Nancy Harris13, Sean Maxwell14, David Schimel1

Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most 
effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global 
carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 
2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 
5.5 PgC year−1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year−1 of gross emissions from disturbances and 
adding substantially (0.23 to 0.88 PgC year−1) to the global carbon stocks. Gross emissions and removals in the 
tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible 
for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important 
roles in terrestrial carbon sink.

INTRODUCTION
Natural climate solutions (NCSs) have become a major focus of the 
climate mitigation goals recognized by the science community and a 
wide range of stakeholders and governments under the Paris Agree-
ment (1, 2). The underlying justification of NCS is based on the fact 
that terrestrial ecosystems, especially forests, are shown to be a sub-
stantial and growing sink of atmospheric CO2 for decades (3, 4). Cur-
rent estimates suggest that terrestrial ecosystems release 10 to 20% 
of the total global CO2 to the atmosphere and sequester about 30% 
annually (5–8), and both terms having large spatial and temporal un-
certainties. These uncertainties are associated with the complexity of 
estimating two main land fluxes: first, the flux of carbon from land 
use, land-use change, and forestry (LULUCF) (∆CLuc) that is estimated 
to be a net source of carbon [+1.6 ± 0.7 petagrams carbon (PgC) year−1] 
to the atmosphere, and second, the flux of carbon driven by environ-
mental effects on terrestrial ecosystems (∆CEnv) that is estimated to 
be a net carbon sink (−3.1 ± 1.2 PgC year−1) (9).

Many processes affect these carbon fluxes that occur over multi-
ple spatial and temporal scales. In the absence of any anthropogenic 
disturbance, the net carbon budget of forests is due to a balance be-
tween the carbon uptake (e.g., photosynthesis, tree growth, and ac-
cumulation in soils) and carbon release (e.g., respiration of living 
biomass and decay of necromass) (10). However, carbon loss (source) 

and gain (sink) due to direct human (e.g., deforestation, degradation 
and wood harvesting, and secondary forest regeneration or afforesta-
tion) and indirect environmental (e.g., droughts, storms, changes 
from CO2 fertilization, and N deposition) factors change this balance 
globally and even more substantially regionally and temporally (11–13). 
Inventory data suggest that the carbon gain in the terrestrial biosphere 
is mainly in forest ecosystems, but the partitioning of fluxes between 
the northern ecosystems (14) and the tropics (15) remains uncertain. 
Process-based models that include the effect of the CO2 fertilization 
equally distribute the net carbon gain between tropical and northern 
ecosystems (8, 16). Interhemispheric atmospheric CO2 analyses indi-
cate that the tropics is either carbon neutral or a small net source (17), 
while the northern ecosystems are an increasing net sink (3, 18–20). 
Resolving these discrepancies from multiple approaches requires re-
ducing the uncertainty in estimates of carbon loss and gain regionally.

The Global Carbon Project (GCP) provides annual estimates of 
the ∆CLuc from three book-keeping models (9) and the ∆CEnv as a 
residual of a global carbon balance approach or from several dynamic 
global vegetation models (DGVMs) that simulate effects of environ-
mental changes (9). These estimates are used widely by the science 
communities but still remain uncertain because of poor spatial in-
formation for capturing regional variations of carbon stocks and land- 
use change and the coupling of both fluxes (environmental factors 
influence ∆CLuc) (3, 21). The unresolved uncertainties point to the 
need for improved spatial and temporal greenhouse gas (GHG) in-
ventory of terrestrial carbon (14, 21).

There are two approaches for GHG inventory, namely, the gain 
loss and the stock change (1). The gain-loss approach is often used in 
countries without national forest inventory (NFI) data and emissions, 
and removals are calculated by multiplying the areas of classes of land-
use change (activity data) with the changes of carbon stocks for those 
classes (emission factors). The stock-change approach is adopted by 
countries with NFI and provides estimates of net fluxes from the dif-
ference of carbon stocks between two points in time. Both approaches 
must produce comparable results, with stock change having con-
siderably less uncertainty (22). Remote sensing observations have 
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substantially improved these approaches by providing spatial infor-
mation on forest disturbance (23, 24) and improving local or re-
gional carbon loss of live biomass (5, 25, 26). However, quantifying 
carbon gain is more difficult because of the slow recovery of forests 
and the lack of systematic biomass inventories in all vegetation types 
(27, 28). A recent study based on the gain-loss approach combined 
with maps of forest carbon stocks and activity data has provided es-
timates of temporally averaged global forest carbon emissions and 
removals from 2000 to 2019 (29). This approach shows notable 
improvements over previous estimates by integrating spatially ex-
plicit datasets but still lacks temporal fluxes and has large uncertainty 
in estimates of carbon removal.

Here, we present a spatial bottom-up framework to estimate the 
annually resolved live biomass of global terrestrial ecosystems for 
this century (2000–2019) (fig. S1). The framework is based on a self- 
improving machine-learning (ML) algorithm that reduces estimation 
uncertainty of the stock change as inventory data on forest biomass 
from ground and remote sensing observations improve over time 
(see Materials and Methods). We used extensive forest inventory 
(>100,000 plots) distributed mostly in boreal and temperate regions, 
airborne laser scanning (ALS) data across global tropical forests 
(>1 million ha), and satellite lidar inventory of global vegetation 
height structure (>8 million sample footprints). The individual for-
est inventory and lidar measurements were converted to above and 
below-ground biomass from allometric models and used to estimate 
mean and variance of live biomass carbon density at an optimum 
grid cell of 100 km2 (10 km × 10 km). These grid cell biomass values 
were used as training data in the ML algorithm to estimate biomass 

carbon density from systematic time series observations from micro-
wave and optical satellite imagery from 2000 to 2019 (see Materials 
and Methods). The training data were matched with the date of sat-
ellite observations to develop temporally consistent ML models that 
were then applied to the entire time series imagery. Following the 
stock-change approach, the difference of maps for every 2 years was 
used to calculate time series of stock changes (∆C = Cyear1 − Cyear2), 
which is considered negative when carbon stock increases (sink) and 
positive when it declines (source). Our approach only includes live 
biomass carbon stock (above and below) and ignores other carbon 
pools (soil, dead organic matter) but remains consistent with an 
Intergovernmental Panel on Climate Change (IPCC) Tier 3 approach 
by estimating carbon stock change through spatiotemporal biomass 
sampling. We lastly combine the activity data from satellite-based es-
timates to report annual emissions and removals globally.

RESULTS
Regional patterns of carbon stock changes
The carbon (C) stock in the world’s live biomass is estimated to be 
381 ± 2 PgC (averaged over 2000–2019) (Fig. 1) across all terrestrial 
ecosystems (forests and nonforests). The uncertainty represents 
one SE and includes pixel-level prediction uncertainty, spatial auto-
correlation (30), and the modeling uncertainty. The uncertainty 
increases to approximately 10% of the mean (30 to 40 PgC) when 
including errors associated with the reference ground data used in 
developing the models (see Materials and Methods). Total carbon 
stocks varied about 8 PgC (377 to 385) globally (relatively ~2% of 

Fig. 1. Mean vegetation carbon density map (averaged from 2000 to 2019). (A) Spatial distribution of mean global vegetation carbon density. (B) Spatial distribution 
of CV (coefficient of variation) in global vegetation carbon density. (C) Carbon stocks of major land cover (LC) classes (the inset figure shows the definition of LC classes; a 
detailed LC map is shown in fig. S1).
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total) from 2000 to 2019 but with larger relative variations at local 
and regional scales from contemporaneous disturbance and recov-
ery processes. The largest year-to-year changes relative to the long-
term mean, represented by the coefficient of variation (CV), are 
in regions of low biomass density (≲100 Mg ha−1) where land-use 
activities and natural disturbances are frequent and widespread 
(Fig. 1B).

Globally, woody carbon stocks are increasing slowly with an av-
erage annual gain of 0.23 ± 0.09 PgC year−1 (Fig. 2). The long-term 
estimated net gain of carbon in live biomass from our method is larger 
than the results from inventory data (31) and within the range of vari-
ability of estimates from other methods including process-based mod-
els (16), regional carbon balance from accounting all emissions and 
uptakes (32–34), and top-down estimations (17, 20). Our estimates 
of carbon gain and loss across all vegetation types (fig. S2 and table S1) 
indicate that pixels with significantly net gains are 1.4 times more 
numerous than pixels with net losses. Regionally, net carbon gains 
dominate landscapes of western conifers and boreal forests of North 
America, tropical forests in Africa, including subtropical forests in 
eastern China, and the boreal forests of eastern Siberia (Fig. 2, A and B). 
Because of the slow-in-fast-out characteristic of the biomass carbon 
pool, the losses are instantaneous and can be estimated at smaller 
scales but gains, especially in intact forests, are slow and can only be 
detected on decadal time scales and at larger areas due to the pixel 

level biomass dynamics and the estimation uncertainty (8). Between 
2000 and 2019, carbon accumulation in terrestrial ecosystems is 
largely reflected in the increase of the carbon density of the remain-
ing forests rather than the total carbon storage (Table 1).

Among global ecosystems, moist tropical forests store the most 
biomass carbon (~154 ± 1 PgC), about 40% of the global total (Fig. 1, 
A and C, and table S2), and their 20-year carbon stock trend remains 
approximately neutral with a small net loss (0.05 ± 0.03 PgC year−1) 
(Fig. 2C). This trend is in agreement with inventory estimates of 
0.07 PgC year−1 net loss in all carbon pools from 1990 to 2007 (14). 
Tropical moist forests in South America are a net carbon loss of 
0.05 ± 0.02 PgC year−1 (Fig. 2B and fig. S3), losing carbon at a rate 
of about 0.6% per decade, likely attributable to deforestation, degra-
dation, and recent droughts (35–37). About 18% of areas of intact 
forests in tropical Americas (77 million ha) are gaining carbon at a 
rate of 0.19 megagrams carbon (MgC) ha−1 year−1, and 20% (86 mil-
lion ha) are losing carbon at a rate of 0.18 MgC ha−1 year−1; the remaining 
area has no significant trend. In contrast, African moist tropical for-
ests are a net gain of carbon (0.02 ± 0.01 PgC year−1) with close to 
40% of areas of intact forests showing a net gain at the rate of 0.40 MgC 
ha−1 year−1, and only 7% with a net loss with an average loss rate of 
0.36 MgC ha−1 year−1. Similarly, in Asia, 25% of areas of intact forests 
accumulated carbon at a rate of 0.35 MgC ha−1 year−1, and 15% of 
areas showed net carbon loss at a rate of 0.34 MgC ha−1 year−1.

Fig. 2. Long-term (2000–2019) trend of global live vegetation biomass carbon. (A) Pixel-level (in 10-km spatial resolution) vegetation carbon trend map. (B) LC-based 
trend map of vegetation carbon. (C) Time series of vegetation carbon for global and four major LC types. All trend analyses use the Mann-Kendall test, and regions with 
P > 0.05 were masked out.
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Tropical and subtropical dry forest and savanna shrublands (~54.5 ± 
0.6 PgC) are accumulating carbon at a rate of 0.09 ± 0.04 PgC year−1, 
with relatively larger contributions from Asia and Africa (38). Sim-
ilarly, woody vegetation in mixed grassland and cropland regions is 
extensive in area in each continent and despite small biomass den-
sity exhibit a net carbon gain of 0.05 ± 0.02 PgC year−1 (Fig. 2B). 
Increasing contributions of tropical dry forests and woodlands to 
global carbon balance trends and variability are consistent with top-
down approaches (39) and ecosystem models (40).

Northern ecosystems show a net gain of carbon. Temperate (total 
carbon, ~64.4 ± 0.5 PgC) and boreal ecosystems (total carbon, ~41.3 ± 
0.6 PgC) are gaining carbon at a net rate of 0.10 ± 0.03 and 0.04 ± 
0.02 PgC year−1, respectively. Across all boreal regions (table S1), for-
ests are accumulating carbon at much higher rate of 0.10 MgC ha−1 
year−1 than the ecosystem scale (forest and nonforest), which is compa-
rable to the rate reported from inventory data of about 0.12 MgC ha−1 
year−1 (14). These rates also compare to estimates from national inven-
tory data reported by Annex 1 countries at 5-year annual cycles to the 
United Nations Food and Agriculture Organization (fig. S4). Although 
net carbon stock changes from northern ecosystems are relatively small, 

our estimates show large interannual variability (IAV) that is missing 
from inventory estimates reported by Annex 1 countries (fig. S4).

We report estimates of carbon stock change for 169 countries 
and regions (larger than 1 million ha) (table S3). During the period 
of the study, China had the largest net carbon gain in live biomass 
with an average rate of 0.1 PgC year−1, mostly attributed to the newly 
established forests in southern China and greater sequestration in 
existing forest areas (41). The Russian Federation (0.05 PgC year−1), 
United States (0.04 PgC year−1), and Canada (0.03 PgC year−1) all 
had net gain of biomass. The European Union, on average, had an in-
significant increase in live biomass (0.01 PgC year−1), partially due to 
increasing forest disturbance in this century (42). Among countries 
in tropical regions, Brazil and Indonesia had net carbon by 0.05 and 
0.03 PgC year−1, respectively, but the countries in the Central Africa 
(Gabon, Democratic Republic of Congo, and Congo) gained carbon 
at an average rate of 0.02 PgC year−1 (fig. S5).

Carbon emissions
To put the net carbon stock changes in the context of the global car-
bon budget and terrestrial carbon emissions and removals, we estimated 

Table 1. Vegetation carbon changes from 2000 to 2019. Regional carbon total stocks (unit, PgC) and average carbon density (unit, MgC ha−1) are estimated 
for the year 2000 and year 2019. The average carbon density is the mean of pixel level carbon density for each vegetation type and the forest area estimates are 
from Landsat-based global forest change product for the year 2000 (23). 

Biome. Area (2000) 
(million ha)

2000 2019

Carbon stock (PgC C) Carbon density (Mg C ha−1) Carbon stock (PgC C) Carbon density (Mg C ha−1)

Boreal

Forest 718 27.61 46.89 28.07 46.57

Nonforest 217 13.04 21.80 12.90 21.60

Total 935 40.65 35.27 40.97 35.13

Temperate

Forest 871 56.45 60.97 56.85 62.03

Nonforest 127 6.95 22.52 7.48 22.89

Total 999 63.40 51.01 64.33 51.45

Tropical moist

Forest 1227 150.66 122.50 150.28 123.58

Nonforest 35 3.44 18.21 4.06 18.28

Total 1261 154.11 114.68 154.34 113.69

Tropical dry

Forest 859 27.47 51.87 29.42 53.16

Nonforest 453 26.19 23.73 26.33 24.38

Total 1312 53.66 32.93 55.75 34.08

Other biomes

Forest 374 9.69 21.06 10.45 21.22

nonforest 803 54.05 9.70 54.78 9.79

Total 1177 63.74 10.74 65.23 10.88

Global

Forest 4054 271.97 41.59 275.15 41.97

Nonforest 1637 104.06 15.22 105.95 15.35

Total 5691 376.03 30.43 381.09 30.56
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annual carbon loss of live biomass from disturbances attributed to 
forest cover change (e.g., forest clearing), tropical forest degrada-
tion, and fires in forests and nonforest ecosystems. Carbon loss from 
disturbance is estimated for the subgrid cells using the gain-loss 
approach by multiplying the annual percent area of disturbance by 
the mean biomass carbon density of forest or nonforest of the year 
before the disturbance. The carbon loss estimates were adjusted 
by the emission efficiency factor for each type of disturbance and 
corrected for the bias factor associated with the large grid cell (see 
Materials and Methods). The loss of carbon from disturbance may 
not be released to the atmosphere in the year of loss but delayed for 
years (e.g., timber products) or transferred to other pools (e.g., live 
to dead) (43). Nevertheless, here, we refer to the total carbon loss as 
the committed emissions from live biomass at the year of loss. The 
difference in accounting method and types of lagged effects not re-
flected in our estimates of emissions from live biomass may still be 
approximately correct because of the offset from emissions from dis-
turbances initiated in previous years (21).

Emissions from forest clearing (EFC),estimated annually from 
Landsat time series (23), contributed 1.7 PgC year−1, on average, to 
the total carbon loss with an interannual variation of 0.7 PgC (Fig. 3A). 
Tropical regions contributed 39% of the total carbon loss, followed by 
20% from boreal and another 19% from temperate regions. Carbon 

loss from forest clearing remained approximately constant (1.3 ± 
0.2 PgC year−1) for the first decade but increased substantially after 
2012, reaching a maximum of 3.1 PgC year−1 in 2017 (Fig. 3D). This 
trend is mostly due to increases in forest clearing detected by Landsat 
imagery that occurred in temperate and boreal ecosystems of Eurasia 
(fig. S6), deforestation in the West and Central Africa, the northwest 
and southeast regions of the United States, and tropical dry forests 
such as the Chaco in South America (23).

Emissions from fire (EFire) were estimated separately for forest 
and nonforest areas using the Moderate Resolution Imaging Spec-
troradiometer (MODIS) burned area product (44) that do not over-
lap with the forest clearing. Average global emissions from forest 
fires were 0.38 PgC year−1 with higher rate during the earlier period 
(2000–2009) at 0.5 PgC year−1 and declined by about 0.1 PgC year−1 
from 2011 to 2019. Emissions from nonforest ecoregions were about 
2.1 PgC year−1, with a larger decline from 2.2 PgC year−1 in 2001 to 
2009 to 1.9 PgC year−1 for the decade after (2011–2019). Forest fire 
emissions were dominated by tropical and subtropical woodlands 
and shrublands (69%) followed by tropical and subtropical moist eco-
systems globally (24%). Savanna fires in semi-arid and dry tropical 
ecosystems contributed 56% of the total fire emissions and were con-
centrated (59% of emissions) in African woodlands and savanna (38). 
Our analysis of Landsat forest cover change (30-m resolution) shows 

Fig. 3. Emissions from forest clearing and fire from 2000–2019. (A) spatial distribution of average emissions from forest clearing, (B) additional average annual emis-
sions from forest and nonforest fires not included in forest clearing, (C) average annual emissions [gigagrams carbon (GgC) year–1] from forest degradation estimated for 
pantropical regions, and time series of annual emissions and uncertainty from (D) forest clearing, (E) forest fire, (F) nonforest fire, and (G) forest degradation.
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that the post-2012 increase in forest loss in tropical moist and dry 
ecosystems was not always associated with burned areas predicted 
from MODIS (fig. S6). Emissions from fires in temperate and boreal 
ecosystems in excess of those attributed to emissions from forest 
clearing were small (fig. S6, A and B). Estimates of the total fire 
emissions from our approach are comparable to the global fire 
emissions database of about 2.2 PgC year−1 averaged for the period 
of 1997 to 2016 (24). Estimated magnitude of emissions, regional 
patterns, and trends are also consistent with model-based estimates 
that are constrained by atmospheric carbon monoxide data (38).

Loss of biomass from forest degradation was considered only in 
moist and dry tropical forests. In the absence of reliable annual in-
formation on forest logging, our estimates included only available 
data on forest degradation near roads (including some logging 
roads) and edge effects from deforestation and forest fragmentation 
(45) and removing burned areas to avoid double counting (see Ma-
terials and Methods). Loss of biomass from moist tropical degrada-
tion added another 0.29 ± 0.06 PgC year−1 to the total emissions. By 
including tropical dry forests with widespread degradation from 
timber harvest and fuel wood extraction, the total emissions from 
degradation (EFD) increased to 0.41 ± 0.08 PgC year−1 (Fig. 3C).

The total committed emissions from summing all emissions 
from disturbances (  E Land  B   ) was 4.63 ± 0.13 PgC year−1 from 2000 to 
2019 (Fig. 4). We expect that this is largely attributable to LULUCF, 
with additional emissions from the environmental disturbances 
(e.g., droughts, fires, and storms) that may be mixed in satellite ob-
servations of forest clearing and fire (23, 24). Our estimate of total 
committed emission is 84 to 100% of total gross LULUCF emissions 
(including all carbon pools) from the GCP book-keeping models, 
ranging from 4.6 PgC year−1 averaged for 2000 to 2019 [updated 
from (46)] and 5.5 PgC year−1 averaged from 2009 to 2018 (21). Our 
approach may also underestimate gross emissions from environ-
mental disturbance because of the spatial resolution (100 km2) of 
annual biomass maps, potentially offsetting gains and losses within 

single grid cells. Therefore, the total gross emissions  ( E  gross   =  
E Land  B   +  E    )  from our approach include emissions from satellite 
observed disturbances (  E Land  B  )  plus a residual emission (E) term to 
account for emissions from other carbon pools and all unaccounted 
disturbances such as drought-driven tree mortality, defaunation, 
and grazing (47).

Carbon removals
Total carbon gain in live biomass of global terrestrial ecosystems 
(  S Land  B   ) estimated from the difference between the net carbon stock 
change (∆C) and the total carbon loss (  S Land  B   = ∆C −  E Land  B   ) resulted 
to −4.86 ± 0.16 PgC year−1 (Fig. 4). At the grid cells,  ∆C −  E Land  B    may 
result in a positive value (loss) due to underestimation of   E Land  B    from 
ignoring E and uncertainty in each term, but the aggregated esti-
mate over large areas always leads to a net gain. As in the case of 
emissions, we allow gross carbon removals to be the gain from live 
biomass (  S Land  B   ) plus a residual term to represent all unaccounted 
terms (e.g., soil, dead, and litter) and the potential underestimation 
due to large grid cells (  S  gross   =  S Land  B   +  S     ).

Regionally, variations of carbon fluxes show the strong contri-
butions of live biomass changes from tropical moist and dry eco-
systems globally (Fig. 4). These ecosystems have large emissions 
(3.18  ±  0.08 PgC year−1) and large removals (−3.22  ±  0.09 PgC 
year−1) driven by disturbances and recovery processes. African dry 
ecosystems captured the largest proportion of this contribution 
(1.58 ± 0.06 PgC year−1 emissions and −1.59 ± 0.06 PgC year−1 re-
movals) (table S2), mostly due to large-scale and seasonal fire events 
from land-use activities and widespread woody encroachment and 
relatively rapid recovery (48). The predominance of tropical dry 
ecosystems to explain the global carbon uptake is consistent with 
other remote sensing–based estimates (49) and results from ensem-
ble land surface models (39, 40).

Extratropical ecosystems in temperate and boreal regions to-
gether had the next largest carbon removal of −0.87  ±  0.04 PgC 

Fig. 4. Latitudinal variation of carbon fluxes of the global vegetation. Emissions [teragrams carbon (TgC) year–1] associated with the carbon loss attributed to forest 
clearing (EFC), forest clearing (EFD), and forest and nonforest fire (EFire) combined to estimate total carbon loss or committed emissions from live land biomass (  E Land  B    ) from 
2001 to 2019. The latitudinal distribution of stock change from annual carbon maps is represented by (∆C), and the total carbon removal derived from the difference of 
the stock change and the total carbon loss is shown as (  S Land  B    ).
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year−1 (table S2) (50). The small net gain of carbon in these ecosystems 
from our analysis is largely due to increased fire and forest clearing 
disturbances since 2010 (fig. S6). Estimates of carbon removal from 
our analysis (temperate, −0.52 PgC year−1; and boreal, −0.35 PgC year−1) 
are comparable to inventory estimates (14), DGVM models (16, 51), 
and estimates from other satellite observations (52) (Table 2).

For high biomass intact forests, where the uncertainty in bio-
mass estimation may not allow detection of biomass gain, we esti-
mated potential adjustments to the average long-term carbon 
removals of remaining intact forests using inventory data from dif-
ferent ecosystems (see Materials and Methods). By using the spatial 
uncertainty map (fig. S7), we identified grid cells with live biomass 
thresholds of 200 and 100 Mg ha−1 and uncertainty levels that does 
not allow reliable change detection. We adjusted the intact forest 
gains for these grid cells by using the area of intact forests at subpix-
els that resulted in increasing net global carbon gain from −0.23 to 
about −0.42 PgC year−1 and to −0.88 PgC year−1, respectively, for 
each biomass threshold. These adjustments only influenced the car-
bon removals in high biomass areas in moist tropical forests by 
switching it from neutral or small source (+0.05 PgC year−1) to a 
sink (−0.12 to −0.31 PgC year−1 for each threshold). The largest 
contribution of this adjustment was in tropical Americas and tem-
perate forests that changed from −0.10 PgC year−1 to a larger net gain of 
−0.11 to −0.31 PgC year−1 for each biomass threshold (table S4).

IAV of emissions and removals
Carbon stock changes show large IAV of ±1.7 PgC year−1 globally 
with ±0.93 PgC year−1 in tropics and ± 1.29 PgC year−1 in extra-
tropics. Note that the regional IAV of carbon fluxes do not follow 
the same year-to-year patterns and therefore is not additive at the 

IAV level. Overall, emissions from forest cover change and fire had rela-
tively smaller IAV (±0.4 PgC year−1) (Fig. 5B), while carbon removals 
showed larger IAV (±1.8 PgC year−1) (Fig. 5C). On average, tropical 
moist, boreal, and temperate ecosystems had approximately equal 
contributions to the magnitude and IAV of carbon removals (±0.5 
to ±0.7 PgC year−1) in this century. Carbon removals showed large 
IAV in global semi-arid regions (±0.8 PgC year−1) in agreement 
with prediction from DGVMs (51). The large IAV of carbon re-
movals is dominated by the postdisturbance recovery of vegetation 
and biomass gain of intact forests, particularly in tropical regions 
where vegetation productivity is partially controlled by precipita-
tion and radiation (fig. S8) (51). We found that IAV of emissions 
from disturbance lacked a strong relationship with the variability of 
climate except during extreme events (e.g., peatland fire), as these 
emissions are mostly due to human-induced disturbances.

A comparison of the IAV of stock changes with the national in-
ventory of Annex 1 countries over the past two decades reveals that 
the variability of carbon stocks may be even larger than our reported 
numbers (fig. S4, D and E). The IAV of global carbon removal 
  S Land  B    from our analysis was almost by a factor of two larger than the 
land-atmosphere exchange estimated from DGVMs (51) and the 
IAV of atmospheric carbon sink (9). Small IAV of emissions from 
disturbance is independent of emission factors used in this study 
and is mostly due to the observations of forest cover change and fire 
(Fig. 5B). Similar IAV is also evident from land-use emissions 
derived from the book-keeping models (7). Land-use change and 
natural disturbances may have large year-to-year variability at the 
local and small scales, but this variability is in general small at re-
gional and global scales because the occurrence of disturbance in 
one location is spatially decoupled from other locations, hence 

Table 2. Carbon loss and gain in global forest ecosystems (PgC year−1). Comparison of regional carbon fluxes from this study with the recent estimates from 
inventory and models. Estimates from published results are either reported directly or recalculated to match the regional extent of each ecosystem if the 
information was available. Carbon fluxes are also adjusted or recalculated from publications to include only live biomass contributions unless indicated in the 
table. Numbers in green shaded rows include fluxes from land-use change and include all carbon pools. 

References Period
Global forests Boreal forests Temperate forests Tropical forests

Loss Gain Net Loss Gain Net Loss Gain Net Loss Gain Net

Carbon fluxes (PgC year−1)

Xu et al. 2021 (this 
study) 2000–2019 4.63 −5.51 −0.88 0.31 −0.40 −0.09 0.42 −0.72 −0.31 3.18 −3.59 −0.41

Harris et al. (29) 2001–2015 2.12 −4.23 −2.11 0.22 −0.67 −0.45 0.24 −1.21 0.97 1.39 1.91 −0.51

Yue et al.* (51) 2000–2015 2.27 −3.5 −1.2 0.11 −0.58 −0.47 0 −0.37 −0.37 0.76 −0.84 −0.08

Tagesson et al. (16) 2000–2015 4.98 −5.59 −0.61 0.65 −0.86 −0.22 0.718 −0.86 −0.14 1.72 −1.94 −0.22

Pan et al.† (14) 2000–2007 2.06 −2.94 −0.8 - - −0.12 - - −0.45 2.43 −2.37 0.06

Pan et al. (31) 1990–2007 0.21 −0.13 −0.39 0.69

Baccini et al. 2017 (26) 2003–2014 0.86 −0.44 0.42

Achard et al. (54) 2000–2010 0.88 −0.097 0.78

Liu et al. (52) 2003–2012 −0.29 −0.16 −0.17 0.23

Hansis et al.‡ (46) 2000–2019 4.59 −3.01 1.58 0.24 −0.16 0.08 0.40 −0.40 0.0 +2.19 −1.27 0.92

Houghton and 
Nassikas§ (53) 2006–2015 5.5 4.0 1.5 - - - 0.8 −1.1 −0.3 4.7 −3.3 1.4

*Carbon fluxes includes soil-related fluxes.   †Loss and gain are adjusted for live biomass using a ratio of 0.73 = 2.94/4.017 from inventory data provided in 
Tables 1 and 2 (14).   ‡Estimates are from land-use change emissions and removals only and include all carbon pools.   §Same as above temperate fluxes 
include both temperate and boreal regions.
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causing less variability at larger scales (51). In contrast, the large 
IAV of live biomass carbon removals (Fig.  5C) indicates that the 
postdisturbance recovery process and biomass changes of intact 
ecosystems at local scales may be correlated with similar processes 
at larger scales due to the influence of environmental factors (i.e., 
climate and edaphic conditions) on the vegetation carbon uptake.

Live biomass in global carbon budget
Average emissions and removals from our study are not directly 
comparable to the GCP estimates of land sinks and sources (7). Our 
approach is based on carbon stock change of live biomass and 
provides gross emissions and removals without separating the 
LULUCF and environmental fluxes, while the GCP carbon balance 
focuses only on net fluxes, separates LULUCF emissions, and in-
cludes all carbon pools. To improve comparability, we revised the 
GCP carbon balance equations into gross emissions and removals as

  ( E  Fuel   +  E  Luc   +  E  Env   ) − ( S  Ocean   +  S  Luc   +  S  Env   ) =  S  Air     (1)

where the E terms represent emissions from fossil fuel and fossil 
carbonate emissions (EFuel), gross emissions from LULUCF (ELuc), 
and from the environmental disturbance (EEnv). The S terms repre-
sent gross removals including atmospheric carbon sink in terms of 
CO2 growth (SAir), net ocean sink (SOcean), and gross removals from 
land-use change (SLuc) and environmental factors (SEnv). By using 
  E  Luc   +  E  Env   =  E Land  B   +  E      and   S  Luc   +  S  Env   =  S Land  B   +  S     , we replace 
the gross emissions and sinks from the land part with our estimates. We 
balance the equation by using 8.7 ∈ [6.9,10.0] PgC year−1 (number 
in brackets show minimum and maximum during 2001–2018) for 
EFuel, 2.4 ∈ [1.8,2.7] for SOcean, and 4.6 ∈ [3.3,6.3] PgC year−1 for SAir 
(7). For the land components, we use 4.6 ∈ [3.7, 5.8] PgC year−1 for 
  E Land  B    and −4.9 ∈ [−9.1, −2.5] PgC year−1 for   S Land  B  . Balancing the budget 
will provide us with a residual carbon budget imbalance term (im 
= S − E) of −1.4 ∈ [−3.8, 3.7] as a net sink of carbon. If we include 

adjustments for intact forest gain, then the live biomass carbon re-
moval of −5.5 PgC year−1 will result in a budget imbalance of −0.8 
PgC year−1. Our estimate of the budget imbalance is larger than GCP 
budget imbalance (−0.1 PgC year−1) (9) and can be attributed to fluxes 
associated with other carbon pools (soil, dead, and litter), lateral trans-
port, burial of carbon in freshwater, and other legacy fluxes (Fig. 6).

DISCUSSION
Comparison with other global estimates
A fair comparison with most previous estimates is not straightfor-
ward. We compiled data from several studies that included both 
regional and global estimates of carbon loss (emission/source), gain 
(removal/sink), net change, and, if possible, fluxes of live biomass 
separated from other pools (Table 2). Here, we focus on results 
from two studies that are based on the forest inventory data (14) 
and a combination of satellite-based biomass and spatially explicit 
gain-loss approach (29) and refer to other studies for further clarifi-
cation. Our 20-year (2000–2019) stock change of live biomass 
(−0.23 to 0.88 PgC year−1) is substantially larger than the 18-year 
(1990–2007) inventory-based estimate (+0.27 PgC year−1) [table 
3 in (31)] and with a different sign. The average gain of live biomass 
from our approach compares to the inventory-based net carbon 
sink of global forests (−0.8 PgC year−1 adjusted for live biomass) 
(Table 2) that are largely due to the increase in biomass density of 
remaining intact forests in tropical and temperate regions (14). 
Apart from the difference in the period of the study and the definitions 
of gain and loss of carbon, unlike the inventory-based estimates showing 
net sink in the extratropical regions, our estimates suggest that net 
carbon sink is almost equally divided in tropical and extratropical 
regions when we include adjustments for intact forest gain.

Comparison of our estimates with the gain-loss approach for the 
same period (29) shows close agreement on the magnitude of gross 
carbon removals but differences in carbon emissions. At the global 

Fig. 5. Interannual variability of global stock change. IAV (mean centered and detrended) of global net carbon stock change (A) separated into emissions (B) and re-
movals (C) and divided into tropical moist, tropical dry and savanna, boreal, and temperate ecosystems. For global net carbon stock change, positive values indicate net 
emissions (source) and negative values net removals (sink). Time series in each plot are detrended using simple linear regressions.



Xu et al., Sci. Adv. 2021; 7 : eabe9829     2 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 18

scale, our estimate of gross carbon removals (4.9 to 5.5 PgC year−1) 
from all woody vegetation (forest and nonforest) agrees with their 
estimate (4.36 PgC year−1) for forests (Table 2) (29). However, our 
estimate of global emissions of 4.6 PgC year−1 is almost twice the 
emissions from their approach of 2.2 PgC year−1. The difference in 
emissions is largely due to the inclusion of fire in areas of savanna 
and woodlands that do not fall in the definition of forests but in-
cludes woody vegetation. Harris et al. (29) also used additional 
information on potential drivers of forest cover change to apply dif-
ferent IPCC emission factors geographically to Landsat-derived 
forest loss, particularly in boreal and temperate regions, while we 
used the definition of Landsat forest loss as the total clearing of for-
est (23) systematically across all forest types and regions. There are 
also some differences in estimates of carbon removals in temperate 
forests that can be attributed to the large uncertainty of removal 
factors used in (29).

As estimates of total emissions from our study are similar in 
magnitude to recent estimates from the book-keeping models (21) 
and the net carbon flux of live biomass agrees better with the inven-
tory data (14, 31), we consider that our estimates may be more con-
sistent across biomes. The total carbon removal is also comparable 
to the sum of uptakes in intact forests of 2.6 PgC year−1 (averaged 
for 2000–2015) and secondary forests (0.9 to 1.7 PgC year−1) for the 

same period from a combination of inventory and DGVMs 
(Table 2) (51, 53). However, because our approaches are spatial in 
nature and use the same data layers for the forest disturbance, our 
estimates of gross emissions will converge with (29) if we use the 
same drivers of forest cover change and emission factors.

Comparison with other remote sensing–based studies suggests 
that our global and regional net carbon sinks, although smaller, but 
falls within the range of variability of other estimates (26, 52, 54). 
Unlike some remote sensing–based estimates that show tropical 
forests as a large net carbon source to the atmosphere (0.23 to 
0.78 PgC year−1) (Table 2), our estimates indicate a small net sink 
from the stock change analysis. We may have underestimated 
emissions from degradation due to missing reliable data on selec-
tive logging across tropics. Nevertheless, the same problem may 
exist in other remote sensing approaches. Our average annual esti-
mate of 0.41 PgC year−1 from tropical degradation is in close agree-
ment with the inventory- based estimates from emissions from 
timber and wood fuel (0.46 PgC year−1) (55).

For boreal and temperate regions, we show a large carbon sink, 
but our estimate is smaller than other estimates (52). For temperate 
forests, our estimate of gain 0.18 MgC ha−1 year−1 of intact forests is 
substantially smaller than the inventory estimate of 0.45 MgC 
ha−1 year−1 for 2000–2007 (14) but comparable to recent estimates 

Fig. 6. Long-term mean of emissions and removals balancing the global carbon budget. The fossil fuel emission, ocean sink, and net atmosphere increase were from 
the GCB 2019 report (7). Numbers in parentheses show ranges of values from 2001 to 2019 for each flux. The budget imbalance includes all unaccounted fluxes from 
other carbon pools such as soil and dead organic matter and litter, any difference in legacy effects, and the lateral transport. For live biomass removal, the estimates after 
adjustments for intact forests are given in parenthesis and in bold for live biomass removal and the budget imbalance.
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from DGVMs (16). We attribute this difference to notably more loss 
of carbon from forest cover change and fire in our analysis after 2010 
(fig. S6) that is not reported in the inventory data (14) but detected 
from satellite observations (23, 24). This may be partially due to 
post-2012 disturbances in boreal and temperate regions of Eurasia 
that are included in our estimates and from the large uncertainty in 
detecting the dynamics of forest cover change and the drivers (56).

Over tropical forests, our estimates of carbon gain and loss in 
intact forests, for regions where our uncertainty is low, are compa-
rable to carbon stock changes from undisturbed plot networks. In 
the Amazon Basin, our rate of loss of 0.18 MgC ha−1 year−1 is com-
parable to the rate of loss of 0.17 MgC ha−1 year−1 over 10 years 
(2000–2010) as a result of increasing tree mortality and decreasing 
productivity in the field plots (15). In contrast, our rate of gain of 
0.19 MgC ha−1 year−1 is smaller than ground plots of 0.28 (0.07 to 
0.48) MgC ha−1 year−1 over 20 years (2000–2019) (15, 57). Similar 
pattern is observed in Africa and Asia. The rate of carbon gain of 
0.40 MgC ha−1 year−1 for intact forests in Africa and 0.35 MgC 
ha−1 year−1 rate for Asia are smaller than the net gain of 0.68 MgC 
ha−1 year−1 in Africa and 0.45 MgC ha−1 year−1 pan-tropically from 
a small number of research plots (~278 ha) (57). However, after ad-
justments for intact forest carbon gain, the average rate of carbon 
across tropics becomes comparable.

Uncertainty assessments and reductions
We have included multiple sources of errors associated with the re-
mote sensing data analyses and modeling that have been already 
accounted for through a formal error propagation approach (see 
Materials and Methods). However, there are four additional sources 
of errors that may influence the estimates of emissions and remov-
als. (i) The lack of sensitivity of remote sensing data to predict large 
biomass density forests. We addressed this problem by using large 
grid cells (~100 km2) for mapping live biomass globally and showed 
that the estimates at this resolution have low variance and low bias. 
At this resolution, the predictor variables from microwave and 
optical measurements had substantially better sensitivity to live bio-
mass (fig. S7). (ii) Underestimation of emissions and removals from 
offsetting gains and losses in large grid cells. We circumvented this 
problem by estimating emissions using finer spatial resolution 
(30 m) forest cover change and fire (500 m) data and the mean of 
live biomass of grid cells after separating subpixel forest and non-
forest biomass estimates. Any potential underestimation of emis-
sions because of the difference in the resolution of carbon stocks 
and disturbance were adjusted using the systematic error estimate 
from fine-resolution biomass data (fig. S9). (iii) Potential concerns 
about endogenous variations of remote sensing observations due to 
calibration noise, sensor degradation, or environmental effects in-
fluencing estimation of temporal dynamics of biomass. Our predic-
tor variables are processed multitemporal measurements such that 
seasonal and calibration effects (geometry) and potential noise are 
substantially reduced and there is no long-term drift in the signal of 
remote sensing data. Any short-term changes of remote sensing 
data due to moisture, optical properties, or other environmental 
factors may only introduce random errors at the pixel levels and do 
not influence annual estimations, regional trends, or interannual 
variability. These random errors are less important for estimating 
stock changes due to large-scale disturbance (deforestation, degra-
dation, fire, and droughts) and may only increase the uncertainty of 
detecting year-to-year changes in areas with large biomass intact 

forests that were addressed earlier (see Materials and Methods). (iv) 
Drivers of disturbance affecting carbon emissions. In this study, we 
avoided the use of any classification of drivers of change and uni-
versal emission factors that may be subject to large uncertainty and 
instead relied on the definition of change from remote sensing 
observations. We first estimated emissions from forest cover change 
using pixel-based emission factors and Landsat 30-m product that, 
by definition, refers to complete clearing of forest cover (23). Next, 
we included emissions from burned area pixels from MODIS that 
do not overlap with the forest clearing pixels and applied average 
published combustion factors (see Materials and Methods). Last, 
we included carbon loss from tropical forest degradation that do 
not overlap with forest clearing and fire and used published emis-
sion factors for estimating annual emissions.

Global Stocktake and policy relevance
Annual and spatial carbon stock changes from our approach 
provide new insights to how the global carbon balance may be in-
fluenced by divergent regional processes. We have shown that esti-
mates of emissions and removals from live biomass explain about 
more than 80% of global gross terrestrial fluxes, not only supporting 
the view that the use of live biomass carbon sequestration can be an 
important climate mitigation solution but also highlighting the vul-
nerability of ecosystem carbon storage and sinks. Our results also 
confirm that the largest gross fluxes occur in tropics, supporting 
international policies for reducing gross emissions from tropical 
deforestation and degradation and enhancing gross removals from 
secondary forests as a priority. The emerging patterns from our spa-
tially explicit analyses are as follows: (i) Northern ecosystems are 
not as large a net sink of carbon as perceived in the past and the 
uncertainty in emission and removal factors may be larger than 
tropical forests; (ii) the often neglected nonforest woody vegetation 
in open woodlands, savanna, and shrublands has relatively larger 
contribution to terrestrial carbon sinks and sources than previously 
known. A major component of this contribution is in the interan-
nual variability of stock changes that point to the dominant role of 
carbon removals in both moist and dry tropical ecosystems in IAV 
of global fluxes.

Despite the difficulty in distinguishing between land-use and en-
vironmental fluxes, our estimates of annual carbon stock changes 
and gross committed emissions and removals from live biomass can 
be directly linked to creating scale-dependent opportunities for 
climate mitigation solutions (regional versus subnational scales) 
(21). Now, the most common practice for carbon accounting at the 
national scale is to combine activity data and emissions and remov-
al factors from IPCC guidelines (Tier 1) or from national level emis-
sion factors (Tier 2). Our approach will provide an improved 
framework to track carbon stock changes at local (10,000-ha area) 
to subnational scales and by renewing emission factors over time 
(hybrid Tier 2 and Tier 3) as new observations become available. 
This approach facilitates systematic and transparent carbon account-
ing, monitoring, and verification to inform nationally determined 
commitments under the Paris climate pledges and the forthcoming 
Global Stocktake in 2023. It also provides a consistent observation- 
based framework to meet the increasing interests for nongov-
ernment and private entities to implement and monitor carbon 
offset investments. Our global carbon monitoring system also in-
cludes nonforest ecosystems not only to better balance the terres-
trial carbon budget but also to allow countries dominated with 
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nonforest ecosystems to develop capacity for carbon accounting 
and NCSs.

MATERIALS AND METHODS
Study design
We mapped live above- and below-ground biomass carbon stocks 
annually over all woody vegetation globally. Our approach was con-
sistent with the IPCC carbon stock change method for GHG inven-
tory and included spatial quantification of forest emissions and 
removals through a hybrid Tier 2 and Tier 3 approach (1). Estima-
tion of global live biomass carbon stocks followed several process-
ing, modeling, and estimation steps (fig. S1): (i) Synthesis and 
integration of a large number of ground inventory plots (>100,000) 
with airborne and satellite data as a consistent and systematic set of 
measurements of forest structure and vegetation above-ground live 
biomass (AGB). We applied models relating the lidar-derived 
metrics and radar backscatter to AGB estimates from ground plots 
across global forest types and ecoregions; (ii) development of spa-
tially aggregated samples of woody vegetation AGB mean and vari-
ance of AGB at 10-km spatial resolution using satellite and airborne 
lidar as training data; (iii) estimation of AGB using the training data 
into spatiotemporal ML models by taking a globally consistent set 
of optical and microwave satellite data at 10-km spatial resolution 
as independent variables; (iv) conversion of AGB to below-ground 
live biomass (BGB) using vegetation specific allometric models 
(table S5) and carbon density from AGB + BGB multiplied by car-
bon fraction using IPCC guidelines (1); (v) estimation of net carbon 
fluxes using annual carbon stock changes and separation of gross 
carbon loss (committed emissions) and gross carbon gain (remov-
als, as the residual of net carbon changes and committed emissions) 
using existing data on forest clearing from Landsat 30-m forest cover 
change (23), MODIS 500-m global burned area across all woody 
vegetation (44), and estimated tropical forest degradation (45); and 
(vi) formal error propagation and validation for estimating uncer-
tainty at pixel, national, and global scales.

To define the study region, we used the land cover (LC) map 
from Collection-6 MODIS LC product (MCD12Q1) and delineated 
the interested LC (forests and woody nonforest) categories globally 
(58). To preserve disturbances such as forest clearing, degradation, 
and fire in their original LC status, we selected the annual MODIS 
LC map in 2001 as the reference map. To further distinguish the 
continental effects, we combined the original MODIS LC into con-
tinental biome types (fig. S2A). Such a reclassification is more con-
sistent with the World Wildlife Fund ecoregion map spatially, 
which values the structure and diversity of vegetation types (59). 
We also generated a combined LC map to focus on the global effects 
(fig. S2B) of major vegetation types. Both maps were used to pro-
duce regional estimates of vegetation biomass and total carbon fluxes. 
A detailed description of each LC class was given in table S1.

Definitions and scales of analysis
The spatial grid cell for our analysis is 0.1 ° × 0.1°or approximately 
10 km at the equator. Within the grid cells, we defined forest extent 
as areas greater than 30% tree cover and minimum height of 5 m at 
the mapping unit area of 1 ha using tree cover from 30-m Landsat 
data for the year 2000 (23). For regions or countries with different 
definitions of forest, the proportion of forest area and carbon stocks 
can be readily derived from the gridded products. For the nonforest 

woody vegetation including sparse woodlands, treed savannas, and 
shrublands, we used tree cover between 5 and 30%. We used 5% tree 
cover as a threshold to separate woody vegetation from all other LC 
types including grasslands, bare area, and settlements.

Footprint-level biomass sampling
We constructed vegetation structure (vertical height profile) sam-
ples [~8 million from the spaceborne Geoscience Laser Altimeter 
System (GLAS) product (60) aboard the Ice, Cloud, and land Eleva-
tion Satellite (ICESat), and data from L-band radar backscatter (61) 
from the ALOS (Advance Land Observation Satellite, “DAICHI”) 
PALSAR (Phased Array L-band Synthetic Aperture Radar sensor) 
sensitive to low-density vegetation biomass (100 Mg/ha) (62)]. For 
forested regions, we designed careful strategies to build lidar- 
biomass allometric models relating the GLAS-derived Lorey’s height 
(basal area weighted height) (60) to plot-level AGB for all biome 
types using valid GLAS shots from 2003 to 2008 that were processed 
by filtering out noisy shots with large errors (effect of cloud, topog-
raphy, etc.) (60). A circular footprint with an average size of 0.25 ha 
(56 m in diameter) was used as a mean effective footprint size for all 
GLAS lasers. The relationship between AGB and Lorey’s height 
takes on the form of AGB = H + , where H is the Lorey’s height, 
 and  are fitting parameters, and  is a residual term. We applied 
39 allometric models (table S5) based on plant functional types and 
developed region-specific models based on plot-level AGB data 
availability (table S6).

Over tropical forests, we performed the GLAS lidar calibration 
by using ALS data collected over tropical forests of South America, 
Central Africa, and Southeast Asia across an area of more than 
1 million ha with sample size of 400 to 2000 ha each. For GLAS foot-
prints falling on ALS data, we calibrated values of Lorey’s height to 
estimated AGB from tropical airborne campaigns. The ALS-based 
allometric models were estimated from numerous research plots 
spread across South America, Africa, and Southeast Asia and docu-
mented in related studies (25, 30, 63–65). These research plots span 
various forest types including old growth tropical moist and wet 
forests, woodland savanna, dry forests, peat swamp and wetland 
forest, and forests recovering from disturbances. In addition to a 
much larger number of plots and ALS data for calibration of GLAS 
data, we also included regional variations of average wood density 
of plots as a weighting factor in the model to make sure that the 
height-biomass models are all adjusted with regional differences in 
tree wood density (25, 30, 63, 64).

In temperate and boreal forests, we were able to use field inven-
tory data to develop models based on groups of plant functional 
types. In North America, allometric models were developed by the 
U.S. Forest Inventory and Analysis (FIA) program of the U.S. For-
est Service, inventory data from Mexico, and the data available 
across the Canadian forestlands (table S6) (66, 67). In the United 
States, the FIA program has more than 120,000 permanent plots 
across temperate and boreal (Alaska) ecosystems in both forests and 
nonforest landscapes and a wide range of biomass and vegetation 
types. Detailed information about the FIA plots is available publicly 
(67). Similarly inventory data distributed globally were used for dif-
ferent forest types (table S6). For dry broadleaf and tropical conifer 
forests, we used forest inventory data in Mexico. For boreal forests 
of Eurasia, we divided the models for western (northern Europe) 
and eastern (Russian Siberia) using plots from Norway and inven-
tory data from the State Forest Account of Russia, respectively. For 
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broadleaf deciduous and mixed forests of China, we used 60 field 
plots to develop the models. These models were then used to esti-
mate AGB from GLAS-based Lorey’s height. For those regional 
vegetation types that we could not find ground plots to develop 
lidar-biomass models, we used models for similar vegetation types 
in other regions or continents.

For nonforest regions where GLAS footprints had no coverage, 
we opted to use random AGB samples estimated from a combina-
tion of ground plots, airborne lidar, and ALOS PALSAR data. The 
ALOS PALSAR backscatter products are available with global cov-
erage for the periods of 2007 to 2010 and 2015 to 2018. The L-band 
radar backscatter is strongly correlated with vegetation biomass 
when AGB is less than 100 to 150 Mg ha−1 depending on vegetation 
types (62), and we have developed a suite of models between ALOS 
backscatter and AGB using ground and airborne lidar data (62).

Grid cell biomass estimates
Assuming that GLAS-derived lidar samples (footprints) contain in-
dependent information from shot to shot, the grid cell mean and 
variance can be computed by including enough GLAS shots in each 
grid cells (68). All grid cells with estimates of mean biomass with at 
least 25 GLAS footprints were used as reference data for the next 
step of mapping biomass. The aggregation of pixel-level AGB at 
10-km pixel can be biased if we take an immediate sampling mean 
from all available footprint-level AGB. This bias is due to unbal-
anced sampling of GLAS shots (marked as valid only over forest 
canopies) within the 10-km pixels because a pixel can include both 
forests and nonforests and GLAS undersamples the nonforest areas. 
The unbalanced sampling will introduce overestimations of pixel- 
level AGB. Here, we used the 250-m-resolution MODIS Vegetation 
Continuous Fields (VCF) product to approximate the percent tree 
cover at both the footprint level and pixel level (at 10-km resolu-
tion) to correct the AGB estimates

   AGB  pixel   =    ̄  AGB   shot   ×   
 VCF  pixel   ─ 
   ̄  VCF   shot  

    (2)

where VCFpixel is the spatial mean VCF at 10-km spatial resolution 
from the original MODIS VCF (250 m),     ̄  VCF   shot    is the average VCF 
of all locations of valid GLAS shots, and     ̄  AGB   shot    is the AGB aver-
aged over all shot-level AGB within each valid 10-km pixel. The 
ratio of VCF is set to no larger than 1.2 (derived from a set of de-
tailed analysis of samples with high-resolution data) such that the 
correction of pixel-level AGB will not be overestimated. The pro-
cessed GLAS data gave us a global training dataset of pixel-level 
AGB over forests and most woody savannas (fig. S10A).

The use of a minimum of 25 lidar samples (~0.25 ha) within each 
10-km grid cell allows estimation of mean biomass at the landscape 
scale with small uncertainties (22). The minimum area of 10-km 
grid cells (100 km2) is designed to have a larger sample size to esti-
mate AGB (fig. S10B). Our methodology mimics the approach used 
in forest inventory ground sampling that allows design-based esti-
mates of mean and variance of biomass at the landscape scale (22). 
At the native resolution of the remote sensing pixels (e.g., 500 m), 
the estimate of AGB will be from only one or two GLAS shots, 
thereby introducing large uncertainty in AGB estimate and create 
noisy (large random error) and, in most cases, AGB estimates with 
systematic errors. By using larger pixels, we will increase the num-
ber of GLAS shots as inventory samples to estimate the mean of the 
population and hence reduce the uncertainty of AGB used as training 

data. All AGB estimates in grid cells with more than 25 samples are 
used to train the remote sensing data in the biomass prediction pro-
cess and hence produce carbon maps with reduced uncertainty at 
the pixel level. Note that at 10-km grid cells, the range of mean AGB 
is much smaller due to the LC heterogeneity. For nonforest regions, 
we selected samples of ALOS-derived AGB that matches the sam-
pling density of GLAS data following a spatially random selection 
scheme (fig. S10). Since the ALOS-derived samples are only sensi-
tive to small biomass vegetation (62), we set the upper threshold of 
ALOS-derived AGB to be 75 Mg/ha at 10-km resolution. The 10-km 
training dataset  also varies year to year by matching the year of 
GLAS data acquisition with the remote sensing data layers.

Satellite data processing
We processed wall-to-wall time series of satellite observations from 
multiple sensors at different spatial resolutions to develop a globally 
consistent average spectral information at 10-km grid cells from 
2000 to 2019. The three major satellite observations that have annual 
time series are the MODIS Collection-6 Nadir BRDF-Adjusted Re-
flectance (NBAR) data (product name: MCD43A4 v006), the day and 
night MODIS Land Surface Temperature (LST) data (product name: 
MOD11A2 v006), and the radar backscatter data at H-polarization 
from ascending passes of the SeaWinds Scatterometer on QuikSCAT 
(QSCAT HA). To further capture the growing season in the north-
ern lands and seasonality in the tropics, we added additional layers 
of growing-season averages (April to October) and annual SD from 
all three products. Other time-invariant (fixed) layers, including the 
long-term means of all multitemporal variables; the bioclimatic 
variables from the WorldClim climate database (69), including the 
annual mean temperature, temperature seasonality, mean tempera-
ture of coldest quarter, annual precipitation, precipitation seasonality, 
precipitation of wettest quarter, and precipitation of driest quarter; 
and the global digital elevation model from the Shuttle Radar 
Topography Mission (SRTM) product (70) were also processed to 
capture the long-term climatology, general climate conditions, and 
topographical features.

Time series data from satellite observations may have missing 
data points regionally or at pixels due to lack of observations or data 
quality and cloud contamination. During our study period, all of 
time series datasets have the least missing data from 2003 to 2009, 
except a few missing values in MODIS LST and NBAR due to qual-
ity issues. We thus used this time period as the base period for gap 
filling models. Using all the complete cases, we applied ML models 
using boosted trees (71) and imputed missing data by inferring the 
information for missing pixels from other layers. We used all data 
from 2003 to 2008 as training and data in 2009 as independent val-
idations. Predictions of annual mean data have high accuracies 
[R2 (coefficient of determination) > 0.95 for all cases], while the 
estimates of annual SDs are slightly less accurate (R2  >  0.8 for 
most cases).

For QuikSCAT data, the original products have observations 
extending from 2000 to 2009. Therefore, we filled the gaps between 
2010 and 2019 using the same gap-filling method. Besides using in-
ference from existing layers as we processed for other datasets, we 
also included additional layers from (i) GRACE data, which pro-
vides a global half-degree latitude-longitude grid of monthly anom-
alies in equivalent water thickness relative to the baseline average 
over January 2004 to December 2009 (72), and (ii) TRMM data, 
which combines rainfall estimates from TRMM and other satellites 
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and provides gridded rain gauge data at the monthly frequency and 
0.25° × 0.25° spatial resolution starting from 1998. Aiming at im-
proving the reliability of predictions for these missing years of 
QSCAT, the temporal signals gained from additional layers helped 
to reconstruct QSCAT data with comparable accuracies to other 
layers that contain missing data.

Biomass mapping
We used AGB training data at the grid cells within the period of 
GLAS campaign (2003–2008), and airborne lidar data acquired from 
2010 to 2017 in different regions across the tropics to build a model 
to spatially map AGB at the designed 10-km grid cells globally. The 
corresponding satellite observations were extracted for each AGB 
training grid cells and for the year AGB observation. For small bio-
mass density regions that lacked GLAS data, we used available air-
borne lidar data and ALOS-derived AGB, the satellite data layers 
were averaged to match the observational period of ALS and 
ALOS-derived AGB.

Globally, we obtained 87,528 pixels of AGB training data, with 
55% of them from GLAS and the rest from ALS and ALOS-derived 
data (fig. S10). We treated all training data as pooled cross-sectional 
data for modeling to increase the amount of multitemporal training 
data. Assuming that the spatial modeling unbiasedly predicts AGB 
variations spatially and temporally, we trained AGB pixel samples 
using the random forest (RF) model (73) with correction for esti-
mated bias (30) and predicted AGB over the entire study period 
from 2000 to 2019 from the preprocessed satellite data layers in-
cluding MODIS LST, NBAR, QSCAT HA, and other time-invariant  
layers.

The spatial modeling approach is based on the RF algorithm as 
an ensemble of decision trees trained from randomly selected sub-
set features and random sampling of the training set using bagging 
method (73). RF can be a regression method when using regression 
trees, and for the jth regression tree, the regression model can be 
built as

  y =  f  j  (x ) +   (3)

where x ∈ X is the bagged samples of the training set and fj( ∙ ) is the 
nonparametric function determined by the jth regression tree. 
The final prediction of RF regression is the unweighted average of the 
collection of trees

    ̂  y  (X ) = f(X ) =   1 ─ J     ∑  
j=1

  
J

     f  j  (x)  (4)

This averaging process creates results that are skewed toward the 
sample mean, and large/small values of y are often underestimated/
overestimated. In our study, we modified the bootstrap method for 
correcting the estimated bias and implemented a second RF run to 
correct the estimated biases. The additional correction (30) on clas-
sical ML is an effective treatment for regression dilution issues, and 
the correction term can be written as

   ̂   y  BC   (X ) =    ̂  y    oob  (X ) − (y −    ̂  y    oob  (X ) ) = 2    ̂  y    oob  (X ) − y  (5)

where   ̂   y  BC     is the corrected term and the residual term  (y −    ̂  y    oob  (X ) )  
is the difference between the original y and the prediction     ̂  y    oob  (X) , 
which can be estimated from out-of-bag (or cross-validated) residuals 

of training data. The final corrected prediction can then be 
expressed as

   ̂   y  F   (X ) =   ̂  y  (X ) + (  ̂  y  (X ) −  ̂   y  BC   (X ) ) = 2  ̂  y  (X ) −  ̂   y  BC   (X)  (6)

The correction term tries to capture the systematic regression 
errors of the original RF by estimating the new metric (  ̂   y  BC   (X) ) that 
is further skewed in the opposite direction of the original observa-
tion y. Such a correction model is an unbiased estimator of the in-
terested variable when noise exists in the independent variables but 
has a small amount of sacrifice on prediction accuracy (30). We 
consider the spatiotemporal training of the RF model and the bias 
correction as a continuously improving (self-improving) estima-
tion approach suitable for developing long time series AGB maps. 
When we add spatial and temporal observations such as from the 
new lidar data from NASA’s Global Ecosystem Dynamic Investigation 
mission or national inventory data, the improved ML model will 
run the entire time series and produce biomass maps with reduced 
uncertainty across the entire spatial domain.

From pixel level AGB estimates from 2000 to 2019, we further 
estimated BGB using the root-to-shoot ratio developed from mea-
surements in different woody vegetation types globally (table S5). 
We used 19 root-to-shoot models for all forests and shrublands, and 
in the absence of data for any vegetation types, we used the IPCC 
default values (25). With the knowledge of AGB and BGB, we esti-
mated the total carbon stock of live vegetation as follows

  C = (AGB + BGB ) × 0.49  (7)

where the factor F = 0.49 is the average fraction of carbon contained 
in the dry biomass (25).

Carbon flux estimation
Given the annual carbon stock estimates, we were able to estimate 
the net flux of carbon from live biomass as the first difference of 
annual carbon sequence (Cnet, yr2 = Cyr1 − Cyr2) for the years 2001 
to 2019. This annual change follows the IPCC guidelines for carbon 
stock change at the pixel scale rather than at the national scale. The 
net change of biomass is from a variety of processes, including bio-
mass loss from forest disturbance due to land-use and environmen-
tal factors and biomass gain from postdisturbance recovery, intact 
forest gain, and other exchanges that may occur between different 
carbon pools. If forest gain offsets forest loss within a pixel, then the 
net carbon stock change at the pixel level will be negligible. There-
fore, this methodology will not provide estimates of gross car-
bon fluxes.

To estimate gross carbon fluxes, we included subpixel informa-
tion from finer-resolution remote sensing on forest cover change 
(forest clearing and degradation) and forest and nonforest fire. 
Throughout the paper, we avoided using the land-use terminology 
such as deforestation for forest clearing as large areas of forest clear-
ing in the north are used for timber harvesting and the forest re-
mains forest through this process. The steps to estimate the gross 
annual carbon loss (committed emissions) and the annual carbon 
gain (gross removals) are shown below.

Forest clearing
We used the Landsat-based global forest change product (23) at its 
original resolution (~30 m), calculated the number of pixels that 
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showed forest loss in each year using the loss-year data layer, and 
spatially aggregated the layers at the original resolution to obtain 
the percentage of cleared area (PCA) at each 10-km pixel from 2001 
to 2019. Note that forest clearing pixels may be attributed to areas of 
timber harvest (a large proportion of the forest clearing in temper-
ate and subtropical regions) and other types of disturbance such as 
storms, insect, and droughts that may introduce a lagged effect in 
the emissions to the atmosphere.

Degradation in tropical moist and dry forests
We developed annual estimates of degradation using data from the 
pantropical degradation project detecting intact forest loss between 
2000 and 2013 (45). We set the degradation fraction for each 10-km 
pixel calculated from (45) as the training data and applied a ML 
model using boosted trees (71) to extend the available degradation 
data annually over the entire time series. For the model training and 
predictions, we used the same predictor layers used for biomass 
mapping, with the exception of using only the differences of data 
layers from 2 years to improve detection changes of forest degrada-
tion between 2 years. The cross-validated results show that the pre-
dicted degradation has a high correlation (R2 = 0.77) with the 
original input data, and the prediction included the percentage of 
degraded area (PDA) annually from 2001 to 2019.

Forest and nonforest fire
We aggregated the MODIS burned area (product name: MCD64A1 
v006) product to 10-km resolution by keeping the percentage of 
burned area (PBA) in each pixel from 2001 to 2019. If there was a 
forest-clearing event occurring in the same pixel that showed posi-
tive BA at the MODIS resolution (500 m), we treated it as forest 
clearing instead of fire to avoid double counting the carbon loss 
from fire and forest loss. Using Landsat-based forest cover change 
over MODIS burned area for overlap pixels is based on the finer 
resolution (30 m) of Landsat pixels and the definition of cover 
change being complete clearing of the forest. Such a correction may 
result in a conservative estimation of fire emissions but avoids pos-
sible overestimation as the committed emission factor of forest 
clearing can be much higher. We also performed the test showing 
that there is only a small fraction of pixels having both forest clear-
ing and fire events (fig. S6D). On average, only 17% of the forest 
clearing area had coexisting fire events from 2001 to 2019, which 
translates to 12% of the committed carbon emission from forest 
clearing. The overlap of forest clearing from Landsat and burned 
area also suggests that any error in confusing the partial clearing 
from fire with the total clearing in Landsat forest cover change algo-
rithm may cause overestimation of emissions particularly in north-
ern boreal regions.

Emission efficiency factors
To estimate the committed emissions of carbon from forest clear-
ing, degradation, and fire events, we used the emission efficiency 
factors from literature (5, 24, 45) for forest clearing (fC = 1), degra-
dation (fD = 0.07), and fire (fB = 0.3). To avoid double counting, 
annual area of disturbance for each grid cell was calculated by first 
including forest clearing, then fire area not overlapped by forest 
clearing, and then degradation area not overlapped by clearing and 
fire. We define the emission efficiency factor as the fraction of com-
mitted emission during the disturbance event versus the total car-
bon available within the vegetation being burned/cleared. We added 

10% variations around the mean emission efficiency factors to in-
troduce uncertainty in forest clearing, degradation severity, and fire 
combustion factors, as disturbances can be highly variable even for 
a single event (74). The total emissions from forest clearing (EFC), 
tropical forest degradation (EFD), and fire (EFire) were then estimated 
using the bottom-up modeling approximation

   

 E  FD   =  ∑ 
i
      PDA  i   ×  C  i   ×  f  D  

    E  FD   =  ∑ 
i
      PDA  i   ×  C  i   ×  f  D     

 E  Fire   =  ∑ 
i
      PDA  i   ×  C  i   ×  f  B  

   (8)

where Ci is the total live biomass carbon from the annual carbon 
stock mapping for pixel i, PCA (or PDA  and PBA) represents per-
cent of disturbed area within the 10-km pixels, and EFC (or EFC and 
EFire) represents the emission from forest clearing (or degradation, 
fire) for the corresponding year. The estimation of fire emission has a 
major caveat at 10-km resolution in mixed forest/nonforest regions 
for uneven distribution of fire events. We therefore separated each 
10-km pixel into two fractions—forest and non-forest fractions—
and denoted the forest (or nonforest) carbon within each pixel as 
CF (or CNF). In this case, the fire emission for each pixel can be 
redistributed as

   E  Fire   =  ∑ 
i
    ( C  F,i   ×  PBA  F,i   ×  C  NF,i   ×  PBA  NF,i   ) ×  f  B    (9)

The fractions of PBAF and PBANF were estimated using the 
MODIS VCF product for each year, in which the percent tree cover 
layer stores information about the forest and nonforest fractions. 
For the allocation of carbon in CF and CNF, we first obtained the 
ratio R0 = CF/CNF from the existing fine-resolution global carbon 
stock map (25), and with the knowledge of carbon stock Ci for the 
10-km pixel i in each year, we have

   
 C  F,i   =  C  i     

 R  0   ─ 1 +  R  0       
 C  NF,i   =  C  i     

 R  0   ─ 1 +  R  0    
   (10)

The separation of forest and nonforest regions provides more 
accurate estimates of fire emissions based on the fact that more fires 
(at a finer resolution) tend to occur in nonforest regions. If such a 
mixed-pixel effect is not considered, then the fire emissions can be 
overestimated.

Adjusting carbon changes in intact forests
Our estimates of carbon stocks have no systematic error or under-
estimation of large biomass forests because of large grid cells. How-
ever, the existing pixel-level random error of biomass prediction 
may not capture the very slow biomass gain and IAV of biomass in 
these forests. Especially in large biomass forests, the pixel-level un-
certainty is relatively higher than small biomass regions (fig. S7). 
For these intact forests, we directly apply the biome-level growth 
rates for biomass carbon based on a combination of existing inven-
tory data from temperate and boreal regions, research plots across 
tropics, and the recently revised IPCC guidelines (1, 29) to adjust 
long-term estimates of carbon removals. The definition of intact 
forests includes two scenarios: (i) forested regions with pixel-level 
AGB density larger than 200 Mg ha−1 and (ii) forested regions with 
pixel-level AGB density larger than 200 Mg ha−1. For both scenarios, 
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we removed the area fractions that experienced disturbance events, 
including deforestation, fire, and degradation. The remaining for-
ested areas in each scenario were regarded as intact forests, and we 
applied the region-specific growth rates to obtain the long-term 
estimates of carbon changes (table S4).

Uncertainty analysis
Our uncertainty assessment of the carbon stocks and gross sources 
and sinks accounts for errors in the data and models and propagat-
ing errors spatially and for large-scale inferences. There are various 
sources of uncertainty in our mapping process and vegetation car-
bon estimates (table S7), including the lidar-biomass model estima-
tion that may be developed directly from plot data or airborne lidar 
and plot data including the uncertainty of estimating below ground 
from the AGB (model A), spatial mapping estimates using the ML 
model (model B), C stock change estimates from the time-series 
analysis (model C), and estimation of C emission and removal flux-
es (model D). Models A, B, and C all take the general form of equa-
tion for estimation

   y  i   = f( X  i  ,  ) +     i   =    i   +    i    (11)

where for each pixel i, the estimation yi is dependent on the model 
f(…) with predictor variables Xi and model parameter set , and i 
is the residual term representing the difference between the predic-
tion and the observation. For pixel-level uncertainty, it includes the 
sources of error related to model residual variance    ,i  

2   , parameter 
estimation error variance    ,i  

2   , and data uncertainty (measurement 
error) from predictor variables    X,i  

2    (22)

    i  
2  =   ,i  

2   +   ,i  
2   +   X,i  

2    (12)

Assuming that predictor variables from remote sensing mea-
surements have unknown but negligible errors (calibration of re-
mote sensing data at the spatial scale of our study can be ignored), 
we focus on estimating the first two variance terms in Eq. 12. The 
residual variance    ,i  

2    can be modeled using the following approxi-
mation that considers heteroscedasticity

    ,i  
2   = f( X  i  ,  ̂   )  (13)

where  is the model parameter to be estimated from the cross- 
validation process for the comparison of training data to model pre-
dictions. Model A usually reports this uncertainty only, and  
(relative uncertainty with respect to the actual estimation) ranges 
from 5 to 90% (table S5) with an average error of the order of 10% 
(14). To investigate the carbon changes detected from satellite sig-
nals, we do not include this model A uncertainty in our reported 
numbers and treat the existing residual (difference between the 
measurement and estimation) as a consistent bias of the target vari-
able (lidar samples) in model B. The residual variance of model B is 
one of the direct outputs of regression ensemble (73), and we are 
able to produce pixel-level error maps annually derived from the 
model residuals.

The model-related uncertainty    ,i  
2    is due to the sampling vari-

ability from available training data, which would produce different 
sets of model parameter estimates that lead to the uncertainty of the 
machine learning model itself. Model A, because of the small 
sample size of plot-level estimates, has limited information on this 

uncertainty. Model B, as the nonparametric model, can use the 
bootstrapping procedure to estimate the sample-induced modeling 
uncertainty. RF model is essentially a bootstrapping model in which 
each decision tree generates bootstrapped samples to build decision 
rules (73). With the minimal modification of the existing package, 
we can estimate the model uncertainty at both the pixel scale and 
regional scale (22). In our study, the interested variable in model C 
is the slope of linear regression over time. Therefore, model param-
eter uncertainty is the term that we care to solve. Inheriting the 
bootstrapped samples built in model B, we propagate the uncertainty 
established in model B to estimate the parameter uncertainty in 
model C.

The scaling of pixel-level estimates to regional means needs con-
siderations of pixel-level covariance of both the modeling uncer-
tainty and the residual term (22)

   
 ̂  MSE ( ̂    ) =   1 ─ 

 N   2 
    ∑ 
i=l

  
N

     ∑ 
k=l

  
N

    ̂  Cov (  ̂     i  ,   ̂     j   ) +   1 ─ 
 N   2 

    ∑ 
i=l

  
N

     ∑ 
k=l

  
N

    ̂  Cov (  ̂     i  ,   ̂     j  )
     

=   1 ─ N    ∑ 
i=l

  
N

    ̂  Var (  ̂     i   ) +   1 ─ 
 N   2 

    ∑ 
i≠

  
N

    ∑ 
k
  

N
    ̂  Cov (  ̂     i  ,   ̂     j   ) +   1 ─ 

 N   2 
    ∑ 
i=l

  
N

     ∑ 
k=l

  
N

    ̂  Cov (  ̂     i  ,   ̂     j  )
   (14)

where MSE is the mean squared error of the regional mean estimate 
from a total of N pixels. The two covariance terms are sources of 
errors related to model residuals and model predictions. The resid-
ual variance and covariance (components related to   ̂    ) are related to 
pixel-level prediction residuals and associated spatial autocorrela-
tions for regional estimates, and the prediction-related (  ̂    ) covari-
ance term can be readily estimated using bootstrapping procedure 
to account for both the model parameter uncertainty and the corre-
sponding covariance between pixel predictions.

In addition to these algorithmic uncertainty estimates, there are 
several sources of error that may influence the results of our analy-
sis and are addressed in Discussion. These include the potential un-
certainty in detecting forest biomass gain in intact high biomass 
forests (e.g., moist tropical forests), offsetting gain and loss in large 
grid cells, and potential influence of environmental effects on the 
interannual variability of carbon stock changes, particularly in areas 
of high biomass intact forests where biomass changes are small.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/27/eabe9829/DC1
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