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Abstract

Background: Lesion-related factors are associated with severity of language impairment in 

persons with aphasia. The extent to which demographic and health factors predict language 

impairment beyond traditional cortical measures remains unknown. Identifying and understanding 

the contributions of factors to predictive models of severity constitutes critical knowledge for 

clinicians interested in charting the likely course of aphasia in their patients and designing 

effective treatment approaches in light of those predictions.

Methods: Utilizing neuroimaging and language testing from our cohort of 224 individuals in 

the chronic stage of recovery from a left-hemisphere stroke in a cross-sectional study, we first 

conducted a lesion symptom mapping (LSM) analysis to identify regions associated with aphasia 

severity scores. After controlling for lesion volume and damage to pre-identified areas, three 

models were created to predict severity scores: 1) Demographic Model (N = 147); 2) Health 

Model (N = 106); and 3) Overall Model (N = 106). Finally, all identified factors were entered into 

a Final Model to predict raw severity scores.

* Corresponding author. 915 Greene Street, Room 211, Columbia, SC 29208, USA. LJ4@email.sc.edu (L. Johnson).
Author credit
Lisa Johnson: Conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing, 
visualization, supervision, project administration.
Samaneh Nemati: Conceptualization, writing-review and editing.
Leonardo Bonilha: Writing-review and editing, conceptualization, funding acquisition.
Chris Rorden: Software, validation, writing-review and editing.
Natalie Busby: Conceptualization, writing-review and editing, visualization, data curation.
Alexandra Basilakos: Conceptualization, writing-review and editing, data curation.
Roger Newman-Norlund: Conceptualization, writing-review and editing, formal analysis, software.
Argye E. Hillis: Conceptualization, writing-review and editing.
Gregory Hickok: Conceptualization, writing-review and editing.
Julius Fridriksson: Conceptualization, funding acquisition, project administration, writing-review and editing.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.cortex.2022.06.013.

HHS Public Access
Author manuscript
Cortex. Author manuscript; available in PMC 2024 June 26.

Published in final edited form as:
Cortex. 2022 September ; 154: 375–389. doi:10.1016/j.cortex.2022.06.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: Two areas were associated with aphasia severity—left posterior insula and left arcuate 

fasciculus. The results from the Demographic Model revealed non-linguistic cognitive ability, 

age at stroke, and time post-stroke as significant predictors of severity (P = .005; P = .02; P = 

.001, respectively), and results from the Health Model suggested the extent of leukoaraiosis is 

associated with severity (P = .0004). The Overall Model showed a relationship between aphasia 

severity and cognitive ability (P = .01), time post-stroke (P = .002), and leukoaraiosis (P = .01). 

In the Final Model, which aimed to predict raw severity scores, demographic, health, and lesion 

factors explained 55% of the variance in severity, with health and demographic factors uniquely 

explaining nearly half of performance variance.

Conclusions: Results from this study add to the literature suggesting patient-specific variables 

can shed light on individual differences in severity beyond lesion factors. Additionally, our results 

emphasize the importance of non-linguistic cognitive ability and brain health in aphasia recovery.
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1. Introduction

Considerable research has focused on identifying factors that impact aphasia prognosis 

and treatment response, including lesion-related and non-lesion-related measures. While 

lesion size and location have consistently been associated with symptom profiles of PWA, 

the extent to which demographic and health characteristics are related to aphasia severity 

remains unclear. For example, although stroke incidence has been found to be more 

prevalent for men (Appelros et al., 2009), the rate of post-stroke aphasia has been found to 

be higher among women (Berglund et al., 2017). Other studies, however, have reported the 

opposite, suggesting a higher incidence of post-stroke aphasia in men (Basso, 1992; Kertesz 

& Sheppard, 1981). Similarly, the impact of sex on diagnosis of aphasia type and severity is 

unclear in the literature (Godefroy et al., 2002; Hier et al., 1994). The inconsistency in the 

literature regarding demographic factors’ impact on aphasia severity and prognosis extends 

to other factors as well, including education level, socio-economic status (SES), pre-morbid 

handedness, and non-linguistic cognitive ability (Connor et al., 2001; González-Fernández 

et al., 2011; Holland et al., 2017; Johnson, Basilakos, Yourganov, & et al., 2019; Kim et 

al., 2019; Laska et al., 2001; Plowman et al., 2012; Watila & Balarabe, 2015). One possible 

explanation for conflicting reports may be due to the interrelationship between these factors. 

For example, SES, education, and non-linguistic cognitive ability are likely closely linked to 

realted factors such as pre-morbid intelligence, literacy level, insurance status, and existence 

of learning disabilities pre-stroke. It is also important to note that studies that have observed 

a relationship between SES, education, and severity have been in acute cases, while studies 

of chronic severity do not observe an effect.

Some studies suggest that the relationship between demographic factors and aphasia severity 

is rather weak compared to lesion-related factors (i.e., lesion size and location) (Plowman 

et al., 2012; Watila & Balarabe, 2015). However, more recently, studies have presented 

evidence that some non-lesion-related factors such as age at stroke, time post-stroke and 

overall health are associated with aphasia severity in the chronic stage (Basilakos, Stark, 
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Johnson, & et al., 2019; Harnish et al., 2018; Johnson et al., 2019; Wilmskoetter et al., 

2019). Rather, age at injury, time post-stroke, and baseline severity (Osa Garcia et al., 2020) 

have been the most consistent demographic predictors reported in the literature as being 

associated with chronic severity and recovery (Johnson et al., 2019). Recently, our group 

found that the older an individual is at the time of their stroke, the more likely they will 

show a greater degree of language decline as they progress in the chronic stage of recovery 

(Johnson et al., 2019). This finding is consistent with the literature that reports older age 

predicts poorer aphasia prognosis post stroke (Laska et al., 2001; Lendrem & Lincoln, 

1985).

Patient-specific health factors such as comorbid diabetes, rate of exercise, body mass index 

(BMI), and extent of white matter hyperintensities (WMH) have also been shown to add 

to predictive models of aphasia severity, recovery, and treatment outcome. Harnish and 

colleagues (2012) found that physical exercise done in tandem with traditional language 

therapy was associated with greater rates of improvement compared to a group who received 

only language therapy in isolation. In a recent publication from our group, the rate of 

exercise was found to be a predictor of chronic aphasia improvement in individuals with a 

comorbid diabetes, suggesting that maintenance of health when diagnosed with comorbid 

diseases via regular physical exercise may elicit a neuroprotective response (Johnson et 

al., 2019). BMI, a measure of obesity, has been implicated in the stroke literature for its 

paradoxical effect on survival and functional recovery. This paradox indicates a “survival 

benefit” and greater likelihood of functional outcomes in obese patients who have a stroke 

(Chiquete et al., 2010; Zhao et al., 2014; Kim et al., 2019). However, no study to our 

knowledge has investigated BMI in chronic aphasia in addition to other health-related 

measures to determine the significance of the obesity effect. Indicators of poor health (i.e., 

comorbidity presence/poor management, obesity, substance abuse) have all been associated 

with a measure of overall brain health as indicated by presence and extent of WMH 

(Vangberg et al., 2019; Fazekas, 1987; Lin et al., 2017). Further, WMH have been linked to 

cognitive decline and depression (Ladis, 2011). Recently, WMH ratings have been reported 

to be associated with aphasia severity and recovery in both the acute and chronic stages 

of stroke. Basilakos et al. (2019) presented evidence that the severity of leukoaraiosis, as 

measured by the extent of WMH in the intact hemisphere, was associated with poorer 

aphasia recovery. Similarly, Wilmskoetter et al., 2019 found that the extent of WMH is 

an indicator of greater aphasia severity. These findings provide a novel perspective in 

identifying factors that may impact aphasia severity, suggesting that individual factors, 

including brain health, may shed light on individual variability in performance, prognosis, 

and perhaps may provide some insight into aphasia treatment response.

Including lesion-related measures (such as size and location) in predictive models of aphasia 

progression often explains a sizeable amount of variance in individual performance (Forkel 

et al., 2014; Marebwa et al., 2017; Plowman et al., 2012; Thye & Mirman, 2018). It 

is generally accepted that larger lesions are associated with more severe impairments 

and poor aphasia recovery. Lesion size also negatively influences overall prognosis, with 

smaller lesions being associated with more recovery and larger lesions being associated 

with less improvement and an overall lower likelihood of recovery (Goldenberg & Spatt, 

1994). Clinical presentation across individuals with aphasia is highly variable and studies 
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investigating individual lesion profiles have attempted to explain this variability. In a study 

investigating 45 persons with aphasia (PWA), Mazzoni and colleagues (Mazzoni et al., 

1992) documented recovery patterns based on lesion size and described that those with small 

lesions improved in both receptive and expressive language domains, whereas individuals 

with larger lesions showed improvement only in the receptive domain. Similarly, in a study 

investigating the prognosis of 669 PWA, Maas and colleagues (Mass et al., 2012) found that 

individuals with smaller strokes are more likely to have an overall better prognosis.

In addition to lesion size, lesion location has also been shown to significantly predict 

variance in aphasia severity. In a comprehensive review of non-lesion- and lesion-related 

factors associated with language impairment due to cerebral insult, Plowman and colleagues 

(Plowman et al., 2012) concluded that lesion size and location are the most important 

clinical predictors of aphasia type and severity. Specifically, damage to opercular and insular 

regions in conjunction with inferior frontal damage has been associated with more severe 

expressive deficits (Hart & Gordon, 1990), whereas damage to the superior temporal gyrus 

has been associated with poor language recovery and global deficits (Hanlon et al., 1999). 

More recently, investigations of white matter connections and their association with overall 

aphasia severity have found that anterior-posterior language connections are associated with 

performance on language assessments. Specific to overall aphasia severity, the integrity of 

the superior longitudinal (SLF) and arcuate fasciculus has been linked to expressive and 

receptive language as well as overall aphasia severity and overall language performance 

(Kümmerer et al., 2013; Lee et al., 2021; Rosso et al., 2015). The question remains, 

however, what extent patient-specific demographic variables add to predictive modeling of 

longitudinal aphasia progression that lesion data, alone, cannot address.

Taken together, previous work does provide evidence that overall aphasia severity is 

associated with some demographic and health factors, however, relationships appear to be 

inconsistent in the present literature. Further, it is also unclear the extent to which residual 

variability in aphasia severity is explained by non-lesion-related variables after accounting 

for damage to critical language regions (measure of lesion location) and lesion size. The 

aim of the present study was to investigate the impact of demographic and health factors 

that are often implicated to predict severity to identify those that explain the variance in 

behavior above and beyond lesion profile. Using a data-driven approach to address this aim, 

we will first identify critical language regions for aphasia severity and regress out damage 

to those regions as well as total lesion volume from aphasia severity scores. Demographic 

and health factors will then be added into models to predict the remaining variance in 

performance to identify factors which explain unique variance in behavior. As discussed 

above, insular regions and white matter tracts connecting anterior-posterior language regions 

have been implicated in the literature as being regions most associated with measures of 

overall aphasia severity. It is for this reason that we hypothesized those regions and white 

matter connections (i.e., insular cortex, AF, and SLF) as being identified as critical language 

regions which can give an indication of lesion location. Furthermore, we hypothesize that: 

(i) demographic factors which show the most consistency in the literature (i.e., age at stroke, 

time post-onset) and non-linguistic cognitive ability will be associated with severity and (ii) 

health factors, such as extent of leukoaraiosis and the presence/maintenance of additional 

comorbidities (i.e., diabetes and obesity) will be associated with severity.
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2. Materials and methods

2.1. Participants

This was a retrospective study of prospectively collected data on individuals who previously 

experienced (≥6 months post-stroke) a stroke in the left hemisphere. We report how 

we determined our sample size, all data exclusions (if any), all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations, and all measures in the study. Data were obtained from a database of 

individuals who participated in aphasia treatment studies at the University of South Carolina 

(UofSC) or Medical University of South Carolina (MUSC) from 2005 to 2020. No part of 

the study procedures or analyses was pre-registered prior to the research being conducted.

Inclusion criteria for this analysis were defined prior to data analysis and were as follows: 

availability of aphasia severity scores as indicated by a Western Aphasia Battery–Revised 

(Kertesz, 2007) (WAB-R) Aphasia Quotient (WAB-AQ), structural neuroimaging data 

obtained within 6 months of language testing (M = 6.0 ± 19.4 days; range = 0–163 

days), 21–85 years old, pre-morbidly right-handed, and in the chronic stage of recovery 

(≥6 months post-onset) following a left hemisphere stroke (M = 38.5 ± 45.9; range = 

6–212). Participants with multiple strokes (regardless of stroke type) were admitted into 

this study if all stroke events were in the left hemisphere. Participants were excluded if 

they had history of speech/language impairment or other neurologic deficits affecting the 

brain. A total of 224 participants met inclusion criteria and their data were included in the 

lesion symptom mapping (LSM) analysis. Participant demographic information is presented 

in Table 2. Of the 224 participants, 147 (56 female; age at stroke: M = 56.0 ± 12.1, 

range = 27–80) had completed a detailed case history form of demographic information. 

All demographic factors were collected from a questionnaire completed by the participant 

or participant’s caretaker. Median household income from the US Census Bureau was 

calculated using participant-provided zip-codes as a proxy for SES (González-Fernández et 

al., 2011). Non-linguistic cognitive ability, as assessed by the Wechsler Adult Intelligence 

Scale (Wechsler,1955) (WAIS) Matrices sub-test, and demographic variables of interest 

(sex, years of education, age at stroke, time post-stroke, and SES) were entered into the 

Demographic Model. The WAIS Matrices sub-test was selected to attain a measure of 

nonverbal abstract problem solving and inductive reasoning. In this subtest, participants 

are shown a series of patterns with one missing element and are subsequently asked to 

identify (using any communication strategy: gesturing, pointing, speaking, etc.) the pattern 

that completes the series from four options. Because this subtest does not require any 

overt, verbal response, it is easily administrable for all aphasia types and severities. The 

Matrices test was administered and scored in a standard manner and raw scores were normed 

according to the age-normed scores in the study manual, as this approach is preferred when 

relating behavioral scores within clinical populations (Wechsler,1955).

Health variables of interest including presence of diabetes, exercise rate, extent of WMH, 

and BMI were selected based on previous studies demonstrating an association between 

these factors and treatment outcomes and/or aphasia progression (Basilakos et al., 2019; 

Harnish et al., 2018; Johnson et al., 2019; Wilmskoetter et al., 2019; Zhao et al., 2014). 
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These data were available for a subset of our participants (N = 106), therefore a second 

prediction model was constructed, which included available health factors (presence of 

diabetes, exercise rate, BMI, and WMH ratings). Diabetes presence was determined by using 

a self-reported questionnaire. Participants’ rate of exercise was self-reported and indicates 

the average number of exercise sessions per week (>30min, regardless of type intensity). 

Finally, WMH ratings were calculated using a visualmanual rating scale, which is described 

below. Participants with complete data available for demographic and health variables of 

interest were included in the Demographic, Health, Overall, and Final Models. Supplemental 

Fig. 1 provides a flowchart detailing participants included in each model.

Because the models included a different subset of participants from the initial cohort of 

224 participants, two, one-way ANOVAs were conducted to address potential sampling 

bias. No significant group differences (P > .05) were revealed across those included and 

excluded between the initial cohort and the participants in the Demographic Model, nor were 

any significant differences revealed between the participants included in the Health Model 

compared to those not included in the Health Model. Supplemental Tables 1 and 2 provide 

the results from both ANOVAs.

All participant testing took place at research laboratories at UofSC or MUSC and 

all assessments were administered by, or under the supervision of, an American 

Speech-Language-Hearing Association certified speech-language pathologist with extensive 

experience working with individuals with aphasia. Institutional Review Boards at each 

university approved the studies in which the data were obtained, and all participants 

completed written informed consent when admitted into initial and subsequent studies.

2.2. Neuroimaging

T1-weighted images utilized an MP-RAGE sequence with the following parameters: 

isotropic voxel size = 1 mm (Kertesz & Sheppard, 1981), FOV = 256 × 256mm, 192 

sagittal slices, 9-degree flip angle using parallel imaging, TR = 2250 ms, TI = 925 ms, 

and TE = 4.11 ms. T2-weighted images utilized a sampling perfection with application 

optimized contrasts using a varying flip angle evolution (3DSPACE) sequence protocol with 

the following parameters: voxel size = 1 mm (Kertesz & Sheppard, 1981), FOV = 256 × 

256mm, 160 sagittal slices, TR = 3200 ms, TE = 212 ms, and no slice acceleration. Lesion 

masks were drawn by a collaborating neurologist (author LB) or trained expert (author 

RNN) in MRIcroGL12 (Rorden et al., 2012) on T2 MRI scans in native space. The clinical 

toolbox was used to normalize the shape and size of each individual’s brain (Rorden et al., 

2012). Specifically, the T2 scan was aligned to the T1 image (with the subsequent transform 

applied to the lesion). Next, enantiomorphic normalization was computed for the T1 image 

(Nachev et al., 2007). The normalization parameters generated by the enantiomorphic 

normalization procedure were used to transform the lesion-masks into standard (MNI) space 

for lesion symptom mapping analysis.

2.3. Patient-specific factors obtained from neuroimaging

2.3.1. Lesion symptom mapping to identify critical language regions
—To identify neural correlates associated with overall aphasia severity (WAB-
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AQ), we implemented a univariate LSM analysis with the NiiStat toolbox for 

MATLAB (www.nitrc.org/projects/niistat). Using the Johns Hopkins University (JHU) 

neuroanatomical atlas a one-tailed general linear model was performed to determine which 

regions and/or tracts are associated with more severe aphasia (Faria et al., 2012). The JHU 

atlas is composed of 189 parcellated regions including cortical and subcortical regions, and 

white matter tracts. Areas that were damaged in at least 10% (N = 22) of participants were 

included in analysis. For the LSM analysis, our parameters were as follows: P-values<.05, 

corrected for multiple comparisons using permutation thresholding (5000 permutations), 

while also controlling for total lesion volume as a nuisance regressor (Winkler et al., 2014). 

Regions which survived thresholding were considered “critical language areas” which, when 

damaged, were associated with lower WAB-AQ scores (more severe impairment). A region 

mask including these critical language areas was then created. The number of total voxels 

(mm3) in this region mask was calculated and proportion damage (# of damaged voxels/total 

voxels) was calculated for all participants. The proportion damage to these regions and total 

lesion volume were then included as independent variables in a linear model to predict 

overall aphasia severity (WAB-AQ scores). Residuals from this model were then used as the 

dependent variable in the Demographic, Health, and Overall Models.

2.3.2. Rating White Matter Hyperintensities (WMH)—Ratings addressing overall 

brain health, as measured by presence of WMH, were available for a subset of participants 

(N = 106). Severity of WMH was rated by researchers with considerable experience in 

this area (authors LJ, NH, and AB) using the Fazekas scale (Fazekas et al., 1987) on 

T2-weighted MRI scans. The Fazekas scale is a visual scale that rates the presence and 

severity of WMH across two domains, each on a 0 (absent WMH) to 3 (severe WMH) 

scale: i) periventricular space (PVH); and ii) in the deep white matter (DWMH). With 

the assumption that WMH are generally symmetric (Pantoni, 2008) and in conjunction 

with prior research on post-stroke WMH (Basilakos et al., 2019), Fazekas ratings were 

completed for the intact right hemisphere and a total Fazekas score was calculated for each 

participant by adding both PVH and DWMH ratings together (scores between 0 and 6). 

Consensus ratings between raters, who were blind to participant demographic information, 

were performed to score severity of WMH. Reliability of Fazekas ratings showed excellent 

reliability (single measure intraclass correlation coefficient = .86). (Basilakos et al., 2019).

2.4. Multiple linear regression models

Comprehensive demographic information was available for 147 participants. Of those 147 

participants, 106 had health information available. Therefore, two main stepwise linear 

regression models with leave-one-out (LOO) cross-validation (a Demographic Model and a 

Health Model) were created to identify significant predictors to be included in the Overall 

Model. Demographic factors included sex, education, age at stroke, time post-stroke, SES, 

and non-linguistic cognitive ability (WAIS Matrices subtest). Health factors included total 

Fazekas score, exercise frequency, body mass index (BMI), and presence of diabetes. 

Variables were evaluated for normal distribution to ensure homoscedastic distribution via 

visual inspection and Shapiro–Wilk test of normality. Time post-stroke onset was positively 

skewed; therefore, a log transformation was performed in this data and transformed values 

were subsequently used in all analyses. No other violations of assumptions for regression 
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analyses were present. All continuous variables were then correlated (Pearson) to investigate 

and address potential multicollinearity among independent variables. Spearman correlations 

were also conducted for all relationships including Fazekas ratings. Significant (P < .05) 

correlation results are shown in a correlation matrix (Fig. 1). Significant factors from 

the Demographic and Health Models were included in an Overall Model. To account for 

the lesion, the residual values from the univariate linear regression to predict WAB-AQ 

from proportion damage to critical regions and lesion volume were used as the dependent 

variable in the three aforementioned models (Demographic, Health, and Overall). Finally, a 

LOO linear regression was conducted to predict raw WAB-AQ scores from lesion variables 

(volume and proportion damage to critical ROIs), and significant health and demographic 

variables identified in the initial models. This model, because it used raw scores rather 

than residual values which allowed for ease of interpretability of the contributions of each 

factor to explain WAB-AQ scores. To illustrate the relationship between the significant 

main effects in each model and their respective outcome measures, scatterplots between the 

outcome measure and raw main effects are presented in each figure with the significance 

value in the model.

All statistical analyses were done using the MATLAB Leave-One-Out toolbox (https://

github.com/grigori-yourganov/leave_one_out), and all figures were made using package 

GGPLOT2 (Wickham, 2016) in statistical software R (Team, 2018). Variables included in at 

least 5% of iterations with P < .05 were considered statistically significant and are reported. 

Model outputs from the toolbox provides results from both the stepwise linear model and 

results when using the LOO cross-validation, therefore t-statistics for significant variables 

are provided from both outputs.

2.5. Data availability

The conditions of our ethics approval do not permit sharing of the raw MRI data 

supporting this study with any individual outside the author team under any circumstances. 

However, de-identified neuroimaging and clinical data are made available in addition 

to scripts used for figure-making in a GitHub repository (https://github.com/lajohn25/

PredictorsBeyondtheLesion_Cortex).

3. Results

3.1. LSM analysis to identify critical regions associated with aphasia severity

The lesion overlay map of the participants included in the atlas-based LSM analysis to 

identify critical language regions associated with aphasia severity is presented in Fig. 2A. 

The LSM analysis to predict WAB-AQ revealed one white matter tract and one cortical 

region, which, when damaged, were associated with more severe aphasia: the superior 

longitudinal fasciculus (SLF; z = 3.64) and posterior insula (z = 3.15; Fig. 2B and C). 

It is important to note that the atlas used in the LSM analysis (JHU) describes the SLF 

as a tract containing connections between the frontal, parietal, occipital, and temporal 

lobes including language-related areas (Broca’s, Geschwind’s, and Wernicke’s territories). 

(Description about JHU Multi) Given this description, the high degree of overlap between 

this region’s coordinates and the arcuate fasciculus (Catani & Thiebaut de Schotten, 2008), 
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and the fact that the JHU atlas does not have a tract dedicated to the arcuate, we will 

henceforth refer to this tract as the superior longitudinal fasciculus-arcuate branch (SLF-A).

To account for the variance explained by damage to critical language regions and total lesion 

volume, total lesion size (measured in mm3) and proportion damage to the aforementioned 

region and tract for each participant were calculated included as independent variables in 

a linear regression model to predict WAB-AQ. This lesion model accounted for 47% of 

the variance (Adj. R2 = .47, F (2,224) = 101.9), P < .00001), and results are presented in 

Table 1. To illustrate the significant main effects between WAB-AQ and lesion variables, 

scatterplots between lesion volume (left) and proportion damage to critical regions (right) 

and WAB-AQ are presented with their respective p-value from the regression model (Fig. 

2D).

3.2. Stepwise regression with leave-one-out cross validation results: Demographic Model

Table 2 provides summary statistics of demographic information (N = 147) and health data 

(N = 106) for the participants included in the regression models. The independent variables 

included in the Demographic Model included: age-corrected WAIS Matrices scores, time 

post-stroke (in months), age at stroke, sex, education (in years), and SES (median household 

income). No interaction effects were included in the model. The dependent variable in this 

model was aphasia severity after accounting for proportion damage to critical language 

areas and lesion volume (i.e., residuals from the univariate linear regression described 

above). Three statistically significant predictors (WAIS, age at stroke, and time post-stroke), 

illustrated in Fig. 3, were revealed from our Demographic Model, indicating a relationship 

between non-linguistic cognitive ability (P = .005), age at stroke (P = .02), and time post 

stroke (P = .001) and aphasia severity even when the effect of lesion size (measured in mm3) 

and location had been factored out (Fig. 3). The Demographic Model explained 15% of the 

variance in residual WAB AQ scores unexplained by the lesion (Adj. R2 = .15, F (18.2,147) 

= 9.55), P < .00001). The correlation between actual and predicted scores from this model 

was statistically significant (r = .35, P < .00001), and the following features were selected in 

at least 5% of iterations: WAIS scores (t = 2.9, 100% of iterations), age at stroke (t = −2.3, 

99.32% of iterations), and time post-stroke (t = 3.3, 100% of iterations). Table 3 provides the 

summary statistics for the Demographic Model.

3.3. Stepwise regression with leave-one-out cross validation results: Health Model

In the subset of participants with health data, a second model including BMI, presence 

of diabetes, exercise rate post-stroke, and WMH ratings as measured using the Fazekas 

rating scale (Fazekas et al., 1987) was constructed (N = 106). As before, the dependent 

variable was aphasia severity after accounting for lesion factors. A statistically significant 

effect of total Fazekas scores (P = .0004) was found in our model (Fig. 4). The Health 

Model explained 11% of the variance in residual WAB AQ scores unexplained by lesion 

factors (Adj. R2 = .11, F (18.4,104) = 13.6), P = .0004). The correlation between actual 

and predicted scores from this model was significant (r = .29, P = .003), and one feature 

was selected to be included in at least 5% of iterations: Fazekas rating (t = −3.7, 100% of 

iterations). Table 3 provides summary statistics from the Health Model.
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3.4. Stepwise regression with leave-one-out cross validation results: Overall Model

A total of 106 participants had all data available and were included in the Overall Model. 

The independent variables included in the model were: WAIS score, time post-stroke, age 

at stroke, and the extent of WMH. The dependent variable was aphasia severity after 

accounting for proportion damage to critical language areas and lesion volume, consistent 

with the two previous models. All four effects were entered into at least 5% of iterations: 

WAIS score (t = 2.5, 100% of iterations, P = .01), time post-stroke (t = 3.2, 100% of 

iterations, P = .001), total Fazekas (t = −2.6, 100% of iterations, P = .01), and age at stroke 

(t = −1.9, 96.2% of iterations, P = .057). The Overall Model explained 27% of the variance 

in residual WAB AQ scores controlled for lesion to critical language regions (Adj. R2 = .27, 

F (16.6,101) = 10.8), P < .00001). The correlation between actual and predicted values for 

this model was statistically significant (r = .45, P < .00001). Table 3 provides the summary 

statistics for the Overall Model.

3.5. Linear regression with leave-one-out cross validation results: Final Model

A Final Model was created to predict raw WAB-AQ scores from identified demographic, 

health, and lesion factors to aid in interpretability in factor contributions to severity scores. 

Therefore, the independent variables included in the model were: WAIS Matrices score, 

time post-stroke (transformed to address heteroskedastic distribution), age at stroke, total 

Fazekas rating, total lesion volume, and proportion damage to critical areas (insula and 

SLF-A tract). Data from 106 participants were available for this model. This Final Model 

accounted for 55% of the variance in aphasia severity (Adj. R2 = .55) and the correlation 

between actual and predicted values for this model was statistically significant (r = .72, P 
< .00001). The following variables were significant (P < .05) and were entered into at least 

5% of iterations: Proportion damage to critical areas (t = −6.0, 100% of iterations, P < 

.00001), time post-stroke (t = 3.0, 100% of iterations, P = .003), WAIS Matrices score (t = 

2.7, 100% of iterations, P = .007), and total Fazekas rating (t = −2.5, 100% of iterations, P 
= .02). Total lesion volume and age at stroke did not contribute significantly to the model 

nor were they selected into >5% of iterations (P = .52, P = .09, respectively). Partial R2 

was calculated for each factor entered in the model to measure relative contribution of each 

factor to explaining aphasia severity using the following equation: R2 = t-statistic (Berglund 

et al., 2017)/(t-statistic (Berglund et al., 2017) + degrees of freedom). Table 4 provides 

model statistics for the Final Model and Fig. 5 shows the relative contribution of each factor.

4. Discussion

The present study sought to identify non-lesion-related characteristics that can explain the 

variance in aphasia severity after accounting for damage to critical language areas. Two 

models (Demographic Model (N = 147), and Health Model (N = 106)) investigated the 

following non-lesion-related characteristics and their association with aphasia severity: sex, 

education, age at stroke, time post-stroke, non-linguistic cognitive ability, exercise frequency 

post-stroke, presence of diabetes, BMI, and WMH. After identifying factors associated with 

residual WAB-AQ values from the Demographic and Health Models, an Overall Model was 

created (N = 106) including critical health and demographic variables identified from the 

previous models. Finally, raw WAB-AQ scores were used as the dependent factor in a Final 
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Model to explore the relative contribution of each variable (lesion, demographic, and health 

variables) to aphasia severity.

4.1. Damage to the insula and SLF-A predict aphasia severity

The present study utilized data from 224 participants with aphasia to identify critical 

language regions and/or tracts which, when damaged, were associated with greater aphasia 

severity as per the WAB-R. One region and one white matter tract within the dorsal stream 

were revealed in this analysis: the posterior insula and the SLF-A.

Given its structural connections with the auditory, motor, parietal, and cingulate cortices, the 

insula has been implicated in a range of functions including auditory processing (Augustine, 

1996; Fifer, 1993), cognition (Seeley et al., 2007; Uddin, 2015), and speech production 

(Ackermann & Riecker, 2010; Baier et al., 2011). Though focal lesions of the insula can 

result in heterogeneous behavioral deficits, damage to the insula typically results in deficits 

in multiple language processes rather than impacting a single process (Di Stefano et al., 

2021; Fridriksson et al., 2018). Given its involvement within both speech production and 

auditory processing, damage to insular structures should result in a more global deficit, thus 

a more severe WAB-AQ.

White matter tracts which serve to connect anterior and posterior language regions have 

long been associated with measures of gross language performance (Catani & Mesulam, 

2008; Fridriksson et al., 2018; Lee et al., 2021; Rosso et al., 2015; Tak & Jang, 2014). In 

the present paper, we found that the integrity of the SLF (area 155 in the JHU atlas), a 

tract described as a connection between frontal, temporal, and parietal cortices, is associated 

with aphasia severity. Historically, disentangling the branches of the SLF has long been 

debated and the relative dissociation between branches is even more controversial. There 

is some agreement, however, that a significant component of the SLF, particularly that 

which connects the superior temporal cortices to ventrolateral prefrontal cortex, is often 

referred to as the arcuate fasciculus (AF). Due to the description of area 155 and the 

neuroanatomical location, we refer to the identified region as the SLF-A. Evidence of the 

SLF-A’s contribution to language performance has been observed in both healthy older 

adults and clinical populations (Madhavan et al., 2014). Evidence of its involvement in 

the language network is particularly evident in the aphasia literature. In a study using 

tractography to predict aphasia severity, damage to the SLF and arcuate fasciculi showed 

the best accuracy at predicting aphasia severity (Nachev et al., 2007). The relationship 

between SLF-A integrity and aphasia severity is likely because of its involvement in overall 

language function (Glasser & Rilling, 2008). This relationship is further evidenced in studies 

investigating age-related changes of the SLF in healthy controls, of which is associated with 

decreased language functioning as measured by vocabulary, naming, word association, and 

semantic fluency tasks (Madhavan et al., 2014).

Together, integrity of the SLF-A provides inter-regional connectivity of dorsal stream 

cortical regions, including the insula, with neighboring language regions. That the two 

are the only surviving areas/tracts in a lesion symptom analysis of overall aphasia severity 

emphasizes the language network’s dependency on the insular cortex and the degree of 
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functional and/or structural connectivity between it and other well-documented language 

areas such as inferior frontal cortex and posterior temporal regions.

4.2. Age at stroke impacts aphasia severity

Many studies have observed an effect of age on overall aphasia severity and treatment 

response (Gilmore et al., 2019; Holland et al., 2017; Smith, 1971). Increased age may 

lead to mild cognitive declines, which has been shown to impact performance on speech 

production and comprehension (Shafto & Tyler, 2014; Messer, 2017). For example, speech 

production in older adults is often described as more vague and simplified, and is produced 

at a slower rate compared to speech produced by younger adults (Kemper & Sumner, 

2001; Neumann-Werth et al., 2009). Healthy older adults also report greater difficulty 

with word finding and this manifests in speech production as an increase in pauses 

(Schmitter-Edgecombe et al., 2000). Age-related declines in comprehension at the word, 

sentence, and discourse level have also been frequently documented showing that not only 

do older adults present with more errors on comprehension tasks, but their recognition 

is significantly slower than younger adults. (Messer, 2017; Kliegl et al., 2004). Although 

age-related structural and functional brain changes may underlie some of these findings 

(i.e., some studies showing that the recruitment of insula-frontostriatal structures in older 

adults is associated with greater “tip of the tongue” states (Shafto & Tyler, 2014)), little is 

known about the interaction of such changes with health and demographic factors. Results 

from our study highlight the importance of including age in predictive models of aphasia 

severity, particularly when investigating demographic predictors of severity. Interestingly, 

when included with health factors in predictive models of severity, age at stroke is no longer 

significant. This may be due to a possible interaction between age at stroke and health 

factors such as WMH, but future studies must be done to tease apart this effect.

4.3. Performance improves beyond stroke incident

Recent studies have provided evidence that the chronic stage of recovery is quite dynamic, 

with about half of stroke survivors improving on language performance years beyond stroke 

incidence (Holland et al., 2017; Hope et al., 2017; Johnson et al., 2019). Though our study 

did not evaluate individuals’ aphasia progression longitudinally, results from our study do 

suggest that individuals who are in the later stages of recovery present with less severe 

aphasia. Studies investigating the dynamics of brain connectivity have shown that, as time 

post-stroke increases, stroke survivors can reach the same level of connectivity as healthy 

participants even after initial reduction of overall connectivity (see Desowska & Turner 

(Baldo et al., 2015) for a review) (Desowska & Turner, 2019). Further, such connectivity 

increase is positively correlated with behavioral gains. This review further detailed that these 

behavioral and connectivity improvements are moderated by therapy or can be observed 

without a direct intervention. Of note, this systematic review by Desowska & Turner 

(Desowska & Turner, 2019) found evidence of dynamic connectivity patterns in the motor 

network, specifically, which aligns with prior studies showing individuals with more anterior 

lesions have a greater likelihood of recovery (Hanlon et al., 1999; Naeser et al., 1989; Sul 

et al., 2019). It is unclear if posterior language regions show a similar pattern. Additionally, 

given the participants in our cohort indicate their interest in participating in continued 

research (treatment studies and studies that do not provide treatment), it is evident that 
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motivation among these more “seasoned” stroke survivors is high. Therefore, it is possible 

that these participants continued to seek practice activities, clinical treatment, and could, 

perhaps, have had more opportunities to develop communication strategies during their 

recovery. Results from this study emphasize the need to evaluate other neural changes that 

could provide an explanation for less severe aphasic deficits as time post-stroke increases.

4.4. Cognitive reserve is associated with aphasia severity

The relationship between cognition and language ability is a challenging area of study 

given the inter-dependence of language on higher-level cognitive domains. Given this 

challenge, few studies have attempted to address the degree of importance of cognitive 

ability on aphasia severity and recovery patterns. Conventional descriptions of aphasia 

indicate that it exclusively impacts language while leaving overall cognition relatively 

spared. However, a number of studies have presented evidence that individuals with aphasia 

do present with deficits in reasoning, problem-solving, and more general cognitive domains 

(Baldo et al., 2005, 2010, 2015; González-Fernández et al., 2011; Helm-Estabrooks, 2002). 

In a cross-sectional study, Gonzalez-Fernandez and colleagues (González-Fernández et 

al., 2011) found that cognitive reserve (as indicated by participant education level) was 

significantly associated with acute aphasia severity after controlling for age, sex, lesion 

volume and socio-economic status (SES). This study also found a relationship between 

errors on language tasks and poorer performance on cognitive assessments. Baldo and 

colleagues (Baldo et al., 2015) found a similar relationship between chronic aphasia severity 

and cognition, in that persons with aphasia performed worse, overall, on evaluations of 

cognition compared to neurotypical controls. However, the impact of aphasia on cognition 

appeared to particularly impair reasoning tasks, leaving all other non-linguistic cognitive 

tasks comparable in performance to that of controls. The stroke literature, more broadly, 

also points to a relationship between stroke-related impairment and cognitive reserve. In a 

review by Rosenich and colleagues (Kertesz, 2007), the authors discussed previous literature 

which provide evidence of the significance of cognitive reserve on stroke recovery, disability 

burden, language deficits, and psychological well-being (Rosenich et al., 2020).

Aphasia has been associated with impairments in attention (Villard & Kiran, 2015), 

executive function (Purdy, 2002), and short-term memory (Lang & Quitz, 2012) which 

suggests that the neural networks responsible for language and cognition are not mutually 

exclusive. To our knowledge, no study has investigated the relationship between cognitive 

ability and aphasia severity after controlling for lesion damage. As the present study was 

retrospective and precluded examination of specific cognitive domains, our results suggest 

that non-linguistic cognitive reserve is related to aphasia severity even after controlling 

for the influence of lesion size and location. Previous literature has shown evidence that 

Subjective Cognitive Decline (SCD), a self-reported measure of worsening or more frequent 

cognitive difficulty, is twice as prevalent in populations who have coronary heart disease 

or suffered a stroke compared to healthy adults (van Rijsbergen et al., 2014). Linguistic 

tasks rely heavily upon the integration of non-linguistic cognitive abilities such as memory, 

attention, and executive function (Peach, 2017). A review by Fonseca et al., (Fonseca et 

al., 1515) revealed contradictory findings regarding the association between cognition and 

aphasia severity, comprehension, and speech fluency. For example, while some studies 
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report an association between aphasia and cognitive deficits, others report that cognitive 

ability in individuals with aphasia is comparable to that of controls. Studies investigating 

treatment response in post-stroke aphasia have also presented evidence that pretreatment 

cognitive reserve (both linguistic and non-linguistic) explains some of the variance in 

response variability across PWA (Gilmore et al., 2019; Bonini & Radanovic, 2015; el 

Hachioui et al., 2012; Lambon Ralph et al., 2010). Results from the present study indicate 

that WAIS scores can explain aphasia severity beyond what is accounted for by the lesion 

and lesion location. Understanding the relationship between these three factors could explain 

why previous literature has been inconsistent regarding the association with cognition and 

language ability.

4.5. Maintaining healthy contralesional white matter is associated with less severe 
aphasia

Results from the present study indicate that less severe WMH, as measured by Fazekas 

ratings, is an important prognostic of aphasia severity. More severe WMH have been 

associated with cardiovascular risk factors such as atherosclerotic disease, hypertension, 

obesity, and diabetes, and has been identified as an indicator of general cognitive decline 

(Fazekas et al., 1987; Novak et al., 2006). Those with severe WMH often present with 

depression and loss of functional ability (Pantoni, 2008), which are also associated with 

post-stroke deficits. The relationship between cognitive decline and WMH is further 

evidenced by the results observed in this study (Fig. 1) showing a correlation between 

age-normed WAIS scores and Fazekas (Spearman rho = −.20, P = .04). Further investigation 

of the interaction between WMH and cognition is necessary to better our understanding of 

the aging brain and recovery patterns in stroke survivors. Additionally, other health factors 

investigated in the present study often co-occur with the presence of WMH. For instance, 

some studies have reported a relationship between exercise rate and extent of WMH, while 

others have found no association (Torres et al., 2015). In the present study, we found no 

association between exercise rate and WMH.

The investigation of WMH’s influence on chronic aphasia severity and recovery is a 

relatively recent endeavor. Basilakos and colleagues (Basilakos et al., 2019) found that the 

extent of WMH in persons with aphasia is a significant predictor of declining language 

abilities in the chronic stage of recovery. Additionally, Wilmskoetter and colleagues 

(Wilmskoetter et al., 2019) found that those with more WMH in the periventricular space 

presented with greater aphasia severity. Given the relationship between age, cognition, 

and contralesional white matter integrity (as indicated by WMH ratings), it is important 

to understand how these factors impact each other and perhaps influence a clinician’s 

intervention approaches and patient expectations on performance.

4.6. Limitations

Due to the retrospective nature of the present study, there are several limitations that 

should be considered when interpreting the results. First, each Model included a subset 

of participants from a larger cohort (LSM cohort; N = 224). To address potential bias of 

sample inclusion, one-way ANOVAs were conducted between those included and excluded 

in each model (Demographic and Health/Overall Models). Though there were no statistically 
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significant differences between dependent and independent variables (Supplementary Tables 

1 and 2), it is possible that the samples of each model were unrepresentative of the 

population sample. For this reason, we encourage future work investigating predictors of 

severity to utilize large, diverse samples that are representative of the population of persons 

with aphasia and avoid missing data, particularly for health factors.

It is important to note that our approach of using residual values from the linear regression 

predicting aphasia severity from damage as the dependent variables in the three models 

yields results that compromise ease of interpretability. Though a standard approach for 

controlling for a variable, we emphasize to the readers to exercise caution in interpretation 

of model results. For this reason, we have included a Final Model which used raw WAB-AQ 

scores as the dependent variable and we refer readers to this model to better interpret relative 

contribution of each factor.

Only WAB-R assessments collected within 6 months of the completion of a patient’s case 

history form were included in the analysis, however, it is possible exercise rate and/or the 

status of pertinent health factors may have changed within this time frame. Additionally, we 

did not collect information on the type of physical exercise one performed, type of diabetes, 

or age at diabetes onset. Having more detailed information could shed light on possible 

interactions between these factors.

The nature of WMH, aging, diabetes, exercise, cognitive decline, and time post-stroke all 

co-exist and may be influenced by one another. It is unclear the effect one factor may have 

on another. For example, WMH may have been present in individuals prior to stroke due 

to poor general health or are, perhaps, a direct cause of poor vasculature related to the 

stroke event. In the same vein, it is difficult to ascertain the effect of time post-stroke as 

an indicator of less severe aphasia. It is likely that time post-stroke is a proxy measure 

for number of treatment hours, or perhaps this effect is driven by the fact that individuals 

adopt successful coping strategies during the course of their recovery (i.e., the longer an 

individual is living with aphasia, it is likely coping mechanisms are developed to avoid 

a potential communication breakdown). Data capturing treatment obtained or functional 

communication was not available for this cohort, but future studies would benefit from 

disentangling these potential confounds with time post-injury.

Finally, we did not have access to the health status of the participants prior to their stroke, 

nor were we able to explore other measures of health such as medication use, hypertension, 

history of smoking, and depression which have been less explored in the aphasia literature. It 

is likely that maintenance of one’s health prior to and after their stroke may explain some of 

the variability in patient severity, but the extent is unknown.

5. Conclusions

We conducted a large retrospective analysis of a multi-modal chronic stroke dataset in order 

to investigate the contributions of demographic and health factors to predictive models of 

aphasia severity (above and beyond lesion size and location, traditional stalwarts in the 

field). A number of the factors we investigated, including sex, education, and socioeconomic 
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status, are still subject to considerable debate, and require further investigation before 

sensible mechanistic explanations can be formulated. Factors related to cognitive ability, 

overall brain health, physical health, and comorbid cardiovascular risk factors are emerging 

as important considerations for clinicians and researchers interested in maximizing their 

ability to predict the consequences and progression of post-stroke aphasia. While more 

research is required to fully understand all the possible interactions between factors, our 

results make a strong case that the maintenance of one’s overall health is a prognostic of less 

severe aphasia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Correlation matrix between all continuous independent variables included in the models. 

Correlations between continuous factors utilized Pearson correlation, whereas correlations 

including a variable measured on an ordinal scale (Fazekas) utilized Spearman correlation. 

Significant correlations (p < .05) are indicated by presence of color (where the lower p-value 

is indicated by deeper color) around the correlation coefficient between two variables.
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Fig. 2 –. 
(A) Lesion overlay map of all participants (N = 224). Red indicates ~80% overlap; critical 

regions segmented in the JHU atlas which predict aphasia severity, (B) Posterior insula (red), 

(C) Superior longitudinal fasciculus (blue), and (D) Illustration of main effects between 

lesion size (left) and regional proportion damage (right) and aphasia severity (WAB-AQ) (P 

= .03;P < .00001, respectively).
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Fig. 3 –. 
Scatterplots to illustrate all significant (entered into >5% of iterations) main effects in the 

stepwise LOOCV Demographic Model (A) Illustration of main effect of WAIS by WAB-AQ 

residual values (p = .004); (B) Illustration of main effect of age at stroke and WAB-AQ 

residuals (p = .02); (C) Main effect of time post-stroke by WAB AQ residual values (p = 

.03); (D) Predicted vs. actual outcomes of stepwise regression (r = .29, p = .0003).
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Fig. 4 –. 
Scatterplots to illustrate all significant (entered into >5% of iterations) main effects in the 

stepwise LOOCV Health Model (A) Illustration of main effect of Fazekas rating by WAB 

AQ residual values (p = .0004); (B) Predicted vs. actual outcomes of stepwise regression (r = 

−.29, p = .003).
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Fig. 5 –. 
Contribution of individual independent variables entered into the Final LOO linear 

regression model.
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Table 2 –

Group Descriptive Statistics.

Demographic Model (N = 147) Health Model (N = 106)

Age at stroke (years)

 M(SD) 56.0 (12.1) 56.0 (12.0)

 Range 27.0–80.0 27.0–79.0

Sex, n (%)

 Female 56 (38%) 37 (35%)

 Male 91 (62%) 69 (65%)

Education (years)

 M(SD) 15.2 (2.3) 15.6 (2.2)

 Range 10.0–20.0 12.0–20.0

SES (USD)

 M(SD) $60,511.22 ($20,038.43) $58,814.29 ($19,314.50)

 Range $23,086-$113,802 $23,086-$111,250

WAB-AQ

 M(SD) 62.5 (26.0) 62.2 (24.7)

 Range 5.6–99.6 5.6–99.6)

WAIS Matrices

 M (SD) 10.1 (3.7) 10.3 (3.6)

 Range .0–23.0 .0–23.0

Lesion Volume

 M (SD) 123,590 (96,471) 120,588 (93,177)

 Range 117–467,458 117–467,458

Prop. Damage ROIs

 M (SD) .53 (.3) .52 (.3)

 Range .0–1.0 .0–1.0

Exercise >30 min/week

 M (SD) NA 3.6 (2.5)

 Range .0–14.0

Body Mass Index

 M (SD) NA 27.3 (5.4)

 Range 17.4–47.3

Fazekas Rating

 M (SD) NA 3.3 (1.6)

 Range .0–6.0

Diabetes, n (%)

Present NA 21 (20%)
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