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A micro-electromechanical system (MEMS) is a micro device or system that utilizes
large-scale integrated circuit manufacturing technology and microfabrication technology
to integrate microsensors, micro-actuators, microstructures, signal processing and control
circuits, power supplies, and communication interfaces into one or more chips [1]. There are
many types of MEMS devices, mainly including MEMS sensors [2], MEMS converters [3],
and MEMS actuators [4]. MEMS sensor components are used to detect various physical
properties, such as pressure [5], temperature [6], acceleration [7], and angular velocity [8].
MEMS converters convert electrical signals into mechanical motion or vice versa, including
the conversion of sound to electrical signals, and pressure to electrical signals [9]. MEMS
actuators, integral to the functionality of MEMS devices, are engineered to facilitate precise
mechanical movements at a microscale. They find application in a variety of domains, such
as micromotors [10] and micro-valves [11].

MEMS devices are crafted from a variety of materials such as silicon, metal, ceramics,
and glass, with the mechanical, electrical, and magnetic properties of these materials
significantly influencing the operational performance of MEMS devices [12–15]. The
mechanical strength and stiffness of materials determine the reliability and stability of
devices [16]. Silicon materials have excellent mechanical and processing properties and
are commonly used in the manufacturing of sensors and actuators [17]. Polymer materials
or metal films are commonly used for making flexible MEMS devices [18]. The electrical
properties of materials determine device attributes such as resistance, capacitance, and
inductance, which directly affect its application in circuits [19]. Furthermore, the magnetic
properties of materials are essential for specialized MEMS devices such as magnetic sensors
and actuators. Tailoring these magnetic properties can significantly boost the sensitivity
and stability of sensors, and enhance the precision and response time of actuators [20]. In
summary, optimizing the properties of these materials can improve the accuracy, sensitivity,
and reliability of MEMS devices, thereby expanding their application scope in various fields.

In addition, process manufacturing is critical to determine the performance and
reliability of MEMS devices [21]. The accuracy and stability of process manufacturing
directly affect the performance of devices [22]. The accuracy of micro/nano-processing
technology determines the exact dimensions and configuration of the device structures,
while the process stability of the process ensures the consistency and repeatability of the
device. For example, the precise control of process steps such as photolithography, thin film
deposition, and ion etching can ensure the accuracy and stability of the device structure,
thereby improving the performance and reliability of the device [23,24].

This Special Issue encompasses 11 papers that explore various facets of MEMS/NEMS,
including the design and optimization of MEMS devices (Contributions 1–7), micro/nano-
materials of MEMS devices (Contributions 8), and micro-manufacturing processes of
devices (Contributions 9–11).

In particular, Wei et al. (Contribution 1) designed a high-performance piezoelectric-
type MEMS vibration sensor based on LiNbO3 single-crystal cantilever beams. The pro-
posed MEMS vibration sensor has a high output performance, linear dependence, and
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stable sensitivity, and is suitable for broadband high-frequency vibration detection. Zhao
et al. (Contribution 2) investigated the effect of the micro-morphology of resistive strain
gauges on the gauge factor. The study showed that periodic indentations on the sidewalls
of the sensitive grid enhance local strain concentration and weaken strain distribution
on the grid body, indicating that a rough microstructure can lead to a decreased strain
coefficient, thereby reducing the accuracy and sensitivity of resistive strain gauges. Chen
et al. (Contribution 3) proposed a micromechanical transmitter with only one bulk acoustic
wave (BAW) magneto-electric (ME) antenna. A single-BAW ME antenna can replace tradi-
tional transmitter components and adjust the radiation power of the BAW ME antenna by
increasing the input voltage in higher-order resonance modes. Guo et al. (Contribution 4)
designed and optimized a MEMS skin friction sensor with a high response frequency
and large measurement range. The sensor was statically calibrated using the centrifugal
force equivalent method and a single-axis-rotating loading platform. The sensor had good
linearity and stability, and high assembly accuracy, which meets the testing requirements
of hypersonic wind tunnel experiments. Ren et al. (Contribution 5) proposed a design
which improved a bulk acoustic wave magnetic sensor based on magnetoelectric coupling.
The material design of inserting an Al2O3 thin film layer into an FeGaB and a two-layer
piezoelectric magnetic/piezoelectric heterostructure reduced the eddy current loss of the
magnetic composite material and elevated the energy conversion efficiency of the sensor.
Cai et al. (Contribution 6) presented an improved temperature compensation approach
called proportional difference for accelerometers based on differential frequency mod-
ulation to cancel out the frequency drift caused by temperature change. A parameter
named temperature difference ratio was used to cancel the drift in the frequency of the
differential resonators caused by temperature. Liu et al. (Contribution 7) reviewed the
research progress of inertial switches. They introduced the design concept of MEMS iner-
tial switches, providing an overview of their performance, including sensitive direction,
acceleration threshold, and contact enhancement.

To study MEMS device materials, Tian et al. (Contribution 8) investigated the hydro-
gen storage performance of γ-graphdiyne-doped Li based on first principles. The results
indicated that doping Li atoms could enhance the hydrogen storage property of intrinsic
γ-GDY when in large-capacity hydrogen storage. Additionally, vacancy defects can im-
prove hydrogen storage performance, and Li-VGDY possesses better hydrogen storage
performance than Li-GDY.

Regarding the manufacturing of MEMS devices, Lou et al. (Contribution 9) reviewed
the latest advances in the preparation technologies for micro-metal coils. They discussed
the typical structural types of micro-metal coils and applications, summarized the prepara-
tion materials and main preparation methods of micro-metal coils, including macroscopic
preparation processes (printed circuit board (PCB) process, hand winding method, and
wire welding technology), MEMS processing technology, and other manufacturing tech-
nologies. Baek et al. (Contribution 10) proposed a manufacturing process of polymeric
microneedle sensors for mass production, which can be applied in the electrochemical
detection of various biomarkers in interstitial fluid. The proposed manufacturing process
effectively produces microneedles with high aspect ratios and different lengths, and can
be replicated. Zhong et al. (Contribution 11) proposed a novel method which transfers
tactile sensors by using stiction effect temporary handling (SETH). This method simplifies
the microelectromechanical system (MEMS)/CMOS integration process, improves the
process reliability and electrical performance, and reduces material constriction. Moreover,
they introduced the principle of using SETH for CMOS compatible batch transfer tactile
sensors and provided the design of temporary adhesive structures to reduce adhesion
forces caused by adhesion effects. In addition, Liu et al. (Contribution 7) introduced
the manufacturing methods for non-silicon surface microfabrication technology, standard
silicon microfabrication technology, and liquid inertial switches.
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