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Abstract: Maintaining homeostasis within the intestinal microbiota is imperative for assessing the
health status of hosts, and dysbiosis within the intestinal microbiota is closely associated with
canine intestinal diseases. In recent decades, the modulation of canine intestinal health through
probiotics and prebiotics has emerged as a prominent area of investigation. Evidence indicates
that probiotics and prebiotics play pivotal roles in regulating intestinal health by modulating the
intestinal microbiota, fortifying the epithelial barrier, and enhancing intestinal immunity. This review
consolidates literature on using probiotics and prebiotics for regulating microbiota homeostasis in
canines, thereby furnishing references for prospective studies and formulating evaluation criteria.

Keywords: probiotics; prebiotics; intestinal microbiota; canine intestinal health; intestinal diseases;
evaluation criteria

1. Introduction

Dogs are one of the most important companion animals, and their intestinal health
has become a research focus. The abundance and diversity of canine intestinal microbiota
increase gradually along the gastrointestinal tract [1]. Due to differences in the anatomy and
physiology of the canine gastrointestinal tract, there are variations in the microbial popula-
tions among the stomach, small intestine, and large intestine [2]. The stomach harbors only
a limited number of bacteria that can survive the acidic environment, mainly Helicobacter
spp- and lactic acid bacteria [3]. Both aerobes and anaerobes coexist in the small intes-
tine [4]. The large intestine contains a high population of anaerobic bacteria [5]. The canine
intestinal tract is dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria,
although their abundance and diversity vary widely among individuals. Lactobacillus is
also widely distributed within the Firmicutes in the canine intestine, with a typical count of
10*-108 CFU/mL [6]. Current studies have demonstrated that canine intestinal microbiota
undergo significant changes when affected by inflammatory bowel disease (IBD), acute
hemorrhagic diarrhea (AHD), acute diarrhea (AD), and other gastrointestinal diseases. For
example, the number of Salmonella, Sutterella, Escherichia coli, Actinomycetes, Erysipelas, and
Clostridium perfringens increases, while Lactobacillus decreases [7-11]. These studies indicate
a strong relationship between canine gastrointestinal diseases and intestinal microbiota
dysbiosis. Therefore, regulating intestinal microbiota homeostasis has been recognized as
an effective way to maintain canine intestinal health, improve intestinal immunity, and
promote canine well-being [6,12]. Probiotics and prebiotics have been used to treat AD,
ulcerative colitis (UC), and irritable bowel syndrome (IBS) in humans, and a clear standard
has been gradually established [13-15].

Although numerous prebiotic and probiotic products targeting canine health are
available, a unified evaluation standard system needs to be present. This deficiency
significantly impedes the advancement and utilization of probiotics and prebiotics. This
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review aims to undertake a comparative analysis of various clinical trials and applications of
probiotics and prebiotics in canines, aiming to delineate an objective evaluation framework
and discussion to support future studies of probiotics and prebiotics.

2. Probiotics and Prebiotics

The Food and Agriculture Organization of the United Nations/World Health Organi-
zation (FAO/WHO) defines probiotics as active microorganisms that are beneficial to host
health when consumed in sufficient quantities [16]. Currently, it has been reported that
more than ten genera of microorganisms, including Propionibacterium, Peptostreptococcus,
Lactobacillus, Bacillus, Enterococcus, Bacteroides, Streptococcus, Lactococcus, Bifidobacterium,
Akkermansia, Saccharomyces, and Pediococcus, are regarded as potential probiotics to treat
chronic diseases like IBD and diabetes [15]. According to the current “Catalogue of Feed
Additives” in China, twenty-five species of bacteria, including Lactobacillus fermentans,
Bifidobacterium animalis, and Enterococcus faecalis, and five species of fungi, including Saccha-
romyces cerevisiae and Candida prion-producing yeast, are approved for use in cats and dogs
(Announcement No. 744 of the Ministry of Agriculture and Rural Affairs of China).

In 2016, the expert panel of the International Scientific Association for Probiotics and
Prebiotics (ISAPP) revised the definition of prebiotics as “a substrate that is selectively utilized
by host microorganisms conferring a health benefit”. This expanded definition includes
noncarbohydrate or other nonfood substances that can be applied to body parts beyond the
gastrointestinal tract [17,18]. According to Gibson et al. [19], a substrate cannot be referred to
as a prebiotic if it produces adverse effects via host intestinal microbiota utilization.

Prebiotics are widely derived from natural sources, such as fructooligosaccharides
(e.g., onion, leek, wheat, and chicory) [20], isomalto-oligosaccharides (soy, sauce, sake,
and honey) [21], galacto-oligosaccharides (e.g., lentil, green pea, lima bean, and kidney
bean) [22], and inulin (e.g., agave, banana/plantain, and burdock camas) [23]. According to
the current “Catalogue of Feed Additives” in China, prebiotics used in cats and dogs mainly
consist of fructo-oligosaccharides, manno-oligosaccharides, galacto-oligosaccharides, and
other polysaccharides (Announcement No. 744 of the Ministry of Agriculture and Rural
Affairs of China).

3. The Function of Probiotics and Prebiotics on Canine Intestinal Health

The intestinal microbiota is proposed to be involved in digestion, immunity, and
other biological processes [24]. Probiotics have been demonstrated to regulate intestinal
health via multiple mechanisms [25]. Probiotics and prebiotics improve intestinal health
primarily by interacting with the intestinal microbiota, increasing beneficial intestinal
metabolites, enhancing mucosal barrier properties, and promoting cellular and humoral
immunity [25-27]. For example, some lactic acid bacteria can increase the concentration
of organic acids in the intestinal tract to inhibit the survival of pathogenic bacteria, and
it has also been reported that these organic acids enhance immune function and improve
inflammation [28,29]. The following article will elaborate on the aspects of probiotic
and prebiotic products in maintaining canine intestinal health and how to evaluate these
products more comprehensively and accurately.

3.1. Interaction with Intestinal Microbiota

Probiotics can interact with the intestinal microbiota through competition for nutrients,
antagonism, or secretion of bacteriocins and other antimicrobial factors to support micro-
biota stability [30]. Recent research indicated that probiotics can inhibit the colonization
of pathogens, improve microbial diversity, and restore intestinal microbiota homeostasis
by resisting the colonization of pathogens and increasing the mass of probiotics [31-34].
Figure 1 shows the interaction between probiotics and intestinal microbiota. For example,
supplementing canines suffering from AD with probiotics resulted in a lower number of
pathogenic bacteria in their feces, such as Escherichia coli, Clostridium perfringens, Fusobac-
terium, and Dantobacter, compared to the placebo group [35-37]. Another trial conducted
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on healthy dogs showed that adding a suitable amount of specific probiotics (Bacillus
amyloliquefaciens CECT5940 and Enterococcus faecium CECT4515) to their diet helped to
regulate the homeostasis of intestinal microbiota by promoting the growth of lactic acid
bacteria and inhibiting the proliferation of pathogenic bacteria [38]. In addition, using
probiotics instead of antibiotics to regulate the intestinal microbiota of dogs is also one
of the current research hotspots. A variety of Lactobacillus have killing effects on some
common therapeutic bacteria, such as Escherichia coli, Staphylococcus aureus, and Salmonella
enteritidis [39-41]. However, there are still few reports on animal experiments. In addition,
we need more clinical experimental data on treating diseases caused by pathogenic bacteria
to evaluate the antibacterial effect of probiotics. The host intestinal microbiota can metab-
olize some inactivated probiotics to produce teichoic acid, organic acids, peptides, and
other substances. These substances can promote host digestion and absorption, balance the
intestinal microbiota, and protect the intestinal mucosa [6,42,43].
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Figure 1. The interaction between intestinal microbiota and probiotics and prebiotics (by figdraw).
The interaction between probiotics and intestinal microbiota tends to be antagonistic. Probiotics
will compete with the intestinal flora for nutrients and inhibit the colonization of the intestinal
microbiota through secreting antimicrobial peptides and bacteriocins. On the other hand, probiotics
or intestinal microbiota will metabolize the prebiotics to produce organic acids (e.g., short-chain fatty
acids and lactic acid), which lower the pH in the intestinal tract. Eventually, the number of beneficial
bacteria increases, the number of pathogenic bacteria decreases, and the intestinal microecology
reaches balance with the action of low pH value and substances such as antimicrobial peptides
and bacteriocins.
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Prebiotics, such as mannose-oligosaccharides (MOS), fructo-oligosaccharides (FOS),
and galacto-oligosaccharides (GOS), play a vital role in balancing intestinal microbiota.
For instance, adding FOS to the canine diet increased the number of probiotic bacte-
ria, including Bifidobacterium and Lactobacillus, while reducing the number of Clostridium
perfringens [44,45]. Clinical trials in other mammals indicated that prebiotics, such as fructo-
oligosaccharides, galacto-oligosaccharides, and pectin oligosaccharides, can effectively
promote the proliferation of lactic acid bacteria in the intestine [46,47].

Changes in the genus and abundance of canine intestinal microbiota are regarded as
a preferable measure of the effect of probiotics on intestinal health [24]. At present, the
technology for detecting intestinal microbiota is gradually maturing. For instance, 165
rRNA sequencing can determine the changes in the microbiota at the genus level, and
metagenomic sequencing can even analyze the intestinal microbiota at the species level.
Due to the high cost, deep whole-metagenome shotgun sequencing was hard to apply to
companion animals [2]. However, it has been reported that shallow shotgun sequencing is a
possible cost-effective alternative to 165 rRNA sequencing for large-scale biomarker discov-
ery with improved taxonomic resolution and functional accuracy [48]. Moreover, gPCR and
FISH hybridization techniques can detect specific bacteria. However, the drawback is that
it is difficult to cope with the large number of bacteria in the intestine [2]. Therefore, it is
necessary to use a variety of omics sequencing, such as shallow shotgun metagenomics and
16S rRNA sequencing, to evaluate the effects of probiotics and prebiotics on the health of
canine intestinal microbiota. At the same time, it is also necessary to combine metabolomics
or proteomics to detect and analyze the key metabolites (such as SCFAs) or enzymes of
canine intestinal microbiota [34].

3.2. Improving Intestinal Barrier Function

The intestinal mucosal epithelium serves as the primary line of defense against
pathogens and is essential in stimulating adaptive immune signals [49]. Probiotics can
improve the microenvironment of intestinal epithelial cells and boost the resistance of the
intestinal mucosa to pathogenic bacteria by stimulating immune cells to secrete substances,
such as lysozyme, secretory phospholipase A2, and defensin [50,51]. Probiotics also play a
vital role in reducing inflammation by decreasing epithelial cell apoptosis, increasing the
number of anti-inflammatory bacteria (e.g., Butyricimonas and Prevotella), and maintaining
intestinal barrier function [52-55]. Another way in which probiotic strains may improve
barrier function is through probiotic-derived proteins, which can transactivate Epidermal
Growth Factor Receptor signaling to ameliorate cytokine-induced apoptosis and mitigate
disruption of the epithelial barrier and inflammation [52,56]. Improving the intestinal
barrier function may be a potential indicator for evaluating the probiotic strain since not all
can improve barrier function [34].

Prebiotics also have anti-viscosity properties that can bind to receptors on intestinal
mucosal epithelial cells. This capability can inhibit pathogens from attaching to glycopro-
teins on the cell surface, reducing the probability of pathogen adhesion and invasion while
enhancing the barrier function of the intestinal mucosa [47,57].

3.3. Enhancing the Cell-Mediated Immune and Humoral Immune Function

Figure 2 illustrates the role of probiotics in activating innate immunity. Probiotics
possess conserved microbe-associated molecular patterns (MAMPs) [including cell wall
polysaccharides (CPs), peptidoglycan (PGN), lipoprotein anchors, and lipoteichoic acids
(LTAs)], which can interact with pattern recognition receptors (PRRs) [including the Toll-like
receptors (TLRs), C-type lectin receptors (CLRs), and nucleotide oligomerization domain
(NOD)-like receptors (NLRs)]. PRRs are broadly expressed in various cell types, including
epithelial and immune cells. Thus, epithelial cells, dendritic cells, and monocytes can rec-
ognize probiotics or their molecules through pattern recognition receptors such as Toll-like
receptors (TLRs), NOD-like receptors (NLRs), and C-type lectin receptors. This recognition
triggers a signaling pathway (e.g., NF-kB and MAPK) that promotes the secretion of im-
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mune factors such as interleukins, tumor necrosis factors, interferons, transforming growth
factors, and chemokines [58—61]. These cytokines build a regulatory network, activate the
innate immune cells, and promote their differentiation and function [62,63]. In a mouse
model, Liu et al. [64] found that L. casei M2S01 alleviated the symptoms of IBD by activating
the T-regs and upregulating the levels of IL-10. Another trial in mice with IBD provides
evidence of the generation of CD4" CD5" Foxp3* T-regs in response to probiotic mixtures.
The upregulated chemokines (CCL1 and CCL22) then recruit CD4" Foxp3* Tregs to the
inflammatory sites and inhibit the progression of inflammation [65].
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Figure 2. Activation of intestinal immunology via probiotics and prebiotics (by figdraw). The
MAMPs of probiotics can be recognized via PPRs expressed on the epithelial cell membrane, thereby
activating the transcription of cytokines through signaling pathways such as NF-kB. Cytokines
produced by intestinal epithelial cells can trigger the native immune response in the mucous layer.
For instance, this molecule can transactivate monocytes and dendritic cells to secrete chemokines and
other cytokines (e.g., TNF) that further promote the proliferation and differentiation of T lymphocytes.
Moreover, B cells rapidly respond to these signals by differentiating into plasma cells and secreting
antibodies (e.g., IgA) into the intestinal lumen. The IgA forms a line of defense on epithelial cells and
binds to receptors on the surface of pathogenic bacteria, promoting bacterial lysis and clearance.

Mammals’ intestinal lumen contains secretory IgA (sIgA), which shields the epithe-
lium of the intestine from enteric pathogens and the toxins they produce [24]. Probiotics
have been reported to enhance the intestinal barrier by promoting the production of
slgA [24,66]. Trials on dogs also indicated that probiotics can significantly increase the
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intestinal sIgA and plasma IgG levels, with effects lasting from weaning to one year of
age [67,68]. Another trial shows that prebiotics benefit IgE and IgA secretion and enhance
intestinal barrier function [69,70]. Interestingly, in addition to increasing intestinal im-
munoglobulins, probiotics can promote the IgG, IgM, and IgA levels in the colostrum,
thereby improving neonatal clinical conditions and immune function [71].

3.4. Producing Beneficial Fermentation Production

Probiotic species belonging to the Lactobacillus and Bifidobacterium genera produce lactic
and acetic acid to keep a lower luminal pH and discourage the growth of pathogens [34,72]. In
addition to acetic acid, other beneficial short-chain fatty acids such as butyrate and propionate
will also be increased under the action of probiotics and prebiotics [73,74]. Figure 3 explains
how the probiotics and prebiotics regulate the innate immune response by producing SCFAs.
At present, supplementation with yeast products or mannan-oligosaccharides can increase the
concentration of SCFAs in the canine intestine [75-77]. SCFAs can regulate immune cells and
intestinal inflammation through GPCRs signaling and inhibitory effects on HDACs. SCFAs
can regulate T cell differentiation and function [28,29,78], promote B cell differentiation and
intestinal IgA responses [79], and induce antimicrobial activity and phagocytic activity of
macrophages. Moreover, SCFAs can regulate the cytokines (e.g., IL-12 and TNF) and modify
cellular metabolism through JAK/STAT signaling [80]. The level of SCFAs is regarded as a
predictor of some diseases [81]. Therefore, the level of SCFAs will be a valuable predictor for
evaluating the effect caused by probiotic or prebiotic products.
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Figure 3. Modulation of intestinal mucous immune function by SCFAs produced by probiotics and
prebiotics (by figdraw). Probiotics and intestinal microorganisms metabolize dietary fibers, such as



Microorganisms 2024, 12, 1248

7 of 17

prebiotics, to produce SCFAs, which pass through the intestinal epithelial layer into the mucous
layer and modulate the function of innate immune cells. For instance, SCFAs can activate mono-
cytes and dendritic cells to enhance their phagocytosis and secretion, promote the differentiation
of T-lymphocytes to regulatory T cells and helper T cells, and promote the proliferation and differ-
entiation of B-lymphocytes. In addition, SCFAs can bind to GPCRs and mediate the transcription
and translation of cytokines (e.g., IL-12) through activating pathways such as JAK/STAT, NF-«B,
and MAPK. On the other hand, SCFAs also act as inhibitors of HDACs to enhance the expression of
immune factors.

3.5. Comparison of Clinical Therapy

Single probiotic strains, multiple probiotic strains, and probiotics with antibiotic treat-
ment are the main treatments in clinical trials [82-84]. Improvement of clinical conditions
is one of the crucial criteria for evaluating probiotic and prebiotic products, commonly
including the canine chronic enteropathy clinical activity index (CCEAI), the canine IBD
activity index (CIBDAI), the canine hemorrhagic diarrhea severity index (CHDSI), and
intestinal histology scores. Previous studies showed that probiotic and prebiotic products
can significantly improve the clinical condition, indicating these products had potential
treatment effects [82,84]. However, recent reports indicate that the use of probiotic products
is not clinically significant for preventing or treating acute diarrhea in dogs [85,86]. The
conclusions are controversial due to the lack of uniform evaluation criteria for all the study
cases compared to their reports. Thus, the therapeutic efficacy of probiotic or prebiotic
products need to be evaluated in conjunction with other clinical data.

Table 1 compares the different probiotic strains on intestinal disease treatment con-
sidering four aspects: the influence on intestinal microbiota, immune and barrier function,
clinical characterization, and metabolism. Previous studies have shown that many in-
testinal diseases are associated with dysbiosis of the intestinal microbiota [36,82]. Past
research indicates that probiotics and prebiotics can influence the intestinal microbiota.
However, most of the research lacked completeness, by using qPCR for specific bacteria
or exploring the effects of probiotics and prebiotics on the intestinal microbiota only in
terms of phylum [35,87,88]. Sequencing technology is now widely used in the study of
microbiomes. Using 165RNA sequencing or even whole genome birdshot to evaluate the
clinical therapeutic efficacy of probiotic and prebiotic products on the intestinal microbiome
will be more comprehensive [2].
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Table 1. Probiotics commonly used to treat canine diseases.
No. of Treatment Influence on Immune and Barrier
Types of Diseases D ) . Probiotics Intestinal . Clinical Characterization Metabolism Reference
0gs Duration . R Function
Microbiota
Treated group shortened
Acute diarrhea Bifidobacterium animalis the duration of diarrhea
(AD) 31 14 days strain AHC7 No data. No data. (39 + 2.3 days vs. No data. [83]
6.6 £ 2.7 days; p < 0.01).
Shortened the diarrhea
Acute diarrhea Enterococcus faecium days and significantly
(AD) 733 28 days (NCIMB10415 SF68) No data. No data. decreased the No data. [89]
diarrhea incidence.
Acute diarrhea . Shortened the duration c
(AD) 148 10 days E. faecium 4b1707 No data. No data. of diarrhea. No data. [90]
There were no C
. L There were no significant
Chronic Enterococcus faecium s1gn1f1cant . There were no significant differences in
enteropathies (CE) 12 42 days (NCIMB10415 SF68) No data. f:hfferfence.s mn d}fferences in CCEAland hematological and [(o1]
intestinal immune histology scores. . . .
. biochemical variables.
gene expression.
Significantly reduced stool
frequency and improved There were no significant
Chronic .. the stool consistency. differences in
enteropathies (CE) 20 60 days Saccharomyces boulardii No data. No data. Significantly increased the =~ hematological and (821
body condition biochemical variables.
score (BCS).
Significantly
. Lactobacillus fermentum VET9A, decreasec! the . Significantly improved There Were no significant
Acute diarrhea pathogenic bacteria . differences in
66 7 days L. rhamnosus VET16A, and g No data. stool consistency. . [36]
(AD) L plantarum VET14A such as Escherichia Reduced vomitin hematological and
P coli and Clostrid- & biochemical variables.
ium perfringens.
Lactobacillus farciminis (porcine
origin), Pediococcus acidilactici
Acute diarrhea Ez;lfgglw E\)()réilcr;l)iug{lljézgzljsfgfzf Significantly improved the
36 8 days s, No data. No data. condition of stool but not No data. [84]

(AD)

(soil origin), and

thermo-stabilised Lactobacillus

acidophilus MA 64/4E
(human origin)

the vomiting episodes.
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Table 1. Cont.
No. of Treatment Influence on Immune and Barrier
Types of Diseases D ) . Probiotics Intestinal . Clinical Characterization Metabolism Reference
ogs Duration Microbiota Function
Bifidobacterium bifidum VPBB-6,
Bifidobacterium longum VPBL-5,
Bifidobacterium animalis VPBA-4, No sienificant data
Bifidobacterium infantis VPBI-6, show% d that the The days of diarrhea
Acute diarrhea 60 20davs Lactobacillus acidophilus VPLA-4, number of No data achieved acceptable fecal No data 187]
(AD) y Lactobacillus plantarum VPLP-5, thogenic bacteri ’ consistency, shortened but )
Lactobacillus casei VPLC-1, ga oge C;C actenta not significant.
Lactobacillus brevis VPLB-5, ecreased.
Lactobacillus reuteri VPLR-1, and
Lactobacillus bulgaricus VPLB-7
Lactobacillus plantarum DSM
24730, Streptococcus thermophilus Blautia and
DSM 24731, Bifidobacterium breve  Faecalibacterium Significantly improved
Acute hemorrhagic DSM 24732, Lactobacillus paracasei  significantly clinical condition while the ~ There were no significant
diarrhea svndrome 25 21 davs DSM 24733, Lactobacillus increased and No data CHDSI did not show differences in [35]
(AHDS) Y y delbrueckii DSM 24734, Clostridium ’ significant difference hematological and ’
Lactobacillus acidophilus DSM perfringens compared to biochemical variables.
24735, Bifidobacterium longum 120 significantly placebo group.
DSM 24736, and Bifidobacterium decreased.
infantis DSM 24737
Chronic Significantly upregulated
inflammatory 14 304 Ascophyllum nodosum and The Prevotella genus The CIBDAI did not the concentrations of
. ays . e increased but not No data. . . [88]
enteropathies Bacillus subtilis C-3102 significantly. significantly change. acztate, blsovalerate,
(CIE) ’ and isobutyrate.
Clostridium spp. and
Bacteroides spp.,
Lactobacillus acidophilus which produce There was no significant
Chronic 20 42d Lactobacill ' E ! SCFAs, significantly difference in clinical, Serum levels of hs-CRP
. ays actobacillus casei, Enterococcus . No data. . . [92]
enteropathies (CE) faeciium, and Bacillus subtilis increased. endoscopic, and significantly decreased.
! Enterobacteriaceae CCECAI results.
significantly

decreased.
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Table 1. Cont.
No. of Treatment Influence on Immune and Barrier
Types of Diseases : . Probiotics Intestinal . Clinical Characterization Metabolism Reference
Dogs Duration . . Function
Microbiota
FoxP3* cells
Lactobacillus (L. casei, L. plantarum, ?;%?;fatsgﬂy
L. acidophilus, L. delbrueckii, and L. Faccalibacterium s CD3* T-cells There were no significant
Inflammatory Bowel 20 60 davs bulgaricus) and sionificant] PP sienificant] difference in CIBDAI score No data (93]
Disease (IBD) y Bifidobacterium (B. longum, B. 318 y & Y and histology score in ‘
b . . increased. decreased, and .
reve, and B. infantis) TGF-B* was either group.
thermophilus S
significantly more
expressed.
Lactobacillus johnsonii CRL1693, .
L. . , Enterobacteria and
Ligilactobacillus murinus CRL1695, enterococc The consistency of stool
Gastroenteritis 120 7 days Limosilactobacillus mucosae No data. y No data. [94]

CRL1696¢, and
Ligilactobacillus salivarius

decreased but
not significantly.

significantly improved.

Note: CIBDALI: canine IBD activity index; CCEALI: canine chronic enteropathy clinical activity index; CHDSI: canine hemorrhagic diarrhea severity index; hs-CRP: high-sensitivity

C-reactive protein.
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Additionally, metabolites of intestinal microorganisms (e.g., SCFAs) should also be
included in the criteria for evaluating the therapeutic efficacy of probiotics and prebiotics
because one of the most important ways for probiotics and prebiotics to modulate the
intestinal immune function of the host is through the regulation of the metabolites of the
intestinal microbiota [95]. Metabolites in the blood are essential indicators of the safety of
probiotics and prebiotics products, as they reflect whether the organism is healthy [37,96].
The influence of probiotic and prebiotic products on intestinal mucosal immunity is also one
of the effective criteria for evaluating their effects. However, due to the limitations of the
experimental subjects and experimental conditions, it is impractical to take biopsy samples
from every clinically treated dog [24,66,93]. Therefore, it is possible to try to evaluate the
modulatory effects of probiotics and prebiotics on the immune function of the intestinal
mucosa, such as on the proliferation and differentiation of immune cells as well as on the
production and secretion of immunoglobulins, with the help of other mammalian small
mammal models, such as mice [93]. Some interesting issues deserve to be further explored,
such as the dosage and duration of probiotic and prebiotic products for the treatment of
diseases, as these conditions are also considered to be important factors influencing the
therapeutic effect [97-99].

4. Prospect

Maintaining intestinal health, promoting food digestion and absorption, enhancing the
intestinal barrier, and strengthening the immune system depends on intestinal microbial
homeostasis [100]. Probiotic and prebiotic products mainly improve intestinal health
through interacting with intestinal microbiota, improving the intestinal mucosal barrier,
and enhancing intestinal immune function. A growing body of research suggests that
probiotics and prebiotics are also effective alternatives to antibiotics, and there has been a
gradual increase in the number of probiotic and prebiotic products on the market for use in
dogs [25]. Although more and more strains with probiotic properties are being isolated,
the lack of validated and harmonized evaluation criteria reported by these researchers has
greatly limited the development and application of probiotic and prebiotic products in
dogs [92,94].

4.1. The Evaluation Criteria of Probiotics and Prebiotics

The evaluation of probiotic and prebiotic products should be based on the exact dosage,
duration of use, and its effect. Previous research has indicated that the effect of probiotics
and prebiotics can be divided into three categories: influence on intestinal microbiota,
metabolism, and clinical characterization [25-27,35,88]. The changes in the species of
intestinal microbiota and the proportion of beneficial and harmful bacteria may reflect the
effect of probiotics and prebiotics on intestinal health [7-11]. Hematological and serum
biochemical indicators, as well as some inflammatory and immune-related indicators,
such as the level of SCFAs, IgA, etc., can be used to evaluate the effect of probiotics and
prebiotics on metabolism [24,66,81]. The effect of probiotics and prebiotics on clinical
characterization requires appropriate evaluation criteria such as CCEAI, CIBDA], etc., for
intestinal inflammation or diarrhea-like diseases [92,93]. Therefore, qualified probiotic
and prebiotic products should improve body health in these three aspects. However, it
is necessary to rely on more clinical trials and data to determine the optimal amount
and duration of use. For example, the Probiotics and Prebiotics Working Group of the
European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN)
has published guidelines on the use of probiotics and prebiotics after evaluating the
efficacy of certain probiotics in the treatment of acute gastroenteritis in children [101,102].
Therefore, further standards for probiotic and prebiotic products in the pet industry need
to be established. In addition, given the multitude of variables that influence the efficacy of
these products, including breed, age, sex, body weight, diet, medical history, and antibiotic
interventions, it is optimal to conduct research on the same probiotic and prebiotic products
to address these factor [25].



Microorganisms 2024, 12, 1248

12 0of 17

4.2. Evaluating the Functions of Probiotics and Prebiotics from Multiple Dimensions

With the development of microbiome sequencing, the improvement of sequencing
technology and the reduction in cost will make it easier for researchers to comprehensively
assess the effects of probiotics and prebiotics on canine intestinal microbiota at the species
level using 165RNA sequencing or even whole-genome birdshot, revealing the interactions
between various potential probiotic strains and prebiotics with the intestinal microbiota,
and providing a basis for screening effective probiotics and prebiotics [2,34]. In addition,
the existing histologic databases for dogs of different breeds and regional origins still need
to be occupied, which makes it challenging to establish microbiota criteria for intestinal
health and is not conducive to research. In addition, the effect of probiotic and prebiotic
products on the metabolic effects of canine intestinal microflora is also an important aspect.
For instance, SCFAs are important for canine intestinal immunity. However, previous
studies have only elucidated the mechanism of SCFAs on intestinal immune cells and
mucosal function in other animal models, such as mice, and their mechanism of action in
the canine has not yet been revealed [80]. In addition to SCFAs, other metabolites, such
as lactic acid and some enzymes, antimicrobial peptides, bacteriocins, and the effects of
these metabolites on intestinal health need to be further investigated and verified [34].
Combining the genomics and metabolomics of intestinal microorganisms to analyze the
role of probiotics and prebiotics comprehensively may be the way forward.

5. Conclusions

Using probiotic and prebiotic products is an effective strategy for improving canine
gut health. Probiotic and prebiotic products can improve canine intestinal health in several
ways, including balancing the intestinal microbiota, regulating intestinal immune function,
improving inflammation, enhancing intestinal mucosal barrier function, and modulating
intestinal metabolites. In this paper, we review the research and application cases of
probiotics and prebiotics in dogs and propose an evaluation system to assess the effects of
probiotics and prebiotics in terms of the influence of intestinal microbiota, improvement of
clinical diseases, intestinal metabolites, intestinal immune function, and barrier function.
In addition, multi-omics analysis and screening of some critical metabolic or immune
indicators will help to develop new probiotic and prebiotic products and better evaluate
the effectiveness of probiotics and prebiotics.
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