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Abstract: Living in arid environments presents unique challenges to organisms, including limited
food and water, extreme temperatures, and UV exposure. Reptiles, such as the South American
leaf-toed gecko (Phyllodactylus gerrhopygus), have evolved remarkable adaptations to thrive in such
harsh conditions. The gut microbiome plays a critical role in host adaptation and health, yet its
composition remains poorly characterized in desert reptiles. This study aimed to characterize the
composition and abundance of the gut microbiome in P. gerrhopygus inhabiting the hyperarid Ata-
cama Desert, taking into account potential sex differences. Fecal samples from adult female and male
geckos were analyzed by 16S rRNA gene amplicon sequencing. No significant differences in bacterial
alpha diversity were observed between the sexes. However, the phylum Bacteroidota was more
abundant in females, while males had a higher Firmicutes/Bacteroidota ratio. The core microbiome
was dominated by the phyla Bacteroidota, Firmicutes, and Proteobacteria in both sexes. Analysis of
bacterial composition revealed 481 amplicon sequence variants (ASVs) shared by female and male
geckos. In addition, 108 unique ASVs were exclusive to females, while 244 ASVs were unique to
males. Although the overall bacterial composition did not differ significantly between the sexes,
certain taxa exhibited higher relative abundances in each sex group. This study provides insight
into the taxonomic structure of the gut microbiome in a desert-adapted reptile and highlights poten-
tial sex-specific differences. Understanding these microbial communities is critical for elucidating
the mechanisms underlying host resilience in Earth’s most arid environments, and for informing
conservation efforts in the face of ongoing climate change.

Keywords: gut microbiome; Phyllodactylus gerropygus; Atacama Desert

1. Introduction

Organisms have developed remarkable adaptations to survive in extreme environ-
ments such as deserts, polar regions, deep oceans, and high altitudes [1,2]. These environ-
ments present unique challenges, including extreme temperatures, limited food and water
resources, high or low pressure, high salinity, low oxygen levels, and acidic or basic pH
levels [1,3]. Some vertebrate groups have successfully inhabited arid regions, which harbor
high levels of reptile diversity. These reptiles have evolved unique adaptations, including
changes in reproduction, metabolism, immunity, and behavior [4–6]. The gut microbiome
of desert reptiles also plays a crucial role in their adaptation, health, and, potentially, their
response to environmental changes [7–10]. The gut microbiome consists of a dynamic
and balanced microbial community in the host organism and plays an essential role in the
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host’s nutrition, metabolism, and immunity against potential pathogens [10,11]. Previous
studies have shown that desert environments, including temperature and drought, can
alter the composition of the gut microbiome of reptiles, potentially impacting host health
and fitness [5,12]. However, vertebrate gut microbial communities can also be influenced
by several other factors, such as host features (e.g., age and sex) [13–17]. For instance,
research on striped plateau lizards (Sceloporus virgatus) revealed that female lizards tend to
harbor more diverse gut microbiomes than males [13]. This suggests potential disparities
in energy allocation, activity levels, and feeding behaviors between the sexes [13,18].

Geckos stand out among reptiles for their remarkable diversity in ecological features,
showcasing a wide array of morphological and behavioral adaptations [19,20]. They
constitute a hyper-diverse, ancient, and globally distributed group [21]. Many gecko
species are nocturnal, foraging at night to conserve energy and avoid the intense desert
sun [21,22], a behavior that also aids in predator avoidance. Compared to other lizards
with similar activity times, geckos exhibit lower body temperatures and prefer lower
temperatures [21]. Like other reptiles, geckos have adapted to survive on very little water
supply, obtaining most of the water they need from their prey [23–25]. Some species, like
fat-tailed geckos, can store up to nine months’ worth of food in their tails and subsist on
very little water [26,27]. Thick skin protects geckos from the harsh elements of their desert
environments [27,28]. While most geckos are predominantly carnivorous, many are also
omnivorous and, to a lesser extent, herbivorous [21]. Geckos have recently been classified
as sit-and-wait predators [22,29]. However, there is an emerging view of geckos as active,
olfactory predators capable of sustained locomotion over long distances [30,31].

The South American leaf-toed gecko (Phyllodactylus gerrhopygus) is a typical oviparous
animal with crepuscular and nocturnal habits, distributed from Peru to Chile [32–35]. It is
the only Phyllodactylus species inhabiting Chile [32,36,37]. It is found in the extreme north
of Chile, from sea level to 3500 masl [37,38], although there are few sectors where it exceeds
1000 masl [32,37]. It inhabits diverse environments, from sandy beaches to rocky ravines
in mountainous sectors and extremely arid desert areas. It can be observed under marine
vegetation deposited on beaches, under stones in areas of extreme aridity, and in ravines
with shrub and/or tree vegetation. This species is the top predator in the Tillandsia fields, a
unique fog-dependent ecosystem across the Atacama Desert [32,39]. The South American
leaf-toed gecko is mainly insectivorous, with its diet characterized by the consumption of
arthropods, mainly Coleoptera and insect larvae [39], which are essential energy sources
providing nutrients such as carbohydrates, lipids, and protein [40]. It presents a foraging
strategy intermediate between active and ambush foraging, involving the active search for
some of its prey. Occasional consumption of plant material has also been reported [39]. In
Chile, the South American leaf-toed gecko has been categorized as vulnerable according
to the Hunting Law (DS 5/1998 MINAGRI, Reglamento de Caza 2011 SAG), with its
area of application being the North (from Arica and Parinacota to Atacama). Ecologically
significant, in terms of trophic position, P. gerrhopygus consumes some resources that allow
it to occupy the top of the food web, even surpassing some species of lizards such as
Liolaemus reichei [41].

The environmental stressors prevalent in arid habitats, such as limited food and water
availability, extreme temperatures, and direct exposure to UV radiation, could profoundly
influence microbial communities [42]. This underscores the critical role these microorgan-
isms play in the development and health of their host organisms, particularly in adapting
to arid conditions. As climate change threatens arid ecosystems and their inhabitants
worldwide, it is increasingly important to comprehensively characterize the functional and
taxonomic composition of microbial communities thriving in these environments. Such
knowledge promises to elucidate the mechanisms underlying organisms’ resilience in the
planet’s most arid regions. In this context, desert reptiles provide invaluable model organ-
isms for studying gut microbiomes, offering a unique opportunity to explore the potential
mechanisms driving survival and persistence under hyperarid conditions. Therefore, this
study aimed to characterize the composition and abundance of the gut microbiome of
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wild-caught South American leaf-toed geckos in a sex-dependent manner that inhabit the
hyperarid Atacama Desert.

2. Methodology
2.1. Site Information

The study site is situated in northern coastal Chile at the Estación Atacama UC
Oasis de Niebla Alto Patache (20◦49′ S–70◦09′ W), located on the summit of the Coastal
Cordillera (850 m above sea level) about 3.5 km linear distance from the coastline on a
peninsula oriented opposite the coastal southwest wind direction. The regional climate is
hyperarid, with a mean annual precipitation of approximately 0.96 mm and a mean annual
temperature of 18.5 ◦C (for the last 43 years, Dirección Meteorológica de Chile, 2024). Fog
cover is frequent year-round but is most intense during the winter and spring months from
June to October [43,44]. Moisture from marine fog is essential to maintaining an isolated
and diverse ecosystem.

2.2. Animal Trapping

Initially, we captured geckos over 3–4 consecutive days in September 2020. Adult
(snout–vent length = 49 ± 5 mm) female (n = 8) and male (n = 8) geckos were trapped, and
field researchers were trained in proper handling techniques to safely capture geckos by
hand without causing harm. Geckos with a snout-vent length of less than 45 mm were
classified as juveniles [45] and excluded in this study.

Our hand-capture surveys were conducted with a strong focus on vegetation and
rocky surfaces, both during the day and at night. To capture ground-dwelling geckos,
we installed pitfall traps, which were regularly checked to minimize stress and mortality.
We recorded the sex of all captured animals, noting that male geckos may have a larger
bulge just caudal to their cloaca, while females do not [46]. Each animal was captured only
once, and once the necessary sample was obtained, they were released back to the exact
location of capture. All procedures for handling live animals were approved by the Servicio
Agrícola y Ganadero (SAG), Chile (5497/2019 and 342/2020), and every effort was made to
minimize animal suffering.

2.3. Microbiome Analysis
2.3.1. Stool Sample Collection and DNA Isolation

Fecal matter was collected directly from the anus using sterile FLOQSwabs™ (CE 0123,
COPAN, ITALIA, spa, Brescia, Italy), immediately placed in Eppendorf tubes containing
500 µL of RNAlater, and stored at 4 ◦C until DNA extraction. For the DNA extraction,
we used the PowerFecal Pro kit (QIAGEN GmbH, Hilden, Germany) according to the
manufacturers’ instructions. The isolated DNA samples were sent to the Zymo Research
Central Laboratory (Irvine, CA, USA) for further analysis.

2.3.2. Targeted Library Preparation

The DNA samples were prepared for targeted sequencing with the Quick-16S™ Plus
NGS Library Prep Kit (Zymo Research, Irvine, CA, USA). These primers were custom-
designed by Zymo Research to provide the best coverage of the 16S gene while maintaining
high sensitivity. The primer sets used in this project were Quick-16S™ Primer Set V3-V4
(Zymo Research, Irvine, CA, USA).

The sequencing library was prepared using an innovative library preparation process
in which PCR reactions were performed in real-time PCR machines to control cycles
and limit PCR chimera formation. The final PCR products were quantified with qPCR
fluorescence readings and pooled together based on equal molarity. The final pooled library
was cleaned up with the Select-a-Size DNA Clean & Concentrator™ (Zymo Research,
Irvine, CA, USA), then quantified with TapeStation® (Agilent Technologies, Santa Clara,
CA, USA) and Qubit® (Thermo Fisher Scientific, Waltham, MA, USA).
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2.3.3. Control Samples

The ZymoBIOMICS® Microbial Community Standard (Zymo Research, Irvine, CA,
USA) was used as a positive control for each DNA extraction, if performed. The
ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA, USA)
was used as a positive control for each targeted library preparation. Negative controls (i.e.,
blank extraction control, blank library preparation control) were included to assess the
level of bioburden carried by the wet-lab process.

2.3.4. Sequencing and Bioinformatics Analysis

The final library was sequenced on Illumina® NextSeq 2000™ (Zymo Research, Irvine,
CA, USA) with a p1 (cat 20075294) reagent kit (600 cycles). The sequencing was performed
with a 30% PhiX spike-in. Unique amplicon sequences were inferred from raw reads using
the Dada2 pipeline [47]. Chimeric sequences were also removed with the Dada2 pipeline.
Taxonomy assignment was performed using Uclust from Qiime v.1.9.1. Taxonomy was
assigned using the Zymo Research Database, a 16S database that is internally designed
and curated, as a reference. Composition visualization, alpha-diversity, and beta-diversity
analyses were performed with Qiime v.1.9.1 [48].

2.4. Statistical Analysis

All data are presented as the mean ± standard error (SEM). The species richness
of bacterial communities was estimated using ACE and Chao1 indices, while bacterial
diversity was assessed using Shannon diversity (H′) and Simpson diversity indices. The
differences in bacterial composition between female and male geckos were evaluated by a
one-way PERMANOVA test using Bray–Curtis distance matrix. We used both t-tests and
non-parametric analysis (i.e., Mann–Whitney) to analyze the data, depending on whether
the data met the assumptions of normality. Normality assumptions were confirmed using
the Shapiro–Wilk test. All statistical procedures were performed using R software version
4.0.0 (R Development Core Team, 2020, Vienna, Austria). Each sample was rarefied to
the same sequencing depth so that the number of artifacts that appear in each sample
is controlled. We rarefied the samples using the R package Microeco version 1.5.0 [49].
Differences were considered statistically significant at p < 0.05.

3. Results
3.1. Diversity of the Gut Bacterial Communities Was Not Significantly Different between Female
and Male Geckos

To characterize bacterial richness, rarefaction analysis was performed by randomly
sampling 1000 times with replacement and estimating the total number of Amplicon
Sequence Variants (ASVs) present in female and male gecko samples. The curve in each
group reached saturation in most of the samples, indicating that the sequencing data was
great enough that very few new ASVs remained undetected (Figure S1). Analysis using
a t-test indicated no significant differences in alpha diversity between sexes (H′ index:
p = 0.08 and Simpson indices: p = 0.52; Figure 1A,B). Similarly, ACE and Chao1 richness
indices showed no significant differences between female and male geckos (both p = 0.32;
Figure 1C,D), although we observed a higher number of ASVs in males.
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Figure 1. Diversity and gut microbiome richness in wild-caught South American leaf-toed geckos
(Phyllodactylus gerropygus). Boxplot of the (A) Shannon (H′), (B) Simpson diversity, (C) ACE, and
(D) Chao-1 richness indices. The t value corresponds to the Student’s t-test.

3.2. Taxonomic Characterization of the Gut Bacterial Communities in Female and Male Geckos

A total of 833 ASVs were recorded across female and male geckos (of which 589 ASVs
corresponded to samples of female animals and 725 ASVs corresponded to male animals).
Sequence analysis showed all the ASVs from female and male geckos were classified into
thirteen phyla, of which the most dominant phylum in fecal samples was Bacteroidota
(41.52%), Firmicutes (41.45%), and Proteobacteria (13.60%) (Figure 2A). Actinobacteria,
Cyanobacteria, Tenericutes, Verrucomicrobia, Deferribacteres, Elusimicrobia, Fusobacteria,
Gemmatimonadetes, Planctomycetes, and Saccharibacteria were minor components and
were not present in all samples.
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Figure 2. Analysis of the gut microbiome of the South American leaf-toed gecko. (A) Total relative
abundance (%) of fecal bacterial communities at the phyla level across sexes. Relative abundance of
the gut microbiome for female and male geckos at the phyla level (B), class (C), order (D), family (E),
and (F) family. Only phyla, class, order, family, and gender with relative abundance greater than
1% are shown in the histogram, and the other taxa are combined (others). The asterisk next to the
respective name indicates statistically significant differences between females and males.

Comparison between female and male samples revealed a similar bacterial phyla abun-
dance, except for a higher abundance of Bacteroidota in females (Student’s t-test = 2.21;
p = 0.04; Figure 2B), with the class Bacteroidia (family Bacteroidaceae) being the signif-
icantly most predominant (Figure 2C,E). At the gender level, Bacteroides was the most
abundant (Figure 2F). Another family that showed abundance in females, although not
significantly different from males, was Porphyromonadaceae, represented by the genus
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Parabacteroides (Figure 2E,F). In male geckos, we observed a relative increase in the ratio
of Firmicutes to Bacteroidota, which was approximately 2.0 times higher than in females
(Mann–Whitney U = 8.00; z = −2.47; p = 0.01; Figures 2 and 3). In both female and male
geckos, Firmicutes were mostly represented by the class Clostridia, order Clostridiales,
and at the family level by Lachnospiraceae and Ruminococcaceae. At the genus level,
Lachnoclostridium, Anaerotruncus, and Oscillibacter (Figure 2C–F). In Proteobacteria, the
class Deltaproteobacteria, order Desulfovibrionales, family Desulfovibrionaceae, and genus
Desulfovibrio were the most representative in both female and male geckos (Figure 2C–F).
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The principal coordinates analysis (PCoA) plot, based on the Bray–Curtis distance
matrix, showed that most samples were similar to each other without clear segregation into
independent groups (Figure 4A).
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Figure 4. Analyses of changes in bacterial composition. (A) Principal coordinates analysis (PCoA)
was conducted on the Bray–Curtis distance matrix to assess the diversity of bacterial communities in
female and male geckos. Each data point on the graph corresponds to one sample, with different
colors denoting each sex. (B) Venn diagram of core and specific ASVs of female and male gecko
fecal samples. Each ellipse represents a group. The number of ASVs shared among all the groups is
shown in the center, and the number of specific ASVs is shown in the non-overlapping proportions
of each ellipse.

3.3. Comparable Gut Bacterial Composition in Female and Male Geckos

The one-way PERMANOVA analysis revealed non-significant differences in bacterial
composition between sexes (p = 0.51). Among the bacterial sequences analyzed, 481 ASVs
were shared between both sexes, constituting 57.7% of the total ASVs identified. Addition-
ally, 108 ASVs (13.0%) were exclusive to females, while 244 ASVs (29.3%) were unique to
males (Figure 4B). Among these exclusive taxa, there were six bacterial phyla in the female
group and nine bacterial phyla in the male group. The most representative phylum in
both groups was Firmicutes, with Clostridia being the most abundant class. At the family
level, Lachnospiraceae and Ruminococcaceae were most representative in both sexes. In
addition, Bacteroidota, followed by Actinobacteria, were among the taxa that were unique
to females. In males, on the other hand, we observed a higher representation of the phylum
Tenericutes (class Mollicutes).

4. Discussion

In this study, we aimed to expand the knowledge of the gut microbiome of wild-caught
South American leaf-toed geckos in a sex-dependent manner. Although some researchers
have proposed that sex may influence the structural composition of the host’s gut micro-
biome by interacting with sex hormones and sex-specific immune responses [16,50,51], our
results showed that there was no effect of sex on the diversity and composition of bacterial
communities in the South American leaf-toed gecko. Similar to our finding, Kohl and collab-
orators (2017) did not detect an effect of sex on bacterial diversity or the relative abundance
of any taxa between omnivorous and herbivorous lizards [11]. We only recorded differences
between females and males in the abundance of the phylum Bacteroidota, where females
presented a higher abundance of this group. Studies have shown that the gut microbiome
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composition in female lizards, including species like Sceloporus virgatus, Rhinella marina,
and Calotes versicolor, is influenced by sex, captivity, and diet [17,52,53]. In this context, the
higher abundance of the phylum Bacteroidota in female lizards is indeed related to their
diet [52]. The phylum Bacteroidota are major members of the animal gut microbiome [54],
playing functional roles in degrading high-molecular-weight organic matter (i.e., proteins
and carbohydrates), activating T-cell-mediated responses, and producing butyrate to main-
tain gut health [55,56]. Additionally, members of Bacteroidota display intricate mechanisms
for acquiring and breaking down dietary polysaccharides that are otherwise difficult to
digest, such as chitin [56]. Chitin, one of the most abundant biopolymers in nature, is
present in the diets of many vertebrates [57], including P. gerropygus. Prey items typically
consumed by the South American leaf-toed gecko in the Atacama Desert primarily consist
of arthropods, particularly Coleoptera and insect larvae [39], which are rich sources of
chitin. Chitin can potentially restore the microbial community’s compositional balance,
showing promising anti-viral, anti-tumor, antifungal, and antimicrobial effects [57,58].
Thus, the enzymatic and regulatory activities of Bacteroidota may contribute to reptile
adaptation to digesting more chitin-rich prey items [58,59] in a sex-dependent way.

On the other hand, the ratio of Firmicutes to Bacteroidota (F/B) was significantly
higher in males than in females. Some authors have proposed that an increased Firmicutes
to Bacteroidetes (F/B) ratio in the gut microbiome indicates a greater energy harvesting
capacity for hosts [60,61]. For example, Tang et al. (2022) found that the F/B ratio in the gut
of wild Tokay geckos (Gekko gecko) was higher than that of captive animals, suggesting that
higher F/B ratios in wild animals help digest and absorb food nutrients more efficiently,
allowing the host to obtain energy in wild populations [62]. Firmicutes also contribute
to fiber and cellulose degradation by breaking down cellulose into volatile fatty acids,
which can be used by the host for the degradation of fiber and cellulose [52]. Moreover,
the family Lachnospiraceae within Firmicutes is recognized for its involvement in chitin
hydrolysis [63]. Likewise, Ruminococcaceae bacteria have been implicated in chitin di-
gestion within the gut microbiome of insectivorous mammals [64,65]. The variations in
abundance levels observed in specific groups between female and male geckos suggest
a potential adaptive strategy for wild geckos surviving in harsh natural environments.
Further investigation into these differences may elucidate how each sex adapts to distinct
environmental and physiological challenges.

Our study showed that the phyla Bacteroidota, Firmicutes, and Proteobacteria ac-
counted for more than 97% of the gut microbiome, indicating that these bacterial phyla were
the predominant ones in P. gerrhopygus. In contrast to our results, the top four dominant
bacterial phyla in the Japanese gecko (Gekko japonicus) and leopard gecko (Eublepharis macu-
larius) were Verrucomicrobiota, Bacteroidota, Firmicutes, and Proteobacteria [11,57]. It was
recently reported that Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteria were
the dominant phyla of the gut microbiome of the Tokay gecko (Gekko gecko) [62]. However,
our results are consistent with observations in other reptilian taxa, where the dominant gut
microbial phyla were Bacteroidota, Firmicutes, and Proteobacteria [11,52,66–68].

The phylum Proteobacteria, which was the third most abundant in our samples, is
often associated with dysbiosis, a sign of gastrointestinal tract disease in animals, including
humans [69]. However, Proteobacteria also play a crucial role in maintaining gut pH,
degrading and fermenting complex sugars, and producing vitamins for their hosts [66,70].
Notably, members of the family Desulfovibrionaceae are known for their ability to reduce
sulfate, producing hydrogen sulfide (H2S) as a byproduct. This process is vital for maintain-
ing a balanced gut environment and influencing several physiological processes, including
modulating inflammation and maintaining epithelial integrity, as well as influencing host
immune responses [50,71].

At the family level, our samples were predominantly characterized by Bacteroidaceae,
Lachnospiraceae, and Porphyromonadaceae, with lesser contributions from Ruminococ-
caceae and Helicobacteraceae. This finding is consistent with previous findings on reptile
gut microbiomes. For instance, Arizza et al. (2019) found that the dominant bacterial
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families in the gut microbiome of sea turtles (Caretta caretta) included Ruminococcaceae,
Rikenellaceae, Lachnospiraceae, and Clostridiales [66]. However, our results differed from
those reported for other geckos, such as the wild-caught Japanese gecko (G. japonicas), where
the dominant bacterial families were Akkermansiaceae, Bacteroidaceae, Tannerellaceae,
Enterobacteriaceae, Lachnospiraceae, and Clostridiaceae [57]. These discrepancies are likely
due to differences in the species, the environmental conditions, and the sampling methods.

At the level of composition of unique bacterial taxa for female and male geckos, we
observed a high representativity of Tenericutes (class Mollicutes) in males. The Tenericutes
members have been identified as important members of gut communities in fish, amphib-
ians, reptiles, and mammals, which may exert specific roles in nutrient processing [70].
For example, in the study of Zhou et al. (2020), the northern grass lizard (Takydromus
septentrionalis) tends to exhibit a higher proportion of Tenericutes compared to their wild
counterparts, which might be related to the limited activity space and food sources of
lizards [72]. Although our study was conducted on geckos in their natural environment,
some studies have reported that male geckos (Hemidactylus frenatus) displayed higher
levels of aggression and territorial behavior than females, which led to reduced mobility.
Additionally, male geckos may need to stop and fight more often than females due to their
territorial nature and aggressive tendencies [73]. Related to this observation, the structure
of gut microbial communities in vertebrates may influence behavioral aspects such as
aggressiveness [74]. Further research into the behavior of this species would help better
understand the functional contributions of Tenericutes in the gut of male geckos.

Finally, our data indicate that 9% of the total bacterial families still need to be identified,
revealing that many classes and their metabolic capabilities are still to be unveiled.

5. Conclusions

The present study provides valuable insights into the gut microbiome composition
and abundance in wild-caught South American leaf-toed geckos (Phyllodactylus gerropygus).
Our analysis revealed that the bacterial phyla Bacteroidota, Firmicutes, and Proteobacteria
constitute the predominant core microbiome of P. gerropygus. Notably, significant sex differ-
ences were observed in the abundance of the Bacteroidota group at various taxonomic levels
in females, while males exhibited variations in the Firmicutes/Bacteroidota ratio. Although
certain taxa displayed higher abundance in specific sexes, these differences did not reach
statistical significance. These findings suggest that females and males exhibit variations in
the types of food items consumed in their diet. Importantly, our study sets the stage for
future investigations aiming to elucidate the impact of gut microbial communities on the
ecological dynamics of species inhabiting highly unpredictable environments, leading us
to explore more complex ecological niches, such as those in the hyperarid Atacama Desert.

Supplementary Materials: The following supporting information can be downloaded at https:
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microbiome richness in wild-caught South American leaf-toed geckos (Phyllodactylus gerropygus).
Rarefaction curves comparing the number of observed ASVs found in female and male geckos.
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