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Abstract: Global increases in metabolic disorders such as type 2 diabetes (T2D), especially within
Asian populations, highlight the need for novel approaches to dietary intervention. The Tū Ora study
previously evaluated the effects on metabolic health of including a nut product into the diet of a New
Zealand cohort of Chinese participants with overweight and normoglycaemia or prediabetes through
a 12-week randomised, parallel-group clinical trial. In this current study, we compared the impact of
this higher-protein nut bar (HP-NB) versus a higher-carbohydrate cereal bar (HC-CB) on the faecal
microbiome by employing both 16S rRNA gene amplicon and shotgun metagenomic sequencing
of pre- and post-intervention pairs from 84 participants. Despite the higher fibre, protein, and
unsaturated fat content of nuts, there was little difference between dietary groups in gut microbiome
composition or functional potential, with the bacterial phylum Firmicutes dominating irrespective of
diet. The lack of observed change suggests the dietary impact of the bars may have been insufficient
to affect the gut microbiome. Manipulating the interplay between the diet, microbiome, and metabolic
health may require a more substantial and/or prolonged dietary perturbation to generate an impactful
modification of the gut ecosystem and its functional potential to aid in T2D risk reduction.

Keywords: diet intervention; almonds; peanuts; overweight; prediabetes; 16S rRNA gene amplicon
sequencing; shotgun sequencing; gut microbiome; functional potential

1. Introduction

Over the past two centuries, rapid urbanisation and industrialisation have been
accompanied by substantial dietary changes and a generally more sedentary lifestyle.
These changes are particularly pronounced in developing countries, in parallel with the
increased adoption of Western dietary patterns [1,2]. These tend to be rich in highly
processed, energy-dense, low-cost foods in contrast to traditional diets comprising fruits,
vegetables, whole grains, nuts, and legumes [3–5]. Consequently, metabolic disorders
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such as obesity and type 2 diabetes (T2D) have become increasingly prevalent and now
present a substantial global health issue [6]. Overweight and obesity affect some 2.5 billion
people worldwide [7], with 537 million in 2021 estimated to be living with T2D, and this is
projected to increase to 783 million by 2045 [6].

Asian peoples are particularly at risk, with a greater prevalence of adverse metabolic
health in Asia than in other developed regions of the world [8–10]. One explanation for this
susceptibility to metabolic disease is the propensity among Asian populations to deposit
fat in the abdominal region, both as visceral adipose tissue [11–13] and ectopic organ fat,
even in individuals without overweight or obesity. In 2012, Thomas et al. [14] coined this
distinct phenotype the TOFI (Thin on the Outside Fat on the Inside) profile and added
support to the ‘adipose tissue overflow’ hypothesis previously proposed by Sniderman and
colleagues [15]. This hypothesis purports that the subcutaneous fat storage compartment in
Asians is inherently smaller compared to that of Europeans and that, under circumstances
of excess energy intake, its capacity is quickly exhausted, and lipid ‘overflows’ into both
central/visceral compartments and non-adipose organ sites. This concept has received
support from several subsequent studies [16–18], with the comparison of ethnically diverse
populations showing that an individual of Asian descent with a low body mass index
(BMI) of >25 kg/m2 has the equivalent T2D risk of Europeans with a higher BMI of
>30 kg/m2 [19]. The TOFI profile has also been compared with the symptoms manifested
in partial lipodystrophy [20], as both phenotypes display a similar predisposition towards
lipid deposition in critical organs such as the pancreas and liver, often leading to the onset
of insulin resistance and T2D [20,21].

Tree nuts and peanuts (commonly termed ‘ground nuts’) are highly nutritious sources
of dietary fibre, plant protein, and unsaturated fats [22]. Fibre-rich diets have been linked
with a decreased risk of cardiovascular [23] and inflammatory diseases [24], certain can-
cers [25], kidney stones [26], and metabolic disorders such as obesity and T2D [23]. In
conjunction with dietary fibre, nutritionally dense dried fruits also offer a variety of essen-
tial minerals and polyphenols [27], which have been shown to mitigate T2D risk [28,29].
Indeed, multiple studies, both RCTs and observational, have reported various tree nuts
(including pistachios and almonds) and ground nuts (peanuts) to be associated with im-
proved metabolic health, including improvements in T2D-associated outcomes such as
hyperglycaemia, insulin resistance, low-grade inflammation, and oxidative stress [22,30–36].
Although legumes such as peanuts have been the focus of fewer investigations, they share a
similar nutritional profile to tree nuts [37], with considerable evidence also supporting their
T2D-protective effects [32,38]. Notwithstanding these previous findings, there remains
a need for further research. Unexpectedly, a recent meta-analysis of eight observational
studies failed to reveal a significant association between total nut (including peanuts and
tree nuts) consumption and T2D-related parameters [39].

The human gut microbiome, comprising hundreds of bacterial species as well as
fungi, protozoa, archaea, and bacteriophages, is critical in metabolising undigested dietary
components and maintaining metabolic homeostasis [40,41]. Dependent on the host diet
for nutrients and energy harvest, the gut microbiome is shaped by the dietary patterns
to which it is exposed, with diet shifts often accompanied by changes in gut microbial
community structure and function [42]. Furthermore, diet, the gut microbiome, and disease
are tightly linked, with implications for diverse conditions including obesity, T2D, and
inflammatory bowel disease [43,44]. Healthy, balanced diets tend to support beneficial bac-
teria, whereas unhealthy diets may promote harmful bacteria [43]. For example, microbial
fermentation of dietary fibre in the gut benefits short-chain fatty acid (SCFA) biosynthe-
sis [42]. Acetate, propionate, and butyrate are key SCFAs that exhibit anti-inflammatory
effects on gut epithelial and immune cells [45,46], with butyrate, in particular, notable
for its capacity to directly support the growth and differentiation of host colonocytes and
enterocytes [47,48]. Butyrate production has also been negatively associated with T2D
onset, with butyrate-producing bacteria diminished in the gut microbiotas of people with
T2D [49–51]. In a randomised, cross-over trial examining adults with elevated fasting
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glucose, the consumption of 28 g/day of peanuts led to the enrichment of Roseburia, a
known butyrate producer [49]. Metatranscriptomic analysis identified an increase in the
expression of an aerobic carbo-monoxide dehydrogenase gene associated with butyrate
production, supporting the reported capability of peanuts in modulating the microbiome
towards increased butyrate production [49].

Considering the increased risk of T2D presented by the TOFI profile and the rapid
growth of the T2D burden in Asian communities, more T2D-prevention studies targeted
explicitly towards Asian populations are important. The recent Tū Ora clinical trials [52,53]
conducted in our New Zealand clinic investigated the effects of a nut-based product,
containing the recommended 28 g/day of mixed nuts [54], on T2D-related outcomes in
an at-risk Chinese population. In these two randomised controlled trials (RCTs), although
consumption of a higher-protein nut bar led to a significantly attenuated post-prandial
glycaemic response when compared to an iso-energetic, higher-carbohydrate cereal-based
bar [52], no longer-term benefits of the nut bar on fasting endpoints were evident [53].
Here, we applied 16S rRNA gene amplicon and shotgun metagenomic approaches to faecal
samples from the trial by Sequeira-Bisson and colleagues [53] to identify any shifts in
microbiome composition and/or functional potential accompanying the higher-protein nut
bar diet.

2. Materials and Methods

The microbiome study described in this paper was one component of the 12-week
randomised, open allocation parallel-group Tū Ora RCT. The trial recruited participants
from residential communities in Auckland and Wellington, New Zealand. It focused on
the efficacy of a mixed nut product as a prebiotic therapy for T2D prevention in Asian
Chinese consumers with overweight and normoglycaemia or prediabetes. The inclusion
and exclusion criteria, as well as details of fasting plasma glucose (FPG) measurements to
assess (pre)diabetes status, and primary outcomes of the clinical trial have been published
elsewhere [52,53]. All participants provided written informed consent, and ethics approval
was obtained via the National Health and Disabilities Ethics Committee (HDEC), Auckland,
New Zealand (18/NTB/1/). The trial was registered with the Australian New Zealand
Clinical Trial Registry (Trial ID: ACTRN12618000476235).

One hundred and six individuals were eligible after in-clinic screening and subse-
quently enrolled in the trial (Figure 1). Forty-eight participants were randomised into the
high-carbohydrate cereal bar (HC-CB) group and 53 into the high-protein nut bar (HP-NB)
group, with both dietary arms including participants with either normoglycaemia or predi-
abetes. Participant demographic data are presented in Table 1. Participants in the HC-CB
cohort were provided with 1 MJ bars rich in cereal carbohydrates, and participants in the
HP-NB cohort were provided with iso-energetic 1 MJ bars rich in nut protein, unsaturated
fats, and fibre (for full details, see [52]). Participants were instructed to maintain all aspects
of their habitual diet and activity levels for the 12-week trial period, except for the inclusion
of one bar in their diet daily, at breakfast or as a snack. They were encouraged to substitute
the bar for another food item to ensure they did not increase their total daily energy intake
and, hence, not increase body weight.
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Table 1. Baseline characteristics (at clinical investigation day 1, CID 1) of all participants from whom
16S rRNA gene amplicon sequencing data were obtained.

Variables All
Diet

p-Value
Glycaemia

p-Value
HP-NB HC-CB Normoglycaemia Prediabetes

n 84 38 46 52 32
Age (y) 47.11, 11.04 46.81, 10.44 47.35, 11.93 0.83 45.63, 10.92 49.51, 11.06 0.12

Sex (M:F) (38:46) (22:24) (14:24) 0.19 (17:35) (21:11) <0.0001
Height (m) 1.66, 0.86 1.65, 0.09 1.67, 0.07 0.22 1.66, 0.09 1.67, 0.07 0.61

Body weight (kg) 76.3, 14.6 73.6, 16.3 78.4, 11.3 0.11 75.3, 14.4 77.8, 14.5 0.46
BMI (kg/m2) 27.4, 3.63 27.0, 3.74 27.8, 3.27 0.3 27.2, 3.27 27.8, 3.98 0.46

Waist circumf. (cm) 91.9, 10.9 92.8, 11.3 90.8, 10.2 0.38 89.6, 9.3 95.6, 11.7 0.018
Hip circumf. (cm) 102.9, 8.2 103.8, 8.6 101.9, 7.8 0.27 102.7, 7.5 103.3, 9.0 0.77

FPG (mmol/L) 5.51, 0.50 5.47, 0.56 5.54, 0.43 0.48 5.21, 0.28 6.00, 0.39 <0.0001
Insulin (µU/mL) 12.48, 9.29 12.12, 8.37 12.91, 10.24 0.69 9.87, 9.85 16.71, 11.30 0.0015

Mean ± S.D., p < 0.05 independent sample t-test comparison. Data are presented for the entire cohort (All) and
diet/glycaemia subgroups. HP-NB, higher-protein nut bar; HC-CB, higher-carbohydrate cereal bar; BMI, body
mass index; circumf., circumference; FPG, fasting plasma glucose; Fisher’s t-test was used to test the categorical
variable Sex. Significant p-values (p < 0.05) are in bold type.
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Figure 1. CONSORT participant flow chart for the microbiome component of the Tū Ora dietary
intervention trial. This flow chart depicts the number of participants who undertook the 12-week
intervention and provided faecal samples. Blue boxes indicate the number of samples analysed
using 16S rRNA gene amplicon sequencing, while green boxes represent samples analysed using
shotgun metagenomics. Participants were assigned to either the higher-protein nut bar (HP-NB) or
higher-carbohydrate cereal bar (HC-CB) dietary supplement.
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2.1. Faecal Sample Collection

Faecal samples were self-collected by participants at baseline and after the 12-week
dietary intervention and delivered to the research clinic. Participants were given a sample
collection kit, including a kidney dish, a scoop, a container, and a small sterile collection
tube. After defecation into the kidney dish and using the dedicated scoop to securely
collect a portion of faecal matter into the sterile tube, participants placed the tube inside the
provided container half-filled with water and stored the unit at −18 ◦C in their home freezer
until delivery to the clinic. The outer ice layer prevented the thawing of samples during
transit. Upon arrival at the laboratory, all faecal samples were stored at −80 ◦C before
DNA extraction. Participants provided two faecal samples: one at clinical investigation
day 1 (CID 1; baseline) and one at CID 5 (post-12-week intervention), representing a patient
sample pair.

2.2. DNA Extraction

Genomic DNA was extracted from 250 mg of faecal sample using the International
Human Microbiome Standards (IHMS) Protocol #9 [55], a repeated bead-beating method
utilising 0.1 mm silica and 3 mm glass beads. Cell lysis was performed using a non-
commercial lysis buffer (500 mM NaCl, 50 mM Tris-HCl at pH 8.0, 50 mM EDTA, and
4% SDS) as per the protocol; however, a Qiagen Tissuelyser II (Retsch, Haan, Germany)
was used (frequency of 30 Hz, for two cycles of 1.5 min) to break the cells instead of the
recommended FastPrep®-24 Instrument (MP Biomedicals, Irvine, CA, USA; 116004500). A
QIAamp DNA Minikit (Qiagen, Venlo, The Netherlands; 51306) was utilised in the final
steps of the protocol to remove RNA and protein, for purification, per the protocol. Negative
DNA extractions containing 250 µL of sterile water instead of 250 mg faecal sample were
also carried out to test for potential contamination. All extracts were subsequently analysed
on a Nanodrop 3300 fluorospectrometer (Nanodrop Technologies Inc., Wilmington, DE,
USA) to determine DNA quality and concentration.

2.3. 16S rRNA Gene-Targeted PCR and Sequencing

Bacterial community structure was analysed for all 168 samples (from 84 participants)
by PCR amplification and sequencing of the V3–V4 region of the 16S rRNA gene. The
KAPA High Fidelity HotStart Readymix PCR Kit (Kapa Biosystems®, Wilmington, MA,
USA) was utilised, with 50 ng of template genomic DNA used per reaction. The 341F-785R
primer pair [56], with added Illumina MiSeq-compatible adaptors (Illumina Inc., San Diego,
CA, USA), was used with the following thermocycling conditions: initial denaturation
and activation of enzymes at 95 ◦C for 3 min, followed by 25 cycles of denaturation (95 ◦C
for 30 s), annealing (55 ◦C for 30 s), and elongation (72 ◦C for 30 s), with a final extension
of 72 ◦C for 10 min. Correct amplicon size was confirmed by electrophoresis on 1%
(w/v) agarose gels with SYBR Safe nucleic acid stain (Invitrogen Co., Carlsbad, CA USA).
Negative PCR controls, in which nuclease-free H2O was used instead of template DNA and
amplifications of eluates from the negative DNA extractions, did not produce any visible
DNA products. Randomly selected negative controls were nonetheless sequenced even
if no product was visible on an agarose gel. PCR amplicons were purified using AMPure
magnetic beads (Beckman Coulter Inc., Brea, CA, USA) and quantified using the Qubit
dsDNA high-sensitivity kit (Invitrogen Co., USA). DNA concentrations of the purified
samples were standardised, and Auckland Genomics Ltd. (Auckland, New Zealand)
carried out Illumina MiSeq sequencing (2 × 300 bp chemistry).

2.4. Shotgun Metagenome Sequencing

Samples from all participants with prediabetes were further interrogated using shot-
gun metagenome sequencing. This sub-analysis comprised 64 pre- and post-intervention
sample pairs analysed from each of the 32 participants with prediabetes. DNA was ex-
tracted from faecal sample pairs via a repeated bead-beating method [55]. The extracted
DNA was eluted using AE elution buffer (Qiagen, The Netherlands; 51306 DNA Minikit)
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and quantified with the Qubit dsDNA high-sensitivity kit (Invitrogen Co., USA). Qual-
ity was assessed as a measure of absorbance using a Nanodrop 3300 fluorospectrometer
(Nanodrop Technologies Inc., Wilmington, NC, USA), and extract integrity was assessed
through 0.7% agarose gel electrophoresis using a lambda HindIII ladder for comparison.
Library preparation was conducted using Thruplex DNA libraries, and sequencing on
HiSeq 2500 V4, using 2 × 125 bp paired-end reads, was conducted by Otago Genomics Ltd.
(University of Otago, Dunedin, New Zealand).

2.5. Bioinformatic and Statistical Analysis of Sequence Datasets

Processing of the 16S rRNA gene amplicon dataset began with removing Illumina
adaptors and primers using Trimmomatic under standard settings [57]. Cleaned reads were
then processed into amplicon sequence variants (ASVs) using the DADA2 pipeline on the
New Zealand eScience Infrastructure (NeSI) computing cluster [58]. Reads were trimmed
in DADA2 at 280 and 200 bp for forward and reverse reads, respectively, aiming for a
median quality score of >30. After merging paired reads, an ASV table was constructed,
and chimaeras were removed [58]. Taxonomic assignment was performed at the genus level
using the SILVA 138.1 ribosomal RNA database and the IdTaxa function from DECIPHER
(version 3.18) [59]. DADA2 outputs were imported and assembled in R Studio (v 4.3.2)
using the phyloseq package (Bioconductor version 3.18) [60]. Normalisation was performed
to facilitate comparison across samples with different sampling depths: each sample was
standardised to 6500 reads using the scaling with ranked subsampling method component
of the SRS package [61], with the C-min set to ~6500 reads. No samples were discarded.

FastQ files provided by the sequencing facility were subjected to quality filtering and
trimming using BBDuk for analysis of the shotgun metagenome dataset. This comprised the re-
moval of (1) adapter sequences, (2) any retained PhiX sequences from reads, and (3) trimming
7–8 bp of poorer quality at the start and 2–3 bp at the end of reads. Post-QC sequences were
then checked for over-filtering or over-trimming with FastQC. Human DNA was subsequently
removed using BBTools from the BBMap suite to map reads against a specially processed
human genome reference (hg19_main_mask_ribo_animal_allplant_allfungus.fa.gz) [62]. Re-
sulting reads were aligned using DIAMOND Blast X against the NCBI-nr protein database
for functional annotation [63]. Taxonomic and functional binning was then performed
using the MEGAN 6 daa-meganizer tool with the megan-map-Feb2022 database, which
computes taxonomic and functional classifications of all reads against several databases as
recommended by the MEGAN 6 short reads pipeline using the LCA algorithm [63]. Finally,
the meganized files were compared against each other using the compute-comparison
tool, and the resultant outputs from each database (NCBI, KEGG) were exported from
MEGAN 6 for assembling into a phyloseq object in R Studio (v 4.3.2). Cumulative scale
normalisation was applied on the shotgun dataset using the metagenomeSeq package to
produce a normalised object. The pipeline was performed using the New Zealand eScience
Infrastructure (NeSI) computing cluster with subsequent phyloseq and analysis work being
conducted locally in R Studio (v 4.3.2).

Bacterial community diversity indices for both (16S rRNA and shotgun metagenome)
datasets were calculated in R Studio (v 4.3.2). Alpha-diversity indices (Observed, Shannon,
Simpson) were calculated using the estimate_richness() function from the phyloseq package
and visualised using plot_richness() [60]. Paired Wilcoxon signed-rank tests were applied
to compare alpha-diversity measures between diet groups, and p-values were adjusted
with Benjamini–Hochberg multiple corrections. Counts were aggregated at the phylum
and genus levels using tax_glom() for subsequent Bray–Curtis dissimilarity analysis using
distance() and PCoA analysis using plot_ordination() from the phyloseq package. PER-
MANOVA (permutational multivariate analysis of variance) was conducted on Bray–Curtis
distances using adonis2() from the vegan package (version 2.6-4) [64], with the Bray–Curtis
dissimilarity set as the response variable, and CID as the explanatory variable. This analysis
accounts for the non-independence of samples from the same patient (repeated measures,
paired samples) by specifying the patient as the stratification variable. The analysis was
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set to 1999 permutations to test if bacterial community composition does not differ by
CID. This PERMANOVA was followed by a custom permutation, which was designed
to run on a loop. Permuting the CID variable within the patient block and performing
the PERMANOVA for each permutation, the resultant R2 value was recorded (variance
explained by permuted CID). Then, the proportion of permuted R2 values equal to or larger
than the original R2 was used to calculate the empirical p-value, assessing the significance
between bacterial community composition and CID. The PERMANOVA + custom loop
permutation was applied to both datasets by subsetting the data by Diet, Sex, Glycaemic
state, and Diet × Glycaemic state interaction where appropriate. Dissection of the dataset
in this way is integral to assessing the influence of CID on bacterial community composition
across clinical and demographic strata.

To evaluate the effect of the dietary interventions on bacterial community composition,
we calculated the Bray–Curtis dissimilarity for each participant’s sample pair at baseline
(CID1) and post-intervention (CID5). These values were then compared to quantify the
‘dissimilarity change’, a numerical value representing the shift in bacterial community
composition over the intervention period. Subsequently, a Wilcoxon rank-sum test was
used to assess statistically significant dissimilarity changes between diet groups (HP-NB,
HC-CB) in the taxonomic and functional data of the shotgun metagenomic dataset.

Top taxa by relative abundance for phylum and genus levels were sorted using
top_taxa() function and plotted using ggplot2 (version 3.5.0), using RColorBrewer (version
1.1-3) for the colour schemes [65] for the generation of relative-abundance graphs.

3. Results
3.1. Participant Demographics at Baseline

Of the 97 participants who completed the dietary intervention, 86 provided a faecal
sample at both baseline and 12 weeks. Two of these participants were later identified
to have T2D (FPG > 7.0 mM at baseline), so they were excluded from further analysis,
leaving a final set of 84 sample pairs (Figure 1). The normoglycaemic group contained
52 participants (HC-CB = 23; HP-NB = 29), and the prediabetes group had 32 participants
(HC-CB = 15; HP-NB = 17) (Table 1). Although demographic and anthropometric variables
such as mean participant age (47.1 years) and BMI (27.4 kg/m2) were well-balanced across
cohort groups, the sex ratio was skewed towards females in the normoglycaemic group
(17M:35F), with males overrepresented in the prediabetes group (21M:11F).

3.2. Taxonomic Composition of 16S rRNA Gene Amplicon Sequencing Data

To determine microbiota composition, taxonomic profiles for the entire cohort (16S rRNA
gene amplicon sequence data) were obtained for the 84 participants outlined above
(Figure 2), with a total of 25,484 unique ASVs detected. Consistent with expectations
for gut microbiome samples, the dominant bacterial phyla were Firmicutes (66.7% of total
16S rRNA gene sequences), Bacteroidota (16.6%), Proteobacteria (4.12%), and Actinobacteri-
ota (4.10%), while Verrucomicrobiota (0.7%) were also relatively abundant. These patterns
primarily held regardless of glycaemic status, diet group, or time point, though there was
considerable variation among individuals (Figure 2A). At the genus level, Faecalibacterium
(10%), Bacteroides (7.1%), Subdoligranulum (5.2%), Bifidobacterium (4.9%), and Dialister (2.6%)
exhibited the highest relative abundances, although again, variation among individuals
was substantial (Figure 2B).
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taxonomic level. HP-NB, higher-protein nut bar; HC-CB, higher-carbohydrate cereal bar.

3.3. Factors Affecting 16S rRNA Gene-Based Microbiota Composition

To isolate the effect of time (CID) per se, we sought to simplify the analysis by sub-
setting the 16S rRNA gene dataset by critical factors of interest, namely, sex, diet, and
glycaemic status (Table 2). Of all tested comparisons, only when limiting the analysis to
male participants was there a significant result (p = 0.017), and even then, only 1.2% of
the observed variation in the microbiota was explained. PERMANOVA analysis of the
shotgun metagenome dataset revealed a similar lack of statistically significant effects at
both taxonomy (genus) and functional potential (KEGG) levels (Supplementary Table S5).
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Table 2. PERMANOVA results for Bray–Curtis dissimilarity by CID (accounting for repeated mea-
sures) applied on overall 16S rRNA gene amplicon sequencing data and subsets.

Sex Diet Glycaemic Status
Diet × Glycaemic Status

HP-NB HC-CB

All Male Female HP-NB HC-CB N P N P N P

n 84 38 46 38 46 52 32 23 15 29 17
R2 0.004 0.012 0.007 0.007 0.007 0.008 0.007 0.012 0.014 0.019 0.021

p-value 0.447 0.017 0.73 0.31 0.821 0.107 0.995 0.471 0.903 0.077 0.548

Subsets were defined based on three factors: sex (male, female), diet (HP-NB, higher-protein nut bar; HC-CB,
higher-carbohydrate cereal bar), and glycaemic status (N, normoglycaemia; P, prediabetes). The table presents the
results for all possible combinations of factors, including overall effect, effect within each sex level, diet level, and
glycaemia level, and effect within each glycaemia level when stratified by diet. Significant p-values (p < 0.05) are
shown in bold type.

3.4. Taxonomic Composition and Functional Potential of the Faecal Microbiome Based on Shotgun
Metagenomic Sequencing

For insights into the faecal microbiome’s functional potential and a PCR-independent
examination of microbiota taxonomic composition, we employed shotgun metagenome
sequencing for the 32 participants with prediabetes. A total of 1,063,123,328 sequence
reads were obtained, with 1,042,409,216 (98%) of these able to be taxonomically assigned.
Among these, Firmicutes (58.2% of total assigned sequence reads), Bacteroidota (21%), and
Proteobacteria (2.8%) (Supplementary Figure S3) were the dominant bacterial phyla, while
Bacteroides (6.7%), Eubacterium (1.3%), and Subdoligranulum (1.2%) were the most abundant
genera (Supplementary Figure S4). Consistent with the 16S rRNA gene amplicon data,
analysis of the shotgun dataset did not identify any significant differences in overall
taxonomic composition due to diet. Alpha diversity (Shannon, Observed, Simpson metrics)
did not differ significantly (Wilcoxon rank-sum test) with diet at either the genus level or
KEGG level 2 (Supplementary Tables S3 and S4).

While shifts in both bacterial community composition (Figure 3A,B) and functional po-
tential (Figure 3C,D) were observed, neither the magnitude nor trajectory of these changes
were consistent. Thus, genus-level taxonomic composition did not differ significantly
between diet groups, though functional pathways defined at KEGG level 2 did (p = 0.011).

Further examination using PCoA at KEGG level 2 (Figure 3B) mirrored the taxonomic
findings, indicating the lack of divergence in potential microbial function that could be
attributed to CID within each diet group. However, there was a significant change in
dissimilarity between diet groups, with the Wilcoxon rank-sum test generating p = 0.011
for KEGG level 2 (Figure 3D), with similar outcomes for KEGG levels 3 (p = 0.018),
4 (p = 0.020), and 5 (p = 0.020). These results suggest that diet type affected microbial
functional potential.

Like the taxonomic profile situation, the microbiome’s functional capacity did not
differ between the HC-CB and HP-NB diets (Figure 4). At the read level, 566,866,944 were
assigned to KEGG nodes. At KEGG level 2, the most abundant functional groups were
carbohydrate metabolism, amino acid metabolism, and membrane transport, which were
9.22%, 6.44%, and 4.10%, respectively, with little or no variation between the diet groups.
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Figure 3. Shift in bacterial community composition and KEGG level 2 metabolic pathways (Bray–
Curtis dissimilarity) for the shotgun metagenome dataset (restricted to participants with overweight
and prediabetes, n = 32). (A,C) Principal coordinate analysis (PCoA) plots depict changes in the
bacterial community (genus level) (A) and KEGG level 2 metabolic pathways (C) between CID 1
baseline and CID 5 end of intervention. Samples are colour coded by diet group (HP-NB: red; HC-CB:
blue). Arrows represent the direction and magnitude of change in the bacterial community from
CID 1 to CID 5. PERMANOVA analysis revealed no statistical significance by CID at the genus
level (HP-NB p = 0.89; HC-CB p = 0.44) or at KEGG level 2 (HP-NB p = 0.31; HC-CB p = 0.998).
(B,D) Box and whisker plots showing the dissimilarity change (Bray–Curtis dissimilarity) between
CID 1 and CID 5 for each diet group: (B) dissimilarity change in the bacterial community (genus
level); (D) dissimilarity change in KEGG level 2 metabolic pathways. Outliers are represented as
individual dots.
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4. Discussion

The Tū Ora dietary intervention trial investigated the effect of the recommended daily
intake of nuts (28 g/day) on fasting and postprandial glycaemia and associated metabolic
parameters in Chinese adults with overweight and normoglycaemia or prediabetes. The
primary outcomes of this trial have been reported elsewhere, with significant improvements
in postprandial [52] but not fasting glycaemic [53] endpoints. In our current analysis, we
aimed to determine whether the daily inclusion of a 1 MJ higher-protein nut versus an
iso-energetic higher-carbohydrate cereal product altered the composition and functional
potential of the faecal microbiome among the Tū Ora participants. To this end, we employed
a combination of 16S rRNA gene amplicon and shotgun metagenome sequencing.

Neither the gut microbiome’s composition nor its functional potential were signif-
icantly influenced by the inclusion of the 28 g/day nut product within the daily diet.
Both 16S rRNA gene- and shotgun metagenome-based analyses indicated the dominance
of the microbiome by members of the phylum Firmicutes, irrespective of diet (HP-NB,
HC-CB) or glycaemic status (normoglycaemia, prediabetes), with Bacteroidota and—to a
lesser extent—Proteobacteria, Actinobacteriota, and Verrucomicrobiota also exhibiting high
relative abundance. At the genus level, the 16S rRNA gene amplicon analysis (conducted
on all 84 participants, i.e., normoglycaemia and prediabetes cohorts) indicated the com-
monly reported gut bacteria Faecalibacterium, Bacteroides, and Subdoligranulum as having
the highest relative abundance overall, with no evidence for significant differences in
abundance across different diet groups. Though not entirely, this was mirrored by the
shotgun metagenome data: in the prediabetes cohort (32 participants), Bacteroides, Sub-
doligranulum, and Eubacterium had the highest relative abundances. As is frequently seen in
human microbiome studies, variation in the microbiome among individuals was substan-
tial. Indeed, PERMANOVA analyses revealed that only a minor percentage of microbiome
variation was explained by the tested factors (diet (HP-NB, HC-CB), glycaemic status
(normoglycaemia, prediabetes), sex (male, female)), or the interaction between them. Much
of the >95% residual variation unaccounted for by these factors is likely due to inherent
inter-individual variability. Differences in habitual diet may also be important: wholesale
diet changes—which would more likely heavily affect the microbiome—were not part of
the Tū Ora trial, with the respective nut or cereal bar replacing only one small meal or
snack per day.

Specific gut bacteria have previously been identified as key players in host metabolic
health. Members of the genus Faecalibacterium (phylum Firmicutes) are butyrate producers
with beneficial effects on gut health and anti-inflammatory properties [66]. Bacteroides
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(Bacteroidota) and Subdoligranulum (Firmicutes), both prominent in our findings, contribute
to host digestion by fermentation of complex undigested carbohydrates and production
of SCFAs as a by-product. SCFAs are important for gut health and contribute ~10% of
human energy requirements [67,68]. Akkermansia muciniphila, a member of the phylum
Verrucomicrobiota, is associated with positive health outcomes linked to its potential roles
in maintaining gut-barrier integrity and exerting a protective effect against obesity and
T2D [69]. The co-occurrence of these genera suggests the presence of a complex dynamic
between members of the gut microbiome and host metabolism, emphasising their potential
role in maintaining metabolic health.

The obtained shotgun metagenome data provide insights into the functional potential
of the faecal microbiome, at least for those participants with overweight and prediabetes.
Consistent with the taxonomy-based outcomes, in which we were unable to detect a
significant effect of diet on the composition of the gut microbiome, the shotgun analyses did
not reveal any significant effects on overall functional potential. Irrespective of KEGG level,
functional potential varied little with diet group. Moreover, applying multiple differential
abundance approaches failed to identify consistent metabolic pathways that were over-
or under-represented in a specific diet group. The apparent lack of change in overall
functional potential could reflect functional redundancy among microbiome members
and/or insufficient microbiome perturbation by the imposed dietary interventions. Indeed,
a recent 12-month intervention study highlighted the inherent resilience of gut microbiota
despite changes in both diet and body weight [64].

Previous studies investigating the influence of nuts on the gut microbiome have varied
somewhat in their outcomes, highlighting both the complex interplay between diet and
gut health but also likely reflecting differences in study methodology, nut dosage, and nut
type. A 2014 study [70] demonstrated a much stronger effect of pistachios compared with
almonds on the gut microbiome, with notable enrichment of butyrate-producing bacteria.
Butyrate producers Roseburia and Faecalibacterium were also among those bacteria which
increased in abundance following the consumption of walnuts in various serving sizes [71].
It is thus likely that at least some nuts may act as a prebiotic, facilitating the growth and
activities of SCFA producers [72]. The consumption of 28 g of peanuts daily enriched the
proportion of butyrate-producing bacteria such as Roseburia and Ruminococcaceae while also
increasing the expression of a butyrate-related gene in adults with elevated fasting glucose,
emphasizing the potential use of peanuts as a gut microbiome modulator. Consumption
of the Baru nut, an almond native to the Brazilian Cerrado biome, by individuals with
obesity improved lipid profiles and was associated with changes in the gut microbiota [73].
Taken together, the available data indicate that nut consumption, including peanuts [49],
can impact the gut microbiome in potentially positive ways, though this was not observed
in our current findings from the Tū Ora trial.

There are several methodological considerations and limitations related to this study.
The Tū Ora trial initially aimed to improve the glycaemic status in participants with obesity
and prediabetes and recruited accordingly. However, a substantial proportion (roughly half)
of participants reverted to normoglycaemia between initial screening and commencement
of the intervention at CID 1. This reversion constrained the sample size and thus statistical
power, albeit with the unexpected addition of a normoglycaemic cohort to our study. An
absence of gene expression data further constrained our functional analysis, with our
strategy for faecal collection and storage not lending itself to the preservation and analysis
of RNA. Finally, and as alluded to earlier, our results may also be limited due to insufficient
perturbation to the microbiome by the dietary intervention and the moderate duration
(12-week) intervention period. Although largely consistent with previous studies, and
certainly adhering to the recommended daily intake of nuts (28 g/day) [54], the intake of
almonds and nuts in HP-NB may not have been adequate to elicit measurable changes in
microbiome composition or function.
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5. Conclusions

In conclusion, our study contributes to the body of knowledge around the use of
nut-based dietary interventions in individuals with overweight and prediabetes to prevent
the progression to T2D. The lack of significant influence of the applied intervention on
microbiome composition or function may suggest a need to re-evaluate intervention param-
eters regarding nut dosage (>28 g/day) and dietary intervention period. Future research
should consider higher dosages and more extended intervention periods to explore the
potential for beneficial metabolic effects, while RNA-based methodologies to document
microbial gene expression could also be insightful. Advancing our understanding of di-
etary interventions as a prediabetes management tool requires the further consideration
of methodological aspects and dose size to better design practical strategies for T2D pre-
vention in at-risk cohorts. Our study lays the groundwork for future investigation and
supports the need for highly tailored, personalised dietary interventions to ameliorate and
manage this global health challenge.
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mdpi.com/article/10.3390/nu16121971/s1: Table S1: Baseline characteristics at clinical investigation
day 1 (CID 1) of all participants from whom shotgun metagenomic sequencing data was obtained
(n = 32); Figure S1: Shannon alpha-diversity index comparison from 16S rRNA gene sequencing
(n = 84) across the normoglycemic and prediabetic cohorts at baseline (CID 1) and post-intervention
(CID 5); Table S2: Paired Ranked Wilcoxon test results for alpha diversity indices of 16S rRNA
gene-based sequencing dataset (n = 84) comparing alpha diversity at CID 1 (baseline) against CID 5
(post-intervention) at the genus level; Figure S2: Shotgun metagenomic sequencing-based relative
abundance in CID 1 (baseline) and CID 5 (post-intervention) samples. Relative abundance is shown
for the top 10 most abundant bacterial taxa at the phylum level; Figure S3: Shotgun metagenomic
sequencing-based relative abundance in CID 1 (baseline) and CID 5 (post-intervention) samples.
Relative abundance is shown for the top 10 most abundant bacterial taxa at the genus level; Figure
S3: Shotgun metagenomic sequencing-based relative abundance in CID 1 (baseline) and CID 5 (post-
intervention) samples. Relative abundance is shown for the top 10 most abundant bacterial taxa at
the genus level; Figure S4: Shannon alpha-diversity index comparison from shotgun metagenomic
sequencing (n = 32) across the prediabetic cohort at baseline (CID 1) and post-intervention (CID 5);
Table S3: Paired Ranked Wilcoxon test results for alpha diversity indices of shotgun metagenomic
sequencing dataset (n = 32) comparing alpha diversity at genus level at CID 1 (baseline) against
CID 5 (post-intervention); Table S4: Paired Ranked Wilcoxon test results for alpha diversity indices
of shotgun metagenomic sequencing dataset (n = 32) comparing alpha diversity at KEGG (Kyoto
Encyclopedia of Genes and Genomes) level 2 at CID 1 (baseline) against CID 5 (post-intervention);
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diet (n = 32).
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