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Abstract: Potassium channels have recently emerged as suitable target for the treatment of epileptic
diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsi-
ble for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry
of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the
papers addressing the issue of KCNT1 blockers’ development and identification, also evidencing the
pros and the cons of the scientific approaches therein described. After a short introduction describing
the epileptic diseases and the structure–function of potassium channels, we provide an extensive
overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used
for their identification.

Keywords: KCNT1 potassium channel; epileptic encephalopathies; medicinal chemistry campaigns;
KCNT1 blockers’ identification

1. Introduction

Epilepsy is one of the most common chronic noncommunicable neurological disorders
affecting over 50 million people worldwide [1]. From the clinical point of view, epilepsy is
characterized by recurrent brief episodes of involuntary movement (seizures), which can be
partial, if limited to specific parts of the body, or generalized, if the entire body is involved.
Epileptic seizures are often flanked by loss of consciousness and faecal and/or urinary
incontinence [2]. Moreover, together with the predisposition to the epileptic seizures, the
cognitive, neurobiological, psychological, and social consequences fall within the definition
of epilepsy [2,3]. The aetiology of epilepsy may deeply vary. The epileptic seizures, for
instance, may be due to well-known or presumed genetic defects, despite that the genetic
aetiology does not exclude the potential involvement of environmental factors [4].

At the same time, epileptic syndromes can be the result of brain injuries (for example,
stroke, trauma, and infections) or metabolic alterations [4]. Finally, there are several
epileptic diseases that fall within the “unknown cause”, meaning that the nature of the
underlying cause is basically unknown [4].

In recent years, several medicinal chemistry campaigns have been carried out in the search
for new anticonvulsant drugs (AEDs) with different mechanisms of action, but still, the major
problems related to epilepsies concern the lack of an effective pharmacological treatment.

For instance, about one-third of epilepsies are totally refractory to the current medical
treatments and a really high proportion of intractable epilepsies during childhood have
a significant detrimental impact on the life of patients, including high risk of cognitive
and behavioural/psychiatric comorbidity and early mortality [5,6]. When the clinical
conditions are characterized by early seizure onset in childhood, electroencephalogram
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(EEG) abnormalities, and poor prognosis for seizures, they are, usually, referred to as
epileptic encephalopathies (EEs) [7].

More frequently, patients may have both developmental plateauing and/or regression
associated with severe epileptic seizures. This is why, in 2017, the underlying diseases have
been more properly classified as developmental and epileptic encephalopathies (DEEs) [8].
DEEs often show a genetic aetiology, and plenty of genes underlying inherited familial
epilepsies have been discovered. As shown in Figure 1, the initial identification of genetic
disorders leading to DEEs was fast and productive, leading to the discovery of several
genes involved in epilepsy, such as CHRNH4 [9], SCN1A [10], SCN1B [11], KCNQ2 [12,13],
and GABRG2 [14]. This period is also referred to as the channelopathy era (Figure 1), since
the identified genes were mostly encoding ion channels and gave birth to the idea that
the genetic epilepsies could be merely considered as a family of channelopathies [15,16].
The enthusiastic beginning of the epilepsy gene discovery era was followed by a period
of stagnation where very few novel genes were identified and investigated (the dark era,
Figure 1). Then, the development of Next-Generation Sequencing (NGS) and/or Whole
Exome Sequencing (WES) techniques strongly boosted the identification of novel genes
responsible for DEEs also contributing to demonstrate the significant genetic heterogeneity
of these diseases (genomic era, Figure 1).
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Since many biological pathways have been implicated in DEEs aetiology, the complete
identification of epilepsy with channelopathies has been nowadays strongly questioned.
Nevertheless, ion channel misfunction still accounts for a high proportion of genetic
epilepsies. It has been reported that mutations to ligand- and voltage-gated ion channel
genes account for about 10% and 17% of known epilepsies, respectively [18]. As such, there
are many reports unravelling the molecular and neuronal pathways underlying genetic
epilepsy caused by mutations in ion channels. Moreover, this is paving the way for the
development of disease-targeted therapies in the genetic epilepsies [18].

Among the ion channels involved in DEEs, potassium ones are probably the most
promising targets.

2. Potassium Channels: General Aspects and Involvement in Epilepsy

Potassium channels (KCNs) are the broadest and most heterogeneous class of ion
channels, they are encoded by more than 90 genes present in the human genome [19], and,
virtually, they are present in every species, both eukaryotes and prokaryotes, except for
some parasites [20]. The activity of these channels allows potassium ion flux through the cell
membrane, thus generating electric signals in cells. Genetic alterations in these ion channels
can generate multiple effects such as the enhancement of neurotransmitters release, altered
neuronal excitability, and an abnormal rapid neuronal firing rate [21]. All these effects can
be considered clinically relevant in characterizing the epileptic phenotypes, making these
ion channels a potential therapeutic target for epilepsy. All KCN channels contain at least
a pore-forming domain (PD), composed of two transmembrane (TM) helices that cross
the lipid bilayer and are linked by a short loop of about 30 amino acids, usually referred
to as the P loop. The amino- and carboxylic-termini are located intracellularly [22,23].
Considering the number of TM helices and the functions, potassium channels could be
divided into four main classes (Figure 2) [22,23]:

• Inwardly rectifying channels (2TM/P);
• Voltage-gated and ligand-gated channels (6TM/P);
• Hybrid channels made from the two previously mentioned classes (8TM/2P);
• Tandem pore domain channels (4TM/2P).

The prototypical KCN monomer consists of a PD made of two transmembrane helices
linked by a P loop (2TM/P, Figure 2A). This structural motif is almost universal for KCN,
but each subfamily of channels is characterized by further, distinct features. The ligand-
gated and voltage-gated KCN, for instance, bears four transmembrane helices (S1–S4)
preceding the 2TM/P motif (Figure 2B), thus implementing the capability to sense and
react to the modification of transmembrane potential. Finally, 4TMs and 8TMs channels
can be considered as dimers of two 2TM/P motifs (Figure 2C) and of one 2TM/P motif and
one 6TM/P motif (Figure 2D), respectively.

The canonical structure of KCN consists of a tetramer made by four subunits (Figure 3),
which form the pore through which the ions pass; two layers of aromatic amino acids are
extended into the lipid bilayer, near the membrane–water interface. The pore region is
composed as follows: each subunit directs one PD helix (namely the inner helix) toward the
centre of the pore, whilst the second one (namely the outer helix) faces the lipid membrane.
The inner helices are angled with the membrane of about 25◦ [23]. The P loop is constituted
by an amino acid sequence of Thr-Val-Gly-Tyr-Gly, whose carbonyl oxygens are an essential
part of the so-called selectivity filter (Figure 3). This filter consists of five stereochemical
checkpoints, made up by the oxygens of the previously mentioned amino acids. These
checkpoint lines are repeated every ~3.0 Å along the filter [24]. Four checkpoints assume
a square-antiprism geometry in which the potassium ion is coordinated by eight oxygen
atoms that drive the ion along the filter. The selectivity filter is completed by two additional
binding sites, one at the external entrance to the filter consisting of four carbonyl oxygens
from the filter and four water oxygens, and the second at the internal entrance to the filter,
where oxygens are entirely provided by water molecules [25].
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Figure 2. General architecture of potassium channels. (A) Inwardly rectifying two transmembrane
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channel (8TM/2P). (D) Tandem pore domain channel (4TM/2P). Created with BioRender.com, accessed
on 4 May 2024.
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6TM/P channels, also known as voltage-gated and ligand-operated potassium chan-
nels, are, probably, the most heterogeneous family of KCN channels, and are also the
most involved in the aetiology of epilepsy [26]. Among them, Kv7 and KCNT1 channels
have progressively gained importance as molecular targets in the treatment of channel-
associated DEEs, also considering the high potential for the development of personalized
therapies [27–29].

The Kv7 (KCNQ) subfamily of K+ channels comprises five members (Kv7.1–7.5), each
showing distinct tissue distribution and physiological roles. The 7.2 and 7.3 subunits
of Kv7 channels are the most abundant in both the central and the peripheral nervous

BioRender.com
BioRender.com
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system. They usually assemble as heteromeric channels composed of Kv7.2 and Kv7.3
subunits and are thought to underlie a K+ current, named M-current (IKM), accounted for
the reduction in neuronal excitability and repetitive firing, thus causing spike frequency
adaptation. Mutations in the genes encoding for Kv7.2 and Kv7.3 (i.e., KCNQ2 and KCNQ3,
respectively), mainly leading to loss-of-function (LoF) phenotypes, are responsible for a
wide range of epileptic diseases [12,13,30]. This is the reason why Kv7.2/7.3 openers are
widely investigated as potent anticonvulsants in humans, with a couple of candidates that
have reached clinical trials [31–37].

On the other hand, despite belonging to the 6TM family, KCNT channels are sodium-
activated potassium channel (KNa), generating the so-called IKNa current, initially dis-
covered in mammalian cardiac cells [38] and, lately, also in avian trigeminal ganglion
neurons [39]. The current is generated in reply to the increase in the intracellular concen-
tration of sodium ions as a consequence of repeated action potentials, leading to KCNT
channels opening [40]. KCNT channels are known to be encoded by two genes belonging
to the Slo family (Slo 2.2 and Slo 2.1), which are also known as the Slack (KCNT1) and Slick
(KCNT2) channels, respectively. [41] Similarly to the other TM6 potassium channels, KCNT
channels are assembled as tetramers in which each subunit is composed of a transmem-
brane domain (six helices, S1–S6) with S1–S4 forming the voltage sensor domain (VSD)
and S5–S6 constituting the pore-forming domain (PD). A large cytoplasmic domain is
composed by two “regulator of K+ conductance” (RCK) domains and a highly conserved
PDZ-binding domain at the C-termini [41,42].

KCNT channels are expressed in many different types of neuronal cells and several
locations [43,44] rather in neurons and glia cells [45].

Despite mutations in KCNT2 having been recently reported also to cause DEEs [46–48],
it is widely known that mutations in KCNT1, which are mostly responsible for Gain-of-
Function (GoF) phenotypes, account for severe, drug-resistant rare forms of childhood
epilepsy, including Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) [49], Autoso-
mal Dominant Sleep-Related Hypermotor (Hyperkinetic) Epilepsy (ADSHE) [50,51], Ohta-
hara [52], West [53], and Lennox–Gastaut syndromes [54]. KCNT1-related encephalopathies
are also characterized by developmental regression and/or intellectual disabilities [54].

At the molecular level, different mechanisms underlying the enhanced channel func-
tioning of GoF KCNT-1 variants have been proposed, among which are the following: the
suppression of subconductance states together with changes in protein kinase C regula-
tion [49]; changes in Na+ sensitivity [55]; increased channel cooperative gating together
with decreased single-channel conductance [56]; and altered interactions with binding
partners [57,58]. Considering the GoF variants as the most pathogenic KCNT1 variants,
during recent years, several efforts have been made by both academia and industry to
discover KCNT1 blockers suitable as therapeutic tools for precision medicine.

3. Medicinal Chemistry Strategies for Identification of KCNT1 Blockers
3.1. Drug Repurposing

Quinidine (QND—Figure 4A), a class IA antiarrhythmic agent, primarily acting by
voltage-gated sodium channel blockade, is the first molecule to be identified as a KCNT1
blocker by drug repurposing approaches. Its clinical use for the treatment of KCNT1-related
epilepsies was initially investigated by in vitro experiments [59] and clinically challenged
later [29,60,61]. Despite that initial results were quite encouraging, the extensive use of
quinidine in KCNT1-related epilepsies was strongly questioned when larger and systematic
clinical studies were performed. These studies highlighted heterogenous anticonvulsant
efficacy, ranging from positive responses to a lack of efficacy, often penalized by severe
toxicity [62]. Several reasons can be given to rationalize this evidence. Quinidine is a rather
weak KCNT1 blocker (~80 < IC50 < 100 µM [63,64]), meaning that several factors, including
the severity of the disease, the specific molecular defect, the age of EE onset, and quinidine
therapy initiation, can deeply affect its efficacy. Moreover, quinidine has an unfavourable
pharmacokinetic profile and in spite of its rapid adsorption in the gastrointestinal tract
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and its rapid tissue distribution, it shows really poor brain penetration and an extensive
liver metabolization by the cytochrome-P450 enzyme system [65,66]. The cytochrome P-450-
dependent metabolism is also responsible for the high number of drug–drug interactions
shown by the molecule, including inhibition of the metabolism of many other antiepileptic
medications [60]. Finally, quinidine is characterized by a well-assessed polypharmacology
relying on the simultaneous modulation of NaV1.5, Kv1.4, Kv4.2 [67], and hERG channels, not
to mention its effects as a muscarinic receptor antagonist, a-1 blocker, and antimalarial agent.
In particular, the inhibitory potency of quinidine over hERG, that is 100-fold higher than the
potency shown in the inhibition of KCNT1 currents [68,69], accounts for its most insidious
and recurrent side effect: the modulation of cardiac conductance by QT prolongation and
torsades de pointes [70]. These are the reasons why the clinical use of quinidine in KCNT1-
related DEEs is nowadays extremely limited. At the same time, the empirical use of quinidine
did not provide much evidence concerning the molecular determinants driving KCNT1
current inhibition. It has been reported that quinidine binds into the KCNT1 intracellular
pore vestibule, immediately below the selectivity filter, establishing a pivotal interaction
with Phe346 [71,72]. This is the reason why KCNT1 channel mutants, such as F346L and
F346I, are almost insensitive to the alkaloid [71,72]. Nevertheless, despite both chicken and
human KCNT1 cryo-EM coordinates having been released [42,73], the KCNT1/quinidine
complex has never been resolved. Very recently, a molecular dynamics (MD)-based in silico
study has postulated the existence of two distinct binding modes that quinidine bounces
between [74]. In the first bound conformation, corresponding to the one most populated
in the MD trajectory (Figure 4B), quinidine is located between two S6 helices belonging to
two adjacent KCNT1 subunits. Within this binding site, quinidine establishes hydrophobic
interactions with Leu339, Pro343, and Leu342 residues, also having additional π-π and π-
cation interactions with Phe346 [74]. In its second bound conformation (Figure 4C), quinidine
is instead flipped upside down and shifted toward the pore helix, interacting via a direct H-
bond with the backbone of Phe312 and via a water-mediated H-bond with Thr314. Additional
π-π stacking interaction is observed with Phe312 (Figure 4C). [74]Molecules 2024, 29, x FOR PEER REVIEW  8  of  20 
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Figure 4. (A) Molecular structure of quinidine. (B,C) In silico predicted binding poses of QND
into KCNT1. In both panels, the QND bound conformation is represented as orange sticks. KCNT1
monomers are depicted as light blue, sand, light pink, and wheat cartoons, whereas residues inter-
acting with the ligand are represented as solid sticks. Cation-π and π-π stacking interactions are
highlighted by blue and red dashed lines, respectively. H-bonds are represented by green dashed
lines [74]. (D) Molecular structure of bepridil. (E) Molecular structure of clofilium.
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Due to the substantial failure of quinidine-based therapies for KCNT1-related DEEs,
additional molecules have been proposed by drug repurposing. For instance, bepridil
(Figure 4D), a drug with direct negative chronotropic, dromotropic, inotropic, and vasodila-
tory actions mediated by the inhibition of calcium channels [75], is also found to be able to
inhibit KCNT1-mediated currents [64,76]. The reported bepridil IC50 (6.36 ± 2.12 µM) is
even lower than that of quinidine, with whom bepridil also putatively shares the KCNT1
binding site [71]. Nevertheless, the safety of the drug is even lower than quinidine and the
prolongation of QT intervals and torsade de pointes due to hERG inhibition again repre-
sent the most severe drawback [76]. Another repurposed antiarrhythmic drug, clofilium
(Figure 4E) [77], has been proposed as a therapeutic tool for KCNT1-related epilepsies [78],
besides being devoid of clinical significance. Clofilium blocks KCNT1 with an IC50 similar
to the quinidine one (~100 µM) but is extremely more potent in the inhibition of hERG
channels (IC50~2.5 nM) [79] and also shows a molecular structure and a pharmacokinetic
profile unfit for a CNS drug.

3.2. High-Throughput and Virtual Screening Approaches

The first description of a medicinal chemistry workflow leading to the identification
of KCNT1 blockers was reported by Cole and coworkers [71]. They modelled the quinidine
binding site in silico, starting from the above mentioned cryo-EM structure of chicken
KCNT1 [42]. The following virtual screening protocol over a diversity-based library of
100,000 drug-like molecules led to the selection of 17 molecules based on their docking
score and commercial availability. The selected molecules were challenged for their ability
to block KCNT voltage ramp-evoked currents in patch-clamp experiments. These assays
led to the identification of six KCNT1 inhibitors (BC5–BC7 and BC12–BC14, Figure 5) with
greater potencies when compared to both quinidine and bepridil, which were used as
reference compounds (0.6 < IC50 < 7.41 µM). When tested over the disease-causing GoF
mutant Y796H, compounds retained micromolar IC50s, despite a significant decrease in
potency being evidenced for the most potent blockers (BC7 and BC14) in comparison with
the wild-type channel. All the compounds were well tolerated in a preliminary cell-based
toxicological assay and, notably, two of them (BC12 and BC13) showed weak inhibition
(~10–20%) of hERG channels at 10 µM. Due to the high chemical diversity of the identified
molecules, no evident structure–activity relationships related to KCNT1 blocking could be
obtained by this report, also considering that no hit-to-lead development has been reported
in the literature so far.
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Figure 5. Structures of a first series of KCNT1 inhibitors identified by virtual screening studies [71].
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In 2020, Spitznagel and coworkers used a slightly different approach to the identifica-
tion of KCNT1 modulators: they screened a molecular library of 100,000 compounds using
a high-throughput thallium-based (TI+) flux assay and HEK293 cells engineered to express
both wild-type and the disease-related (GoF) KCNT1 A934T mutant [79]. The screening
database was built up starting from different commercially available libraries and the
selection was made in order to provide lead-like motifs, minimum pan-assay interference,
and maximum diversity. The high-throughput screen (HTS) had a hit identification rate
of 0.5%, and the active molecules were grouped by structural features, with the aim of
decreasing the time and cost of the screening, although the clustering method has not been
described. Only representative compounds belonging to each structural class were then
retested (44% of the initially discovered hits). Selectivity assays over HEK293 cells express-
ing many different ion channels (KCNT2, Slo, GIRK1/2, Kv2.1, TREK1, hERG, NaV1.7, and
Cav3.2) were performed, along with the evaluation of the activity of the initial hit selection
over the epilepsy-related KCNT1 mutants G288S and R428Q. The results allowed for the
identification of the most promising compounds that, in turn, were challenged in dose–
response curves against WT and A934T KCNT1, finally culminating with the identification
of VU0606170 (Figure 6). In the thallium flux assay, the latter compound showed an IC50 of
1.84 µM and 1.16 µM in WT and A934T KCNT1, respectively, and the micromolar potency
was confirmed by whole cell automated patch-clamp recordings over the same cell cultures
(IC50s = 2.43 µM and 2.06 µM over WT and A934T KCNT1, respectively). The molecule
showed no activity at a 10 µM concentration over the KCNT2, Slo, GIRK1/2, Kv2.1, TREK1,
NaV1.7, and Cav3.2 ion channels, while it inhibited hERG channels by 36% [79]. Notably,
when administered to a spontaneously firing cortical neuronal culture, composed of a
mixture of inhibitory, excitatory neurons and astrocytes, VU0606170 produced a decrease in
the spiking rate of 55.58% with an IC50 of 3.70 µM, also inducing a dose−response decrease
in frequency of intracellular Ca2+ baseline oscillations. The same research group attempted
the optimization of VU0606170 by systematic chemical replacement of the piperidinyl and
phenyl substituents, of the sulfonyl and acetamide linkers, and of the piperazine central
core (Figure 6A) [80]. The obtained results were not particularly encouraging since no
VU0606170 derivatives showed any substantial improvement in potency. The phenyl ring
seems essential for the activity of this series of compounds, as well as the alkoxy substituent
in position 2. Any replacement of those groups is responsible for a complete loss of activity
or a shift from inhibition to activation. The substituent in position 5 of the phenyl ring
also plays a pivotal role: larger electron withdrawing groups (such as trifluoromethyl
and bromine) are favoured over smaller and electron-donor groups. Methylation of the
acetamide linker mostly retains the KCNT1-blocking activity independently of the chirality
of the corresponding derivative. The piperazine ring was also modified by methylation.
When methyl was placed close to the sulphonamide moiety, activity was reduced, while
it was maintained when the methyl group was positioned close to the methyl acetamide.
Any attempt to replace the piperazine ring with structural analogues failed to provide
activity as well as the replacement of the sulfonyl linker with a carbonyl moiety. Finally, the
replacement of 4-methylpiperidine always provided a loss of activity or a shift to KCNT1
activation, except for the use of a phenyl ring, which did not significantly alter the KCNT1
inhibition potency. Despite providing some interesting results, this report also does not
provide evidence in terms of structural determinants for KCNT1 inhibition: the resulting
SAR was relatively flat and, likely, limited to VU0606170 analogues, without providing
clear and solid clues for rational design and hit-to-lead development. This could be due, in
the opinion of the authors, to the ability of the tested analogues to modulate KCNT1 func-
tion by a mechanism other than pore blockade and is also probably related to the binding
site occupied by this class of molecules, tolerating only minimal structural modifications.
Nevertheless, a rational interpretation of the results by the use, for instance, of molecular
modelling or cryo-EM studies might make these data more exploitable.



Molecules 2024, 29, 2940 9 of 18

Figure 6. (A) Structures of VU hit compounds and (B) corresponding SAR maps [79–81].

The same research group later reported KCNT1 blockers based on a 1,2,4-oxadiazole
scaffold (Figure 6B) [81]. This scaffold was probably selected by cross-checking their pre-
vious results with the patent literature data. Indeed, Praxis Precision Medicine patented
several compounds, characterized by the presence of a common 1,2,4-oxadiazolyl moiety,
as KCNT1 blockers [82,83]. The authors realized that one of the hit compounds identified
in their very first cell-based HTS campaign [79] was actually a 1,2,4-oxadiazole derivate
(VU0531245, Figure 6B) that had been initially excluded from further investigations (vide
supra). The compound was a relatively potent KCNT1 blocker (IC50 = 2.1 µM) and showed
high cell permeability and good calculated properties as a CNS permeant [81]. Nonethe-
less, the hit compound showed a serious pharmacokinetic drawback: an extremely high
metabolic clearance when tested, in vitro, using the mouse liver microsomes metabolism
model [81]. This is why the researchers attempted a scaffold optimization, taking into ac-
count both pharmacokinetic and pharmacodynamic features. Analogously to their previous
paper, in this one, they performed a systematic scanning of the different molecular moieties
of VU0531245, reporting interesting results that unfortunately are somewhat difficult to
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be rationalized. Modification of the phenyl ring by using different electron-withdrawing
and electron-donating groups, as well as different alkoxy, pyrrolidinyl, and piperazinyl
substituents, was mostly detrimental, leading to a loss of activity or mode switching from
an inhibitor into an activator. Only a few compounds maintained inhibitory properties
comparable to the parent molecule VU0531245. Taken together, these results led the author
to hypothesize about the critical role of a hydrogen-bond acceptor at position 2 of the
phenyl ring for KCNT1 inhibition. In fact, when this pharmacophoric chemical feature
was maintained, it was possible to replace the phenyl ring with more complex bicyclic
analogues, that mostly maintained or even improved the KCNT1 inhibitory potency [81].
Modification of the VU0531245 in any other point gave inactive or faintly active derivatives.
For example, any attempt to replace the sulphonamide linker by different moieties, such as
methylene, ethylene, amide, urea, and carbamate, did not improve the compound activity.
The authors rationalized these results based on the peculiar sulphonamide geometry, that
presumably provides the correct mutual orientation of the different functional groups.
Similarly, the replacement or modification of the 1,2,4-oxadiazole or azetidine ring was
not fruitful, while only minimal modification of the thiophenyl moiety was tolerated. In
particular, the authors have proposed the introduction of halogen atoms in position 2 and 4
of the thiophenyl ring that, besides only grossly maintaining the inhibitory potency, are
useful to block a metabolic hot spot of the parent molecule [81]. Collectively, ten molecules
were selected for further investigation by patch-clamp experiments. They all featured
low micromolar potencies versus WT and A924T KCNT1, as well as some selectivity. In-
deed, when challenged over Slo and KCNT2 potassium channels at the concentration of
10 µM, almost all the compounds were inactive. The most potent of the series, compound
VU0935685 (Figure 6B) was also reported as inactive on hERG at the same concentration.
Since no clear pharmacodynamic improvements were attained, the authors also pharma-
cokinetically challenged their molecules by the assessment of metabolic stability in mouse
liver microsomes (MLMs) and by plasma protein binding testing. Unfortunately, the results
were mostly unsatisfactory: the analogues suffered from the same high metabolic instability
that characterized the parent molecule [81]. As in the previous reports by this research
group, results were not rationalized by the use of molecular modelling techniques.

To date, the biopharmaceutical company Praxis Precision Medicine is the only one
that has disclosed an advanced discovery project for the development of small-molecule
therapeutics for the treatments of KCNT1-related epilepsies [82] These efforts led to the
identification of the first orally available KCNT1 inhibitor (17—vide infra) described so far,
identified through extensive SAR studies enclosed in several patent applications [82–84].

The compounds reported in the first patent application share common structural
features: the 5-chloroindanyl or 6-chlorotetraline moieties are critical elements for this
series of compounds (1–16). This basic moiety is connected via an amide linker to different
aromatic systems, thus generating three distinct subseries containing a thiophenyl, phenyl,
or phenol ring (Figure 7A).

Looking at the thiophenyl series, the authors observed that the sulphonamide moiety
could be functionalized with aliphatic chains (2–3) or incorporated in alicyclic rings (e.g.,
pyrrolidine ring, 4–6) resulting, in some cases, in potent compounds. Attending to phenyl
and phenolic subseries, the following substitution patterns were observed: in the phenyl
case, the para substitution is preferred (8–10), whilst in the other one, the introduction of
both electron-donor or electron-withdrawing groups in the positions 3, 4, and 5 led to high
inhibiting potency (11–16). The role of the sulphonamide group has been investigated
also among the phenyl derivatives, where it was shown again that the introduction of
alkyl chains led to an enhancement in potency if compared to the unsubstituted one (8).
However, the presence of sulphonamide is not crucial for the activity as demonstrated by
the active compounds bearing sulphone (9) or inverted sulphonamide (10) moieties.
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Figure 7. (A) SAR map for the 5-chlorindanyl and 6-chlorotetraline derivatives. (B) Structure of
KCNT1 inhibitors patented by Praxis Precision Medicine [82,83] (1–16).

The second and third patent applications present the results of an extensive pharmaco-
logical study for 1,2,4-oxadiazole derivatives [82]. A general chemical structure for this class
of compounds is depicted in Figure 8. The introduction of a substituted or unsubstituted
phenyl or 4-pyridinyl ring on the 1,2,4-oxadiazole core led to compounds characterized
by high potency. Substituents introduced on this aromatic core exert a wide influence
on the compounds pharmacological profiles: substitution at the 3-position was carried
out with methyl (17–18), trifluoromethyl (25–29), or cyclopropyl (19–24) groups, often
leading to potent compounds. Further SAR analysis highlighted the role of the methylene
linker, where the introduction of the methyl side chain is generally associated with an
improvement in the inhibitory activity. The role of the stereochemistry is barely inferable
since only in a few cases was the (S)-enantiomer found to be the eutomer, while in the other
ones, both stereoisomers showed the same activity profile.
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Considering the results of the first SAR investigation round, and the high lipophilicity
of the synthesized derivatives, the authors investigated whether polar heterocycles at
R4 could affect KCNT1 inhibitory potency, while improving pharmacokinetic properties.
Concerning this region, the influence of a pyrazole ring with a different substitution
pattern was initially investigated. The most interesting results were obtained for the N1–C3
substituted pyrazoles, especially for the combination of methyl and cyclopropyl (17) or
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methyl and trifluoromethyl (18) groups. In more detail, it was noted that the relocation
of substituents (e.g., methyl) to N2 of the pyrazole ring led to a complete loss of activity.
Several other rings have been substituted to pyrazole, highlighting how even extensive
structural changes in this region do not compromise activity (19–29). Indeed, SAR studies
indicate that six-membered ring, aromatic (19–24), or aliphatic (27–28) as well as fused
heterocycles (25, 32–33) in place of the pyrazole ring are well tolerated. Further substitution
of the amide linker with a urea one (29) has also been reported through these patents
showing that, even in this case, the bioactivity is retained. More recently, the role of the
central 1,2,4-oxadiazole has been significantly explored by preparing 1,3,4-oxadiazole,
pyrazole, 1,2,4-thiadiazole, and isoxazole analogues. The replacement of the central core
suggested that this portion of the molecule does not simply act as linker, but the electronic
profile of this ring contributes to the biological activity. Indeed, the isosteres 1,3,4-oxadiazole
or pyrazole failed to act as KCNT1 blockers.

Compound 17 (Figure 8) is a potent KCNT1 inhibitor, with a suitable pharmacokinetic
profile and is also the sole molecule suitable for in vivo models, given that all the other
congeners were, unexpectedly, dramatically less active over mouse KCNT1 variants [84].
Compound 17, in fact, showed an IC50s of 40 nM and 622 nM in hKCNT1 and mKCNT1,
respectively, also showing remarkable potency for cynomolgus monkey (49 nM) and rat
KCNT1 (545 nM), when challenged in patch-clamp experiments. The compound also
featured nanomolar or low micromolar potencies over different epilepsy-related hKCNT1
variants (221 nM ≤ IC50s ≤ 1768 nM). The compound selectivity was further assessed over
a panel of 80 targets at a 10 µM concentration (for the full list of targets, please see the
supplementary information file of reference [84]), using binding displacement assays. The
compound showed activity over only two targets: TSPO (63% displacement) and GABAA
(74% displacement). Patch-clamp measurements using compound 17 over other different
ion channels, such as hERG, hNaV1.5, Cav1.2, IKs, BK, and KCNT2, revealed its selectivity
(10.7 µM ≤ IC50s ≤ 42 µM). As for the previous reports, none of the above-described results
were rationalized in terms of target engagement, thus reducing the overall impact of the
research. The activity of compound 17 was further challenged in a native mouse tissue brain
slice by whole-cell patch-clamp recordings. The effects on neuronal firing were evaluated
both in slices from WT mice and from mice homozygous for mKCNT1-P905L (Kcnt1L/L),
that is known to recapitulate many key features of the EEs, including spontaneous seizures,
high interictal spike frequency, and reduced survival [85]. Compound 17 did not alter
the normal firing of wild-type mouse slices, that was, instead, significantly decreased in
neurons from Kcnt1L/L mice when a 10 mM concentration was reached. Preliminary in vivo
pharmacokinetic testing of compound 17 revealed suitable brain penetration and clearance
values for in vivo pharmacological testing, after oral dosing [84]. Nevertheless, it is unclear
why the molecule was then tested in vivo in the Kcnt1L/L model, using a subcutaneous
administration regimen. In this experimental set up, compound 17 at a 30 mg/Kg dosing
showed a remarkable improvement in the mouse phenotype with an acceptable therapeutic
window [84]. It is worthy to note that, given the effect of the molecule over GABAA, further
evidence should be provided to exclude the involvement of GABAergic modulation on the
observed antiepileptic effects.

Finally, our research group has recently reported the identification of distinct chemotypes
as KCNT1 inhibitors, identified through a virtual screening approach [74]. The screening
was based on a model of the human KCNT1 modelled by homology with the cryo-EM
structure of the chicken channel in open conformation [23], since, when the investigation
started, the cryo-EM coordinates of human KCNT1 [73] had not yet been released. Molecu-
lar dynamics-based docking of quinidine into the intracellular pore vestibule of the model
was performed to search for the most favourable quinidine/KCNT1 complex conforma-
tions. The 50 lowest-energy quinidine/target conformations were then used to compose a
docking target ensemble that was used to screen in silico an in-house compounds database
(~2000 compounds). Among the top scoring compounds, 20 molecules were selected based
on their chemical diversity. The selected molecules were challenged as KCNT1 blockers,
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using a Tl+ flux assay in CHO cells stably expressing hKCNT1 channels and using loxap-
ine as a channel opener. A total of 5 out of 20 compounds showed remarkable ability in
antagonizing loxapine-evoked KCNT1 currents (CPK compounds, Figure 9). The five com-
pounds showed improved potency (3.4 ± 0.70 µM ≤ IC50s ≤ 12.2 ± 2.60 µM) over quinidine
(IC50 = 147 ± 31 µM), used as a reference compound. Results obtained by fluorimetric assays
were confirmed in patch-clamp experiments, in which the selected molecules also proved to
have slower blocking kinetics than quinidine with an improved affinity to the channel binding
site. In fact, the effect of quinidine was completely reverted upon drug wash-out, while the
extent of current recovered upon removal from the perfusion bath of the five compounds
was much lower. These results have been rationalized by the mean of molecular modelling
studies using the cryo-EM structure of hKCNT1 [73]. Because of the chemical diversity of the
identified hits, no precise SAR conclusions were drawn, but, by the use of in silico and in vitro
techniques, hypotheses were provided about the inhibitor/channel binding hot spots [74]. All
the CPK compounds were unable to modulate Kv7.2 channels, while three of them (CPK16, 18,
and 20) did not exert blocking activity over hERG at a 10 µM concentration. Also, these results
were rationalized in terms of specific chemical features of the different chemotypes. When
challenged in vitro for their metabolic stability, compound CPK20 emerged as the most stable,
additionally showing lower potencies in blocking KCNT2 channels, while similar (when
compared to WT channels) potencies were observed in blocking pathogenic GoF KCNT1
mutants G288S and A934T.
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4. Conclusions

In summary, none of the compounds described in this review can provide conclusive
proof that KCNT1 inhibition will produce the desired anti-epileptic therapeutic effect
in vivo. Moreover, the in vitro results are mostly penalized from the lack of a rational
structure–activity relationship investigation that does not allow, at least at the present stage,
a rational design of a new series of KCNT1 blockers. Thus, there is a need to continue
the discovery efforts directed toward the identification of such compounds, that could
be extremely facilitated by the experimental resolution of different KCNT1 inhibitors in
complex with the target channel. Moreover, pharmacokinetic refinement of the identified
molecules will be necessary, considering that it is mandatory for this class of compounds to
have sustained exposure in the CNS. Finally, animal models of KCNT1-related epilepsies
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are necessary to preclinically validate identified lead compounds and to clearly link their
potential anti-epileptic effects to the sole KCNT1 modulation.
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