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Abstract: The heterogeneity of etiology may serve as a crucial factor in the challenges of treatment,
including the low response rate and the delay in establishing therapeutic effect. In the present study,
we examined whether social experience since early life is one of the etiologies, with the involvement
of the 5-HT1A receptors, and explored the potentially therapeutic action of the subchronic administra-
tion of buspirone, a partial 5-HT1A agonist. Rats were isolation reared (IR) since their weaning, and
the depressive profile indexed by the forced-swim test (FST) was examined in adulthood. Nonspecific
locomotor activity was used for the IR validation. Buspirone administration (1 mg/kg/day) was in-
troduced for 14 days (week 9–11). The immobility score of the FST was examined before and after the
buspirone administration. Tissue levels of serotonin (5-HT) and its metabolite 5-HIAA were measured
in the hippocampus, the amygdala, and the prefrontal cortex. Efflux levels of 5-HT, dopamine (DA),
and norepinephrine (NE) were detected in the hippocampus by brain dialysis. Finally, the full 5-HT1A
agonist 8-OH-DPAT (0.5 mg/kg) was acutely administered in both behavioral testing and the dialysis
experiment. Our results showed (i) increased immobility time in the FST for the IR rats as compared
to the social controls, which could not be reversed by the buspirone administration; (ii) IR-induced
FST immobility in rats receiving buspirone was corrected by the 8-OH-DPAT; and (iii) IR-induced
reduction in hippocampal 5-HT levels can be reversed by the buspirone administration. Our data
indicated the 5-HT1A receptor-linked early life social experience as one of the mechanisms of later
life depressive mood.

Keywords: 5-HT1A receptors; 8-OH-DAPT; buspirone; depression; development; isolation rearing;
partial agonism

1. Introduction

Sinking into a depressive mood is a common psychological state that occurs in many
people during their lives. It can be long-term torture for a person or family. Currently,
the treatment of depressive disorders is diversified, covering pharmacological and non-
pharmacological paradigms. However, the overall outcome is not as expected. For pharma-
cological intervention, about 40–50% of the patients that initially received antidepressant
treatment are unable to reach timely remission [1], and up to one-fourth of the patients still
fail to respond even after two or more antidepressants are prescribed, which is defined as
treatment-resistant depression (TRD), and that causes a huge socioeconomic burden [2].
The underlying reason is complicated, possibly highly relevant to its multiple etiological
origins (i.e., the heterogeneous nature of depressive disorders), including what happens
during development.
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For investigating the developmental etiology of mental disorders, the preclinical
animal method is useful so as to provide a more detailed mechanism [3], in which social
manipulations with less consideration of developmental origins were found sometimes
ineffectively to present a depressive profile. For example, learned helplessness is unable to
be induced by social instability intervention (assessed by the forced-swim test, FST, see [4])
and short-term adulthood social deprivation (assessed by the active avoidance test, see [5]).
In contrast, ongoing social isolation since early life (i.e., isolation rearing, IR) has been
widely employed to examine how the early life social experience affects the individual
mood in their adulthood by its value in consistently presenting depression-like behavior by
exhibiting a higher immobility score in the FST [6]. There are two key issues worth being
highlighted in IR-induced adulthood depression: (i) Isolation time must be long enough in
an ongoing manner, and (ii) it has to start within the critical period, i.e., immediately after
weaning [7]. Interestingly, both issues require the involvement of monoaminergic neural
substrates, including serotonin [8].

The central serotonin (5-HT) system has been implicated in neural regulation with
significant developmental and anatomical relevance [9–12]. For development, the 5-HT1A
receptor is involved in neurite branching during the critical period [13] and in the regulation
of the IR-induced behavioral phenotypes [14–16]. The roles of the 5-HT1A receptors are
also anatomically area-dependent, via their presynaptic somatodendritic autoreceptors on
a 5-HT cell body and their postsynaptic receptors on projective terminal areas [17,18].

Buspirone, like other partial 5-HT1A agonists (for example, gepirone and ipsapirone),
appears less effective to treat human anxiety/depression as it did in animal paradigms [18].
The inadequate translational value indicates that the high heterogeneity of clinical mood
problems is far beyond the mechanism of the 5-HT1A receptors. On the other hand, it also
implies that the manipulation of the partial 5-HT1A receptors may be pharmacologically
justified in a more specific milieu. For example, buspirone helps treat depressive moods by
accelerating the effects of the SSRIs [19,20]. In this regard, a preclinical buspirone inves-
tigation would be beneficial if targeting the 5-HT1A mechanism in the mood-associated
brain areas by approaching the dual pharmacological properties of the drug, i.e., partial ag-
onism at the 5-HT1A post-synaptic receptors and full agonism at the 5-HT1A pre-synaptic
receptors [19]. So far, there is inadequate knowledge of the 5-HT1A functions regard-
ing the buspirone effects on the rodent social isolation paradigms. Tung and colleagues
demonstrated that the IR may modify the 5-HT1A receptor-associated ability to control
impulsiveness [14], whereas Frances and Lienard reported buspirone failed to correct the
deficit of social behavior due to the isolation housing (i.e., non-developmental origin)-
induced hyper-reactivity [20]. Until now, there has been no evidence directly targeting the
buspirone effects on the depressive profile in IR rats.

Aiming to fulfill this knowledge gap, the present study employed IR rats to receive a
14 days buspirone administration. The effects of social deprivation since early life (via IR)
and the manipulation of 5-HT1A receptors (via buspirone) were assessed in two domains.
Behaviorally, we examined the rats’ performance of the FST to index the helplessness com-
ponent of depressive behavior, and neurochemically, we examined the tissue concentrations
of 5-HT and its metabolite 5-HIAA in three areas highly related to depression, i.e., the
hippocampus, prefrontal cortex, and amygdala, so as to explore the possible involvement
of the postsynaptic 5-HT1A receptors. The 14 day regimen was chosen because it provides
better validity to model the adequate onset time for antidepressants to work for treating de-
pressive moods. Acute 8-OH-DPAT administration was also employed in the present study
to examine the 5-HT1A effects on the rats’ FST performance; 8-OH-DPAT exerts 5-HT1A
full agonism on the postsynaptic side, in contrast to the partial agonism of buspirone. The
results obtained from the present study may shed some new light on the involvement of
early life social experience in the 5-HT1A receptor-related psychopathology of depression.
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2. Results

The IR group exhibited increased locomotor activity (t(46) = 3.426, p = 0.0013) (Figure 1).
In terms of the IR effect on the FST performances, the IR group exhibited increased im-
mobility (t(46) = 10.68, p < 0.001) (Figure 2A), decreased swimming (t(46) = 20.95, p < 0.001)
(Figure 2B), and increased climbing (t(46) = 3.597, p < 0.001) when compared to the SR group
(Figure 2C).
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For the locomotor activity after the 2-week buspirone treatment, the two-way ANOVA
revealed a significant interaction between the “IR” and “buspirone” (F(1, 44) = 5.573, p = 0.023).
This interaction was driven by the differences observed between the SR-saline and IR-
saline groups (F(1, 44) = 18.365, p < 0.01), and the SR-buspirone and IR-buspirone groups
(F(1, 44) = 9.541, p < 0.01) (Figure 3).
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For the immobility score after the 2-week buspirone treatment, the two-way ANOVA
revealed a significant main effect on the “IR” (F(1, 44) = 361.992, p < 0.001). This main
effect was driven by the differences observed between the SR-saline and IR-saline groups
(F(1, 22) = 217.057, p < 0.001), and the SR-buspirone and IR-buspirone groups (F(1, 22) = 149.102,
p < 0.001) (Figure 4A). For the swimming score after the 2-week buspirone treatment, the
two-way ANOVA revealed a significant interaction between the “IR” and “buspirone”
(F(1, 44) = 4.386, p = 0.042). This interaction was driven by the differences observed between
the SR-saline and IR-saline groups (F(1, 44) = 294.905, p < 0.001), and the SR-buspirone and
IR-buspirone groups (F(1, 44) = 201.95, p < 0.001) (Figure 4B). For the climbing score after the
2-week buspirone treatment, the two-way ANOVA revealed no significant interaction or
main effect between the “IR” and “buspirone” (Figure 4C).

For the locomotor activity after the acute 8-OH-DAPT challenge, the two-way ANOVA
revealed a significant interaction between the “IR” and “buspirone” (F(1, 38) = 27.405,
p < 0.001). This interaction was driven by the differences observed between the SR-
saline and SR-buspirone groups (F(1, 38) = 42.732, p < 0.001), and the SR-buspirone and
IR-buspirone groups (F(1, 38) = 41.243, p < 0.001) (Figure 5).

For the immobility score after the acute 8-OH-DAPT challenge, the two-way ANOVA
revealed a significant interaction between the “IR” and “buspirone” (F(1, 44) = 9.727, p = 0.003).
This interaction was driven by the differences observed between the SR-saline and IR-
saline groups (F(1, 44) = 32.858, p < 0.001), and the IR-saline and IR-buspirone groups
(F(1, 44) = 28.965, p < 0.001) (Figure 6A). For the swimming score after the acute 8-OH-DAPT
challenge, the two-way ANOVA revealed a significant interaction between the “IR” and
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“buspirone” (F(1, 44) = 9.573, p = 0.003). This interaction was driven by the differences
observed between the SR-saline and IR-saline groups (F(1, 44) = 31.882, p < 0.001), and the
SR-buspirone and IR-buspirone groups (F(1, 44) = 25.841, p < 0.001) (Figure 6B). For the
climbing score after the acute 8-OH-DAPT challenge, the two-way ANOVA revealed no
significant interaction or main effect between the “IR” and “buspirone” (Figure 6C).
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Figure 6. The improvement effects of buspirone on the increased immobility behavior and decreased
swimming behavior induced by IR were counteracted by the acute 8-OH-DPAT challenge. The data
are presented as the mean ± SEM. n = 12 for each group. *** p < 0.001.

For the baseline extracellular levels of 5-HT, DA, and NE among the groups of SR-
saline, IR-saline, SR-buspirone, and IR-buspirone, the two-way ANOVA revealed no sig-
nificant interaction or main effect between the “IR” and “buspirone” (Figure 7A–C). For
the extracellular levels of the 5-HT, DA, and the NE acute 8-OH-DAPT challenge, the
two-way ANOVA also revealed no significant interaction or main effect between the “IR”
and “buspirone” (Figure 8A–C).
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Figure 8. The acute 8-OH-DPAT challenge did not alter the efflux of 5-HT, DA, and NE in the
hippocampus. The data are presented as the mean ± SEM. n = 5–11 for each group.

For the hippocampal 5-HT level after the 2-week buspirone treatment, the two-way
ANOVA revealed a significant interaction between the “IR” and “buspirone” (F(1, 23) = 5.017,
p = 0.035). This interaction was driven by the differences observed between the SR-saline
and IR-saline groups (F(1, 23) = 5.91, p < 0.05), and the IR-saline and IR-buspirone groups
(F(1, 23) = 11.948, p < 0.01) (Figure 9A). For the hippocampal 5-HIAA level after the 2-week
buspirone treatment, the two-way ANOVA revealed a significant main effect on the “bus-
pirone” (F(1, 23) = 33.087, p < 0.001). This main effect was driven by the differences observed
between the SR-saline and SR-buspirone groups (F(1, 12) = 19.904, p < 0.01), and the IR-saline
and IR-buspirone groups (F(1, 11) = 13.8790, p < 0.01) (Figure 9B). For the hippocampal 5-HT
turnover rate after the 2-week buspirone treatment, the two-way ANOVA revealed no
significant interaction or main effect between the “IR” and “buspirone” (Figure 9C).
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For the levels of 5-HT, 5-HIAA, and the 5-HT turnover rate in the amygdala and pre-
frontal cortex after a 2-week buspirone treatment, two-way ANOVA indicated no significant
interaction or main effect between “IR” and “buspirone” (Figures 10A–C and 11A–C).
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3. Discussion

Early life experience serves as a key factor in shaping an individual’s entire life pattern.
In a sense, we are all a continuation of our past. Clinical observation reveals that people
with a problematic childhood have been found to be at high risk of stress-associated
disorders [21,22]. The present study supports this hypothesis that the long-term stress



Pharmaceuticals 2024, 17, 717 9 of 14

of social isolation since early life plays an important role in the underlying mechanism
of depression. We first confirmed the validity of the IR with its nonspecific locomotor
hyperactivity and then demonstrated that (i) the IR rats were immobile from the social
controls in the FST, which cannot be reversed by the buspirone administration; (ii) the
IR-induced immobility in the FST was fixed by 8-OH-DPAT in the buspirone rats; and
(iii) the IR-induced reduction in the 5-HT in the hippocampus can be reversed by the
buspirone administration. These major findings are now discussed as follows.

In a broad sense, our results support the hypothesis that the central serotonergic sys-
tem can be a target following long-term social deprivation since early life [23]. Previously,
IR rats were reported to exhibit less presynaptic reactivity and greater postsynaptic respon-
siveness [24,25]. In terms of area-dependent relevance, the present study for a further step
demonstrated that the IR rats exhibited lower serotonin concentration in hippocampus,
along with the IR-induced impairment of the hippocampal innervation [26]. The reduction
in hippocampal 5-HT activity possibly refers to the pathoetiological mechanism of the
clinical depressive disorders [27], which is also in line with that of the IR rats that exhibited
more immobility in the FST in our results.

The failure of the subchronic buspirone administration to reverse the IR-induced
immobility indicates that the partial agonistic effect of the postsynaptic 5-HT receptors per
se is less involved in the learned helplessness domain of the depressive mechanism, in con-
trast to the anhedonia domain (i.e., inability to experience pleasure), which can be corrected
by buspirone [28]. It may refer to a symptom-dependent efficacy of the antidepressant
treatments [29], also justifying that in the treatment of depression, buspirone appears more
eligible to serve as an adjunct with the combination of others to reach better therapeutic
efficacy. For example, when combined with selective serotonin reuptake inhibitors (SSRIs),
buspirone argumentation facilitates treatment progress by shortening the onset of efficacy,
possibly attributable to the desensitization of its presynaptic autoreceptors [30,31]. On the
other hand, for the postsynaptic side of the 5-HT projection areas approached in the present
study (i.e., hippocampus, amygdala, and prefrontal cortex), the involvement of buspirone
lies in its partial agonist effect. Blier and colleagues argued that perhaps by the attribution,
postsynaptic 5-HT receptors are able to be selectively activated, which is the key for the
antidepressant response [32].

One of the crucial observations in the present study is about the effect of 8-OH-DPAT
on the depressive profile. We found that the IR-induced immobility in the FST can be
fixed by 8-OH-DPAT in buspirone rats. It was a specific effect, as the immobility-reversing
effect only presented in buspirone-pretreated IR rats but not others, indicating the effect
of the 8-OH-DPAT to fix the depression-like symptom just presented in conditions where
the development-dependent 5-HT incapability (caused by IR) underwent a rather flexible
synaptic milieu rendered by the pharmacologically partial agonism of buspirone. This is
interesting as it suggests that postsynaptic agonism per se does not adequately ensure the
therapeutic efficacy of antidepressants, and a collaboration with presynaptic mediation is
thus necessary. Our neurochemical data in this regard may be helpful for interpretation.

In the present study, the IR-induced reduction in 5-HT can be reversed by buspirone
administration in the hippocampus, but not in others (i.e., prefrontal cortex and amygdala).
This is in line with the mainstream knowledge that agents of azapirones, the chemical
category to which buspirone belongs, operate postsynaptically at hippocampal 5-HT1A
receptors in a partial agonistic manner [33]. As the turnover rate of hippocampal sero-
tonin (i.e., 5-HIAA/5-HT) did not show any difference among the groups, indicating the
buspirone administration affects more in terms of the postsynaptic neuronal events than
presynaptic metabolic ones, indicative of the functional link between the neurotransmitter
and the metabolite was changed [34–36].

The milieu for 5-HT neurotransmission following a long-term partial agonism of the
postsynaptic side could be changed in an advantageous manner, as the acute challenge
of the full agonist (here, the 8-OH-DPAT) to activate the postsynaptic 5-HT1A receptors
more easily and thus to yield the antidepressant effects [37]. The advantageous milieu may
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be present in two manners. It can be desensitization of the presynaptic 5-HT1A receptors
as that is relevant to the clinical efficacy of antidepressants [37,38], or it can be partial
agonism-induced upregulation at the postsynaptic side, as it appears in the dopaminergic
system. For example, the dopaminergic partial agonist aripiprazole leads to upregulation
of postsynaptic dopamine receptors [39]. Both ways may help facilitate the effects of the
SSRIs on mood. Note that there were no group differences in our microdialysis experiment.
It seems that the neurochemical changes in the synaptic cleft become less sensitive to reflect
the long-term effective buspirone effects on the presynaptic side if compared with the
changes on the postsynaptic side presented in the tissue-level measurement.

Several concerns or limitations should be addressed for not overly interpreting our
results. First, our 14-day subchronic buspirone intervention was carried out at the age of
adulthood, not the critical period of early life, raising the concern of a mismatch in the
etiology and treatment targeting developmental origin. However, it may be more appropri-
ate/practical to manifest the real-world situation in which people have suffered from an on-
going unpleasant environment since their early lives, but always seek help/treatment later,
when they become adults [23]. Second, we did not examine the amount of serotonin trans-
porter (SERT), which may interact with the pharmacological profile of buspirone [18,40,41].
Thus, our interpretation should be cautious if concerning the buspirone-associated presy-
naptic dynamic change.

In summary, the present study supports the hypothesis that the 5-HT1A receptor-
linked early life social experience is involved in the depressive mood of later life. Buspirone
with its unique pharmacological 5-HT1A profile of presynaptic full agonism and postsy-
naptic partial agonism, when combined with 5-HT1A activation, may potentially be useful
in the treatment of depression of socially developmental origin.

4. Material and Methods
4.1. Animals

The experimental design is as depicted in Figure 12. A total of 48 male Sprague Dawley
(SD) rats (BioLASCO Taiwan Co., Ltd., Taipei, Taiwan) arrived at the National Defense
Medical Center (NDMC, Taipei, Taiwan) at postnatal week 3 and were subsequently
weaned. The rats were randomly divided into two groups: social rearing (SR, three
rats per cage) and IR (one rat per cage), with 24 rats in each group. These conditions
were maintained throughout the experiment until they were sacrificed. The first stage of
behavioral experiments [i.e., locomotor activity and forced swim test (FST)] was conducted
at postnatal week eight to examine the effects of IR. At postnatal week nine, both SR and IR
rats were randomly divided into four subgroups: SR-saline, IR-saline, SR-buspirone, and
IR-buspirone. They received the corresponding drug regimen for two weeks (postnatal
weeks 9–11). The second stage of behavioral experiments was conducted at postnatal week
11 to examine the effects of subchronic buspirone. The third stage of behavioral experiments
was conducted at postnatal week 12, as all the rats received the acute 8-OH-DPAT 30 min
prior to each behavioral test. During the experimental period, all the rats were housed
in a controlled environment with a temperature of 25 ◦C ± 1 ◦C, humidity maintained at
50% ± 10%, and a 12 h light-dark cycle (lights on from 07:00 to 19:00). They had access to a
standard laboratory chow diet (Ralston Purina, St. Louis, MO, USA) and sterile water ad
libitum. The experimental procedures were approved by the NDMC animal care committee
(IACUC-20-120, approved on 13 May 2020), with efforts made to minimize the number of
animals used and to reduce their suffering during the experiments. All experiments were
conducted in accordance with the relevant guidelines and regulations of Taiwan.
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4.2. IR Procedure

The IR procedure was similar to previous studies [15,42,43]. The IR rats were housed
individually, and the SR rats were housed in groups of three rats per cage (the cages were
25 × 45 × 20 cm3). The IR rats were placed in a condition where they could smell, see, and
hear other rats, but physical contact was prevented. All the rats were minimally handled to
avoid unnecessary interruptions.

4.3. Drugs

During the postnatal weeks nine to 11, both the SR and IR rats received daily in-
traperitoneal injections (i.p.) of either 1 mL of buspirone (1 mg/kg) or 1 mL of saline.
Additionally, during the third stage of behavioral experiments, all the rats were given acute
i.p. administration of 1 mL of 8-OH-DPAT (0.5 mg/kg) 30 min before each behavioral test.
All the drugs were freshly prepared before being injected.

4.4. Locomotor Activity

The locomotor activity testing apparatus (MED Associates, St. Albans, VT, USA)
consisted of a plexiglass chamber (43 × 43 × 30 cm3), equipped with 16 photodetectors
I/R array and corresponding light sources that emitted photobeams 3 cm apart and 4.5 cm
above the chamber floor. During the test, the total travel distance of the rats over 60 min
was recorded by a programmed microcomputer (MED Associates, St. Albans, VT, USA).

4.5. Forced Swim Test (FST)

For the training stage of the FST, the rats were placed in a plastic cylinder filled with
water at 20–25 ◦C and a depth of 35 cm for 15 min, and they were then removed from the
water, dried, and returned to their home cages. The test stage was conducted 24 h later, as
the rats were placed back into the water for five minutes under the same conditions, and
their behaviors, including immobility, swimming, and climbing, were scored every five
seconds (based on which behavior was predominant within each 5 s interval).

4.6. Extracellular Levels of 5-HT, DA, and NE in the Hippocampus

The rats were positioned in a stereotaxic apparatus (David Kopf Instruments, Tujunga,
CA, USA) using two ear bars after being anesthetized with an intraperitoneal (i.p.) injection
of Pentobarbital (1 mg/mL in 0.9% saline, Rhone Merieux, Harlow, UK). A microdialysis
probe (MAB, Microbiotech/se AB, Stockholm, Sweden) with a 2 mm active membrane
length was implanted into the hippocampus (AP: −5.2 mm, ML: ±5.0 mm, DV: 5.5 mm from
the bregma, the midline, and the dura) based on the coordinates described by George P. and
Watson C. (2008) [44]. The first round of sampling started one hour after the probe insertion
and continued until three dialysate samples were collected, with each sample collected
over a period of 30 min. Following this, the second round of three dialysate sampling
(30 min for each) was conducted 15 min after 1 mL of 8-OH-DPAT was administered
(0.1 mg/kg, i.p.). The artificial cerebrospinal fluid (aCSF), composed of deionized water
containing 145 mM NaCl, 1.2 mM CaCl2, 2.7 mM KCl, 1 mM MgCl2, and 2 mM NaH2PO4,
was perfused through the probe at a rate of 1 µL/min using a syringe pump (CMA-
10; CMA Microdialysis, Kista, Sweden). 5-HT, dopamine, and Norepinephrine levels
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were quantified using an electrochemical detector with a VT-03 cell (Antec, Zoeterwoude,
The Netherlands) and a C18 column (3 µm, 100 mm × 2.1 mm, HICHROM, Haryana, India)
of high-performance liquid chromatography (HPLC) at a rate of 0.2 mL/min mobile phase
(consisted of 100 mM NaH2PO4, 0.74 mM sodium octane sulfonate, 0.02 mM EDTA, 2 mM
KCl, and 10% methanol, adjusted to pH 3.0 using H3PO4).

4.7. Tissue Levels of 5-HT and 5-HIAA in Hippocampus, Amygdala, and Prefrontal Cortex

The rats were euthanized, and their hippocampus, amygdala, and prefrontal cortex
were rapidly dissected on an ice-cold surface, according to the coordinates provided by
Paxinos and Watson (2008) [44]. The dissected tissues were weighed and homogenized in
0.2 mL of 7 N perchloric acid (Sigma Chemical Industries, Ltd., Saint Louis, MO, USA).
The homogenized samples were then centrifuged at 12,000× g at 4 ◦C for 30 min and
filtered through a 0.22-µm filter. The concentrations of 5-HT and 5-HIAA were determined
using high-performance liquid chromatography (HPLC) with an electrochemical detector
(ECD, LC-4C, BAS, West Lafayette, IN, USA). A C18, 150 mm × 4.6 mm, 5 µm column
(HICHROM, Haryana, India), was utilized, with a flow rate of 1.0 mL/min. The mobile
phase consisted of 100 mM NaH2PO4·H2O, 0.74 mM sodium octane sulfonate, 0.02 mM
EDTA, 10% methanol, and was adjusted to pH 3.0 using H3PO4.

4.8. Data Analyses

In the present study, both an unpaired t-test and a two-way analysis of variance
(ANOVA) were performed. A p-value of <0.05 was considered statistically significant. All
statistical analyses were performed using the SPSS 16.0 for Windows software (Chicago,
IL, USA).
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