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Abstract: Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines
and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low
dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or
drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular
disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can
cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease,
and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In
addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired
lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is
substantial evidence that folate deficiency contributes to the development and progression of a variety
of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis
(NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we
review key studies on the role of folate in the pathophysiology of liver diseases, summarize the
current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a
potential therapeutic target for liver diseases.
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1. Introduction

Folate, which belongs to the vitamin B9 family, was first purified and termed folate by
Lucy Wills in 1931 [1]. Man-made pure crystalline forms of folate (i.e., folic acid) were first
manufactured in 1943 [2]. Folate is involved in the synthesis of nucleic acids and proteins
and is an essential vitamin for growth and reproduction. The active intermediate of folate,
5,10-methylenetetrahydrofolate (5,10-MTHF), converts deoxyribonucleotides (dUMPs) to
deoxythymidine nucleotides (dTMPs), which are the structural units that make up DNA
molecules [3]. Therefore, folate is required for both the replication of DNA during cell
division and the repair process after DNA damage in the nucleus. In addition, as a carrier
of one-carbon (1C) units, folate facilitates the transport of 1C units that are closely related to
important physiological processes, including purine and thymidine synthesis, amino acid
homeostasis, epigenetic maintenance, and redox defense. Tetrahydrofolate (THF) is the
main form of folate in organisms, and 1C units participate in biosynthesis and metabolism
when THF is used as a carrier. When folate deficiency blocks the delivery of 1C units,
nucleic acid synthesis and amino acid metabolism are affected [4]. Nucleic acid and protein
synthesis is the material basis for cell proliferation, growth, and development. Therefore,
folate plays an extremely important role in cell division and tissue growth in organisms. In
addition, folate is related to the production of methyl donors that are required for epigenetic
regulation, such as DNA methylation. In turn, DNA methylation is involved in the regula-
tion of chromatin dynamics and DNA accessibility and can prevent the binding of certain
transcription factors to DNA motifs or recruit proteins with methyl-binding structural
domains that regulate transcription initiation [5]. 5-methyltetrahydrofolate (5-MTHF) is
the active form of folate, and absorbed folate is metabolized to 5-MTHF in the intestine
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or liver. Folate is usually first reduced to dihydrofolate (DHF) by dihydrofolate reductase
(DHFR) and further converted to tetrahydrofolate (THF) for entry into the folate pool. THF
is dependent on the serine hydroxymethyltransferase (SHMT) enzyme of vitamin B6 for its
conversion to 5, 10-MTHF, which is then irreversibly converted to 5-MTHF by methylenete-
trahydrofolate reductase (MTHFR). This reaction process produces mobile methyl groups
that allow homocysteine (Hcy) to synthesize methionine in the presence of vitamin B12-
dependent methionine synthase. Methionine is the substrate for S-adenosylmethionine
(SAM). In turn, SAM is a methyl donor for several methylation reactions. Low levels of
folate reduce genomic DNA methylation [6]. Thus, folate participates in epigenetic modifi-
cations through methylation and other mechanisms to maintain normal body homeostasis.
Hcy is the product of methionine demethylation. Hyperhomocysteinemia (HHcy) can
be induced by folate deficiency [7]. An increase in Hcy can produce a large number of
oxidizing free radicals, causing damage to vascular endothelial cells and lipid peroxidation,
thus causing damage and destruction of blood vessels. Dietary supplementation with folate
can reduce the level of Hcy, affect endothelial nitric oxide synthase (eNOS) in vascular
endothelial cells and vascular oxidative stress, and reduce the risk of cardiovascular dis-
eases. In addition, folate is necessary for the formation of hemoglobin in red blood cells.
Insufficient intake of folate impairs the maturation of red blood cells, leading to macrocytic
anemia and leukopenia [8]. Folate deficiency can also affect skeletal muscle development,
leading to muscle weakness and difficulty walking, and some studies have shown that
folate has a positive effect on skeletal muscle cell development [9]. Therefore, folate is
necessary for a variety of organisms and microorganisms. The liver is the primary organ
responsible for the storage and metabolism of folate. There is increasing evidence that folate
deficiency or abnormal folate metabolism contributes to the occurrence and progression of
various liver diseases and plays an important role in the pathogenesis of these diseases.
Therefore, a better understanding of the role of folate in the development of these diseases
may help identify new treatment strategies. This review discusses some of the roles of
folate and folate metabolism in the pathophysiological progression of liver diseases.

2. Folate Metabolism

Polyglutamylated folate is the predominant form of folate in all organisms, and
polyglutamylated folate must be converted into monoglutamate folate by γ-glutamyl
hydrolases, which are secreted by the mucosal cells of the small intestine before it can be
absorbed by the liver and small intestine. Synthetic folic acid can be directly absorbed,
and the absorption rate is greater. Folate metabolism mainly includes three physiological
processes, as shown in Figure 1.
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units to form 5,10-MTHF and 5-MTHF. 5,10-MTHF converts dUMP to dTMP, which is necessary for 
DNA synthesis and repair. In the methionine cycle, methionine is catalyzed to form SAM, SAM is 
demethylated to produce SAH, which is deadenosined to form Hcy. Released CH3 is the main 
source of methylation of DNA and protein. Methionine can be regenerated from Hcy in the presence 
of MTR and VitB12. 
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folates PteGlu3–5 are decomposed into monoglutamate folate PteGlu, and transformed into THF. In
the folate cycle, a released 1C unit from serine or glycine is transferred to THF, forming 5,10-MTHF.
5,10-MTHF is reduced to the active 5-MTHF under the action of MTHFR. THF carries 1C units to form
5,10-MTHF and 5-MTHF. 5,10-MTHF converts dUMP to dTMP, which is necessary for DNA synthesis
and repair. In the methionine cycle, methionine is catalyzed to form SAM, SAM is demethylated to
produce SAH, which is deadenosined to form Hcy. Released CH3 is the main source of methylation
of DNA and protein. Methionine can be regenerated from Hcy in the presence of MTR and VitB12.

2.1. Folate Metabolic Process

After folate is absorbed, it is reduced to the intermediate product DHF by DHFR and
regenerated into THF. The 1C unit from serine or glycine is transferred to THF, forming
5,10-MTHF. 5,10-MTHF is reduced to the active 5-MTHF under the action of MTHFR.
5-MTHF is the main form of folate in the blood.

2.2. Folate Mediates One-Carbon Metabolism and Promotes DNA Synthesis

Folate is reduced to DHF by DHFR and then converted to THF during intestinal
absorption and tissue transport. THF is a carrier of 1C units and transfers 1C units. THF
carries these carbon units to form 10-formyltetrahydrofolate (10-formyl-THF), 5,10-MTHF,
and 5-MTHF. 5,10-MTHF converts dUMP to dTMP, and dUMP is phosphorylated to
deoxyriboside triphosphate by the addition of methyl groups. Thymidine triphosphate
(TTP), also called deoxythymidine triphosphate (dTTP), is one of the four deoxyribonucleic
acids necessary for DNA synthesis and repair.

2.3. Folate Mediates the Methionine Cycle

During the dietary intake of methionine or methionine amino acids, methionine is
catalyzed by adenosyltransferase and reacts with ATP to form SAM, the methyl group in
SAM becomes the active methyl group, and SAM is called the active methionine. SAM is
catalyzed by methyltransferases, which transfer methyl groups to other substances, such as
DNA. SAM is demethylated to produce S-adenosine homocysteine (SAH), which leads to
the production of Hcy. Hcy then accepts the methyl group on 5-MTHF and regenerates
methionine, thus forming a cycle known as the methionine cycle.

In general, as a coenzyme in the 1C unit transferase, folate acts as a 1C unit transmitter.
Folate metabolism provides materials for the synthesis of purine and thymine and partici-
pates in the synthesis of DNA and RNA. In addition, folate mediates the metabolic process
of amino acids and promotes the mutual conversion of Hcy and methionine. Finally, folate
can provide SAM. SAM is a methyl donor that transfers methyl groups to specific bases
through covalent bonding under the action of DNA methyltransferases (DNMTs), which
leads to DNA methylation modification.

3. Folate and Liver Diseases

The liver serves as the primary storage site for folate and plays a crucial role in
lipid synthesis, indicating a potential impact of folate levels on liver metabolism. Numer-
ous animal studies have demonstrated that folate deficiency can result in disruptions in
protein regulation and aberrant gene expression in the liver, leading to elevated triglyc-
eride levels and reduced plasma high-density lipoprotein (HDL) concentrations. Folate
insufficiency is implicated in the pathogenesis of liver diseases through its influence on
methionine metabolism, DNA synthesis and stability, and epigenetic modulation of gene
expression [10]. Research findings indicate a progressive decrease in serum folate levels
as hepatitis C virus infection advances from chronic hepatitis to cirrhosis to liver can-
cer [11]. Folate deficiency leads to increased secretion of pro-inflammatory factors in the
liver, impairs lipid metabolism, and leads to excess fat accumulation in hepatocytes and
fibrosis [12,13]. This evidence suggests that folate may play a role in the onset and develop-
ment of liver diseases. In addition, in vivo studies have confirmed that folate deficiency
affects liver homeostasis in offspring. Folate regulates liver fatty acid metabolism. In the
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livers of female mice, a high-folate/high-vitamin B12 diet reduces total fatty acid and
desaturase activity. Low prenatal folate and vitamin B12 levels have significant effects
on the regulation of genes and enzymes related to lipid metabolism in the liver of adult
female mice and their offspring [14]. Both maternal and paternal folate deficiency during
mating affect the folate content and DNA methylation status in the liver of rats after birth,
thus affecting the liver function of offspring [15]. Decreased level of serum folate is closely
related to abnormal liver function and the occurrence and development of liver diseases, as
shown in Figure 2.
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3.1. Folate and NAFLD, NASH

Nonalcoholic fatty liver disease (NAFLD) is characterized by the excessive deposition
of lipids in hepatocytes in addition to alcohol and other specific liver-damaging factors.
Nonalcoholic steatohepatitis (NASH) is a distinct, inflammatory subtype of NAFLD, ac-
companied by hepatic steatosis and evidence of hepatocyte injury and inflammation, with
or without liver fibrosis. Substantial evidence suggests that folate deficiency contributes to
the development of NAFLD. Low serum folate levels are associated with the histological
severity of NASH [16]. One cross-sectional study that included data from 5417 patients
from the 2011-2018 National Health and Nutrition Examination Survey (NHANES), and
investigated the relationships between serum folate and NAFLD and advanced fibrosis
(AHF). Studies have shown that higher serum folate levels are associated with a lower inci-
dence of NAFLD in U.S. adults [17]. These findings indicate that patients with NAFLD may
need appropriate folate supplementation. Compared with non-NAFLD patients, patients
with NAFLD had significantly greater red blood cell folate levels and lower serum vitamin
B12 and folate levels. This also means that people with NAFLD may need appropriate
folate supplementation. Compared with non-NAFLD patients, patients with NAFLD had
significantly greater red blood cell folate levels and lower serum vitamin B12 and folate
levels. Erythrocyte folate has been independently associated with an increased risk of
NAFLD [18]. By measuring the serum folate concentration and lipid content of NAFLD
patients at different times, and conducting regression analysis to establish a linear mixing
model, researchers found that an increase in serum folate levels can significantly reduce
the expression of genes involved in fatty acid synthesis, while the expression of genes
involved in fatty acid oxidation is increased. An increase in folate concentration may lead



Nutrients 2024, 16, 1872 5 of 18

to a dramatic reduction in lipid accumulation in the liver [19]. These findings suggest that
folate deficiency may promote the development of liver diseases, and monitoring serum
folate levels has diagnostic and therapeutic significance for the management and follow-up
of NAFLD patients.

3.1.1. Folate Mediates One-Carbon Metabolism to Regulate NAFLD Progression

1C units refer to units containing a carbon atom, including methyl, methylenyl, and
formyl groups. The process of 1C metabolism is the process of the generation and transfer
of 1C units in the biological process. The 1C metabolic pathway can be combined with the
folate and methionine cycles, contributing to nucleotide synthesis, lipid metabolism, and
maintaining cellular redox homeostasis. The liver is a major site of 1C metabolism and
lipid metabolism, and these pathways interact. The most abundant phosphatidylcholine
(PC) is synthesized by adding three methyl groups to phosphatidylethanolamine (PE)
under the catalysis of phosphatidylethanolamine n-methyltransferase (PEMT). In addition,
1C metabolism affects cellular energy homeostasis and immune function, which in turn
affects liver lipid metabolism and liver disease progression. Both genetic and dietary
animal models have demonstrated that changes in 1C metabolism are closely related
to lipid metabolism in the liver. High dietary fat can induce NAFLD and disrupt 1C
metabolism. Low levels of endogenous folate in rodents disrupt folate-dependent 1C
metabolism, and may be associated with the development of metabolic diseases such as
NAFLD [20]. Methionine, serine, glycine, and choline are the main sources of 1C units.
A deficiency of methionine or choline in the diet can lead to steatosis. The methionine
and choline deficiency (MCD) diet model is the most common NAFLD model. However,
the use of the MCD model remains somewhat controversial, as MCD induces significant
weight loss in NAFLD/NASH mice and does not cause obesity or insulin resistance,
which are common in NAFLD. In addition, some drugs that disrupt 1C metabolism,
such as methotrexate, can induce fatty liver diseases and cause liver injury [21]. Recent
evidence suggests that disruption of 1C metabolism impairs mitochondrial function by
limiting thymine biosynthesis [22]. The 1C unit transfer mediated by folate through serine
hydroxymethyltransferase (SHMT) is also essential for mitochondrial biological processes.
Reduced mitochondrial content impairs nutrient oxidation and leads to lipid accumulation.
Impaired mitochondrial function can also promote apoptosis and affect normal immunity.
These findings all point to the importance of folate-mediated 1C metabolism in maintaining
a healthy liver.

3.1.2. Folate Mediates DNA Methylation to Regulate NAFLD Progression

DNA methylation refers to the transfer of SAM as a methyl donor to a specific base,
such as cytosine, through covalent bonding under the action of DNMTs and catalyzes the
replacement of cytosine-phosphate-guanine (CpG) by methyl groups. The dinucleotide
cytosine ring on the CpG island generates 5-methylcytosine (5mC) when DNA methyla-
tion occurs. DNA methylation is closely related to gene expression and usually inhibits
gene transcription. Cytosine methylation inhibits gene expression either by preventing
transcription factor interactions or by recruiting DNA binding domains with affinity for
5mC that interact with histone-modifying enzymes to form dense structures, thereby af-
fecting chromatin structure and cell/tissue specific gene expression. Five DNMT enzymes
have been identified in mammals, namely DNMT1, DNMT2, DNMT3A, DNMT3B, and
DNMT3L. Among them, DNMT1, DNMT3A, and DNMT3B are related to the activity of
methyltransferase. The main function of DNMT1 is to maintain the DNA methylation
pattern of existing CpG islands, which is highly expressed in mammals and is the most
important enzyme involved in regulating DNA methylation. DNMT1 can methylate newly
synthesized DNA chains under the guidance of methylated DNA templates, which is
very important for the maintenance of DNA methylation patterns in genetic imprinting.
DNMT3a and DNMT3b are involved in the de novo methylation of DNA, which is the
conversion of unmethylated CpG to methylated CpG. To maintain a stable methylation
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state, DNMT3A and DNMT3B bind to DNMT1. Folate is a dietary methyl donor that pro-
duces SAM, a substrate for all methyltransferases involved in regulating gene expression
in liver injury. Methylation and sulfur transfer pathways compete for Hcy formed from
methionine. MTHF is used as a methyl donor to remethylate Hcy and forms the methionine
cycle, which plays a role in protecting methionine.

Hepatic insulin resistance and steatosis are major features of metabolic liver diseases,
especially metabolic diseases such as NAFLD and type 2 diabetes (T2D). Epigenetic al-
terations, particularly DNA methylation, play a key role in the pathogenesis of insulin
resistance. An increase in free fatty acids (FFAs) can promote mitochondrial translocation
of the DNA methyltransferase DNMT1 by activating adenosine monophosphate (AMP)-
activated protein kinase (AMPK), and further specifically induce transcription inhibition
and mitochondrial oxidative phosphorylation of key genes that are related to respiratory
chain complex I, which is encoded by mitochondrial DNA, ultimately leading to insulin re-
sistance [23]. Folate is an important source of DNA methylation in 1C unit. A cross-sectional
study from the NHANES of 1530 adults without diabetes revealed that there was a signif-
icant negative correlation between serum folate levels and insulin resistance [23]. These
results suggest that folate may influence insulin resistance by mediating DNA methylation
and lead to metabolic disorders in the liver. The intake of high amounts of folic acid leads
to a deficiency of MTHFR, which leads to reduced methylation capacity and abnormal lipid
metabolism in the liver [24]. On the other hand, folate supplementation in mice fed a high-
fat diet reduced liver lipids and inhibited inflammatory responses [25]. Whole-genome
DNA methylation analysis of peripheral white blood cells from patients with NAFLD
revealed that CpGs in the promoters of PRKCE and SEC14L3 were hypomethylated and
had high gene expression levels [26]. One study used data from the Neonatal Epigenet-
ics Study (NEST) to analyze the relationship between differential DNA methylation and
liver fat content (LFC), and liver damage in preadolescent children. LFC was found to be
associated with 88 differentially methylated regions (MDRs) and 106 CpGs, of which two
CpG loci, cg25474373 and cg07264203, located near the RFTN2 and PRICKLE2 genes, were
significantly associated with the diagnosis of NAFLD [27]. There were 467 dinucleotides
with abnormal methylation status in NASH patients, and eight genes related to metabolism
and the onset of NAFLD, including GALNTL4, ACLY, IGFBP2, PLCG1, PRKCE, IGF1,
IP6K3, and PC [28]. More than 1000 differentially methylated regions were also found in
mouse models of NASH induced by a high-fructose/high-cholesterol diet, suggesting that
DNA methylation is involved in regulating NASH development. The methylation levels
of genes such as TGFB, MSN, IQGAP1, CYBA, and FCGR1 were significantly reduced,
and increased expression may be the main cause of NASH [29]. This finding suggests that
genomic DNA methylation may play an important role in both the onset and progression
of NASH.

3.1.3. The Role of Folate Receptors in NAFLD

Mammals lack the ability to synthesize folate autonomously, so they must rely on
specific transporter or receptor proteins to utilize external folate. Folate is transported
across membranes in three ways, the first of which is to promote folate uptake from
food through widely distributed reductive folate carriers. The second way is through
proton-coupled folate transporters, which use membrane proton gradients to mediate
folate transport into cells. The third mechanism is by transporting through folate receptors
(FRs), which consist of four main glycopeptide molecules, FR-α, FR-β, FR-γ, and FR-δ.
FR-α, also known as FOLR1 or folate-binding protein, has a high affinity for folate and
is a glycoprotein anchored to the cell membrane by glycosylated phosphatidylinositol,
transporting folate through receptor-mediated endocytosis. Folate binds to FRs and enters
the cytoplasm through endocytosis, activates the cellular regulatory signaling network,
and acts as a transcription factor. Resident macrophages activate the expression of folate
receptor β (FR-β), and FR-β transcription levels are elevated in both NASH fat and non-fat
samples [30], suggesting that FRs may be used for drugs that directly target the liver. Folate
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metabolism is involved in many physiological processes, and the most important factor in
the pathogenesis of NAFLD is that folate mediates various mechanisms, and ultimately
regulates the liver lipid synthesis and inflammatory processes.

3.2. Folate and Alcoholic Liver Disease

Alcoholic liver disease (ALD) is a liver disease caused by long-term heavy drinking. It
usually begins with fatty liver disease, which can progress to alcoholic hepatitis, liver fibro-
sis and cirrhosis. The decrease in the serum folate level in ALD patients is mainly because
drinking alcohol produces heat and reduces the food demand of the patients, resulting in
reduced intake of VitB12 and folate. Long-term heavy drinking will damage the intestinal
mucosa, resulting in poor absorption of folate and VitB12, and a high concentration of
alcohol will directly damage the stomach, small intestine, and even the pancreas, resulting
in reduced absorption of VitB12 and folate. Alcohol damage reduces the ability of the liver
to store vitamin B12 and folate, and the ability to store and convert folate into THF.

3.2.1. Folate Mediates Methionine Metabolism in ALD

Long-term alcohol exposure impairs folate absorption by inhibiting the expression
of folate carriers and reducing the uptake of circulating folate by the liver and kidneys.
Moreover, folate deficiency may increase changes in methionine metabolism in the liver of
ALD patients and promote oxidative liver injury [31]. Folate deficiency is observed in most
ALD patients. Both folate deficiency and alcoholism disrupt methionine metabolism in the
liver. However, SAM prevents the development of ALD. In a micropig model of alcoholic
liver injury, researchers observed steatohepatitis and abnormal methionine metabolism.
These abnormalities include reduced levels of SAM and glutathione in the liver, as well
as increased levels of lipid oxidation products. Methionine metabolism is regulated by
folate, and folate deficiency and abnormal methionine metabolism are the main features of
ALD [32]. Folate deficiency may contribute to the development of ALD by exacerbating
abnormal methionine metabolism. Abnormal methionine metabolism is associated with
DNA and lipid oxidation products and liver injury. Folate sufficiency prevents the early
onset of methionine cycle-mediated ALD [33]. Decreased SAM also impairs nucleotide
balance, leading to double-strand DNA breaks, oxidation, apoptosis, and increased risk of
cancer [34].

3.2.2. Folate Mediates DNA Methylation in ALD

Alcohol causes damage to cells and can alter the epigenetic states, including methyla-
tion and deacetylation of histones, hypermethylation of DNA, and changes in demethyla-
tion. Studies have reported a state of hypomethylation of certain genes in the liver after
long-term exposure to alcohol, such as significantly reduced methylation of the MYC gene
in ALD [35]. In pregnant rats subjected to long-term alcohol intake, the activity of DNMT
in newborn mice was reduced and the state of hypomethylation was also observed. DNMT
activity was also decreased in peripheral blood cells of ALD patients [36]. Folate is a
dietary methyl donor that produces SAM, a substrate for all methyltransferases involved
in regulating gene expression in liver injury. Long-term alcohol consumption also leads to
a disturbance in the metabolism of 1C compounds, which ultimately leads to a decrease in
the production of SAM, an important methyl donor in DNA and histone methylation [37].
In animals fed ethanol, long-term intake of ethanol decreases the ratio of SAM to SAH in
hepatocytes and significantly impairs liver methylation. Folate deficiency accelerates the
development of ALD while reducing SAM levels in the liver, resulting in abnormal gene ex-
pression and reduced production of the antioxidant glutathione. An increase in SAH levels
and hypomethylation seriously affect the expression and activity of the apoptotic protease
caspase-8, resulting in enhanced apoptosis of hepatocytes in ALD [38]. The combination
of increased methylation requirements and long-term ethanol consumption leads to more
pronounced liver damage [39].
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In addition, folate supplementation can also improve mitochondrial function, in-
hibit ethanol-induced mitochondrial autophagy, and inhibit the release of mitochondrial
cytochrome C into the cytoplasm, thus preventing hepatocyte apoptosis [40]. Folate sup-
plementation can also reduce liver damage caused by alcohol, reduce oxidative stress,
and restore the function of liver enzymes. ALD affects folate metabolism to cause folate
deficiency in the body. Therefore, folate supplementation may have potential implications
for alleviating ALD.

3.3. Folate and Liver Fibrosis and Cirrhosis

Liver fibrosis is the end result of a chronic inflammatory response and is characterized
mainly by the deposition of type I collagen in the extracellular matrix (ECM), which destroys
the normal physiological structure of the liver and leads to dysfunction. Pathologically,
toxic, metabolic, or viral diseases can lead to liver injury and immune cell infiltration, thus
activating liver stellate cells to transdifferentiate into collagen-producing myoblasts [41].
Activation of hepatic stellate cells (HSCs) is a prerequisite for liver fibrosis. Under normal
circumstances, HSCs are quiescent. Once liver injury occurs, HSCs are activated and
transformed into collagen secreting myofibroblasts, and then activated HSCs produce a
large number of ECM components and pro-inflammatory mediators. Continuous injury
disrupts the homeostasis between the secretion of collagen and the dissolution of collagen,
and leads to the gradual accumulation of fiber scars to form progressive liver fibrosis. These
fiber scars destroy the normal structure of the liver and affect its function.

3.3.1. Folate Mediates DNA Methylation in Liver Fibrosis

DNA methylation is involved in the activation of HSCs, which promotes the pro-
gression of liver fibrosis. DNA methylation changes during hepatic fibrosis and HSC
transdifferentiation, and DNA 5-mC and 5-hydroxymethylcytosine (5-hmC) methylation
are key steps in HSC activation and fibrogenesis [41]. The DNA methylation inhibitor 5-aza-
2′-deoxycytidine (5-AzadC) can inhibit the down-regulation of PTCH1 gene expression in
activated HSCs. Abnormal methylation of the promoter of the PTCH1 gene further leads to
the expression of the Gli1 and Smad3 genes associated with fibrosis in HSCs [42]. The DNA
methylation status of the liver tissue of the rat model is changed, and some immune-related
genes are hypermethylated. The activation of peroxisome proliferator-activated receptor γ
(PPARγ) plays an important role in the occurrence and development of liver fibrosis. Some
studies have shown that epigenetic modification of PPARγ is also involved in the regulation
of liver fibrosis. Methylated CpG binding protein 2 (MeCP2) is involved in transcriptional
regulation and mainly binds to DNA methylation sites to reverse transcriptional inhibition.
Silencing MeCP2 or treatment with 5-AzadC inhibits the decrease in PPARγ expression and
myofibroblast transformation in activated HSCs. In addition, down-regulation of MeCP2
can activate the NF-κB signaling pathway in the MFBs of myoblasts, thereby affecting
the development of liver fibrosis [43]. In addition, DNA methylation modification of the
transforming growth factor-β1 (TGF-β1) gene also plays an important role in the activation
and proliferation of HSCs and the occurrence and development of liver fibrosis [44].

3.3.2. Folate Receptors in Liver Fibrosis

FRs are involved in regulating liver fibrosis. TGF-β is a major pro-fibrotic cytokine that
is closely related to fibrosis. Soluble folate receptor gamma (FOLR3) is a secreted protein
that is elevated in the liver of patients with metabolic dysfunction-related steatohepatitis
(MASH). Proteomic analysis has revealed that FOLR3 is the most significant MASH protein
and is positively associated with increased fibrosis stage. Exogenous FOLR3 stimulates the
production of ECM in HSCs, and TGF-β1 synergism further enhances this effect. FOLR3
interacts with the serine protease HTRA1 to activate TGF-β signaling [45].
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3.3.3. Folate Mediates 1C Metabolism in Liver Fibrosis

Sustained TGF-β1 signaling promotes fibrosis. In activated HSCs, folate is metaboli-
cally transferred to mitochondria, to maintain TGF-β1 signaling. Blocking mitochondrial
folate-mediated 1C metabolism promotes the regression of liver fibrosis in NASH mice. Mi-
tochondrial folate metabolism, ALA depletion, and TGF-βR1 production are feed-forward
signals that maintain pro-fibrotic TGF-β1 signaling [45]. Targeting mitochondrial folate to
mediate 1C metabolism is a potential strategy to promote the regression of liver fibrosis. In
addition, folate deficiency impairs liver lipid metabolism, leading to increased secretion of
liver pro-inflammatory factors, eventually leading to liver lipid accumulation and fibrosis.
In American adults, higher serum folate levels are associated with a lower risk of develop-
ing advanced liver fibrosis (AHF) [17]. In preclinical models, dietary supplementation with
vitamin B12 and folate may increase the expression of syntaxin17 (STX17) in the liver and
restore its key role in autophagy, thereby slowing the progression of NASH and reversing
the occurrence of inflammation and liver fibrosis [46].

3.4. Folate and Chronic Viral Hepatitis

With the progression of hepatitis C virus (HCV) infection, from chronic hepatitis to
cirrhosis to hepatocellular carcinoma (HCC), serum folate levels gradually decrease [11].
HCV infection can directly or indirectly lead to hepatic steatosis. Folate deficiency indirectly
leads to liver damage. Host genetic polymorphisms may also play a role in the development
of steatosis. HCV infection significantly reduces the levels of vitamins B2, B6, and folate in
red blood cells and/or plasma [47]. To mitigate other health risks, it is critical to monitor
the nutritional status of patients infected with hepatitis B virus (HBV) or HCV and consider
limiting or supplementing certain nutrients.

3.4.1. Role of Folate Metabolism in Chronic Viral Hepatitis

Polymorphism of folate metabolism-related enzymes is closely related to enzyme
function and the occurrence and development of liver diseases. MTHFR is the key enzyme
involved in folate metabolism, and controls the nucleic acid synthesis and DNA methylation
to regulate folate metabolism. MTHFR C677T mutations are associated with reduced
enzyme activity. The MTHFR C677T polymorphism with TT genotype may be a factor
in the increased risk of HBV-associated HCC in the Chinese population, especially in
individuals whose HBV infection has persisted for more than 20 years [48]. The folate level
is mainly affected by the MTHFR C677T polymorphism. The MTHFR C677T SNP may be
associated with the development of early complications associated with HCV genotype
4 infection, such as dyslipidemia and decreased folate levels [49]. The polymorphisms of
the MTHFR genes C677T (rs1801133, P.LU429VAL) and A1298C (rs1801131,P.Lu429ALA)
decrease the enzyme activity. Polymorphisms of the MTHFR gene C677T and A1298C
are associated with HBV infection in the Turkish population. The T allele of the C677T
polymorphism is a risk factor for HBV infection. The CC-AA complex genotype has
a protective effect on HBV infection, while the T-A haplotype is a risk factor for HBV
infection [50].

3.4.2. Role of Folate in Mediating Methionine Metabolism in Chronic Hepatitis

A course of disease lasting longer than 6 months is known as chronic liver disease
(CLD), and common causes include hepatitis B and C viruses, NASH, ALD, and autoim-
mune liver disease. CLD is also an independent risk factor for HCC. The progression of
CLD involves chronic substantive injury, sustained activation of the inflammatory response,
and sustained activation of liver fibrosis and the wound healing response. During the
occurrence and development of CLD, the changes in various components involved in me-
thionine metabolism can affect the pathological status through multiple mechanisms. Diets
lacking methionine are often used to establish models of CLD. The transformation of the
methionine adenosine transferases MAT1A and MAT2A/MAT2B, key enzymes involved in
methionine metabolism, is closely associated with fibrosis and HCC. Among them, MAT2A
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is responsible for SAM synthesis in extrahepatic normal tissue and cancer tissue, MAT1A
is only responsible for SAM synthesis in normal liver tissue and bile duct epithelial cells,
and MAT2B has no catalytic activity. SAM can balance the MAT1A/MAT2A ratio and
prevent further progression of liver injury. SAM supplementation regulates antioxidant
enzymes, synthesizes GSH, and alters the conversion of MAT1A/MAT2A. Moreover, one
experiment also confirmed that interference with methionine adenosine transferase MAT1A
and MAT2A or methionine metabolites can interfere with methionine metabolism and
further reduce liver injury [51]. However, a randomized controlled trial revealed that
SAM did not reduce liver damage in patients with HCV cirrhosis, possibly due to the high
chemical reactivity and spontaneous breakdown of the methyl group of SAM, which can
lead to adverse reactions. Therefore, intervention of methionine metabolism by targeting
SAM for the treatment of CLD may require caution.

3.5. Folate and Liver Cancer: Hepatocellular Carcinoma

The risk factors for liver cancer mainly include chronic HBV or chronic HCV infec-
tion, aflatoxin contamination of food, long-term excessive drinking, smoking, and obesity,
among others. With continuous research and exploration, nutritional factors and living en-
vironment are related to the occurrence and development of liver cancer, and alcoholism is
the most important risk factor for liver cancer in North America and Northern Europe [52].
Increased intake of dairy products and high-sugar beverages is also associated with the de-
velopment of liver cancer. Reduced dietary micronutrient intake has a significant impact on
muscle health, and folate deficiency inhibits myoblast differentiation leading to sarcopenia.
Sarcopenia is associated with poor outcomes in patients with cirrhosis and hepatocellular
carcinoma [53]. Folate is an essential nutrient for cell growth and reproduction, and thus
affects the growth of tumor cells and is closely related to liver cancer.

3.5.1. Folate Is Involved in the Regulation of HCC

Excessive drinking is a well-known risk factor for liver diseases and HCC. Alcohol
consumption reduces folate absorption. In the absence of folate deficiency, the number of
macrophages increases, sometimes accompanied by megaloblastic hyperplasia, suggesting
that alcohol has a direct toxic effect on developing red blood cells [54]. Serum folate
levels are inversely associated with the incidence of metabolic-associated fatty liver disease
(MALFD) and metabolic dysfunction. Maintaining adequate serum vitamin C levels may
help enhance the protective effect of folate against MALFD [55]. A cross-sectional study of
90 HCC patients analyzed the association between folate status and tumor progression in
HCC patients. The serum folate level was negatively correlated with tumor size, tumor
diversity, and metastasis. The serum folate level decreased gradually with increasing HCC
progression. This suggests that low serum folate levels may be a risk factor for tumor
progression [56]. The serum folate level of patients with primary liver cancer is significantly
lower than that of the normal population [57]. Plasma folate levels are negatively correlated
with HCC, with lower folate levels in patients with stage III, IV, or larger tumors [58]. A low
serum folate concentration is independently associated with lower HCC survival [59]. High
folate intake is inversely associated with liver injury and HCC. A study from the National
Institutes of Health–AARP Diet and Health examined the effects of alcohol consumption
and folate intake on the incidence and mortality of liver cancer. Increased folate intake may
mitigate the effects of alcohol consumption on HCC development. Folate intake may help
prevent alcohol-related HCC [60]. These findings suggest that folate supplementation may
have a beneficial impact on the development of liver cancer.

However, taking too much folate may increase the risk of liver cancer. Excess Hcy can
damage liver tissue structure, impair DNA repair processes, and increase the risk of liver
cancer. Supplementation with excess folate can inhibit the degradation of MAT2A through
the ubiquitin protein transferase VCIP135, indirectly accelerating the methionine cycle in
cancer tissues, and promoting the progression of HCC [61]. The effect of dietary folic acid
was evaluated in a rat HCC model, which revealed an increase in the number of cirrhosis
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cases and a decrease in the number of HCC cases following folate deficiency. This suggests
that folate deficiency may help delay the progression of HCC. Excess folic acid is associated
with an increase in the number of HCC patients and a decrease in the number of cirrhosis
patients, suggesting that excessive intake of folic acid may promote the early progression of
HCC [61]. A high-folate diet significantly promoted cancer development in DEN/high-fat
diet-induced HCC mice [61]. In addition, studies have reported that folate deficiency in
HCC leads to antioxidant stress and multidrug resistance, and folate supplementation
improves the effectiveness of chemotherapy [62]. Folate has a dual role in the development
of cancer, namely, by promoting or inhibiting the formation and progression of tumors.
However, the underlying mechanism remains to be elucidated.

3.5.2. Folate Mediates the Methionine Cycle in HCC

Folate metabolism combines with 1C metabolism and sulfur transfer pathways to
regulate lipid and redox homeostasis. Adequate folate promotes Hcy metabolism and
enhances the metabolic function of the liver, thereby protecting the liver from injury.
Abnormal methionine metabolism is associated with the production of lipid oxidation
products and liver injury. Folate deficiency may contribute to the development of liver
disease by promoting abnormal methionine metabolism. Methionine metabolism is a key
component of the 1C metabolism pathway. The disturbance of methionine metabolism
can aggravate the damage caused by the pathological state of the disease. During the
occurrence and development of CLD, the changes in various components involved in
methionine metabolism affect the pathological state through various mechanisms. The key
enzymes involved in methionine metabolism and transformation are closely related to liver
fibrosis and HCC. Targeting related enzymes or downstream metabolites to interfere with
methionine metabolism can reduce liver injury [61]. It is generally believed that methionine
deficiency or blockade of methionine metabolism can inhibit the growth of tumor cells.
Methionine deprivation or blockade of methionine catabolism decreases the proliferation
of HCC cells [61]. In addition, a methionine-restricted diet improves the preclinical efficacy
of chemotherapy and immunotherapy for colorectal cancer and radiotherapy for soft
tissue sarcoma [62]. However, studies have shown to the contrary that mice fed a diet
deficient in carcinogenic methionine and choline develop significant liver fibrosis due to
HSC activation and collagen deposition. In addition, most HCC cells undergo cell cycle
arrest and severe DNA damage responses after acute methionine deprivation [63]. MAT2A
is a rate-limiting enzyme in the methionine cycle that catalyzes the synthesis of SAM from
methionine and adenosine triphosphate (ATP). Blocking MAT2A-mediated methionine
catabolism leads to the senescence of HCC cells. Combined treatment with MAT2A and
GSK3 inhibitors can inhibit the growth of HCC cells both in vitro and in vivo [64]. A
high-folate diet promotes the development of HCC in a mouse model induced by a high-fat
diet by increasing the expression of MATIIα, while a folate-free diet reduces the expression
of MATIIα and hampers HFD-induced HCC development. In addition, MATIIα deletion
significantly reduces the levels of folate and multiple intermediate metabolites involved in
1C metabolism. Therefore, folate mediates methionine and 1C metabolism, and promotes
HCC development by regulating MATIIα [64]. This finding also suggests that dietary
restriction of methionine alone is not effective in hindering the growth of liver tumors.

3.5.3. Folate Mediates DNA Methylation in HCC

Abnormal DNA methylation is closely related to the occurrence and development
of HCC. Compared with those in normal liver tissues, 54 CpG islands in 44 genes were
hypermethylated, and in these genes, the methylation level of EYA4 was negatively corre-
lated with disease-free survival and overall survival. These results suggest that abnormal
hypermethylation of EYA4 may promote HCC progression [65]. The degree of methylation
in HCC tissues is greater than that in neighboring non-tumor tissues, and there is a sig-
nificant correlation between the hypermethylation of the tumor suppressor gene PDCD4
and its down-regulation in cancer tissues [66]. Abnormal methylation of the RASSF1,
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GSTP1, p14, CDH1, APC, RUNX3, SOCS1, p15, MGMT, SFRP1, WIF1, PRDM2, DAPK1,
RARβ, hMLH1, p73, DLC1, p53, SPINT2, OPCML, and WT1 genes in the tumor tissues of
HCC patients can be used as a marker to predict the incidence and survival rate of HCC
patients [67]. In addition, a study of the methylation of the ADRA1A promoter region in
160 HCC patients showed that the methylation level of the ADRA1A promoter region in
the tumor tissues of HCC patients was significantly greater than that in normal tissues,
and DNMT inhibitors increased ADRA1A expression in HCC cell lines. These results
suggest that ADRA1A gene hypermethylation may be involved in the development of
HCC [68]. More than 50% of HCC patients are diagnosed with multifocal hepatocellular
carcinoma (mHCC), which has a poor prognosis. mHCC exhibits more complex intra-tumor
heterogeneity (ITH) and clonal evolution processes. Consistent with HCC, mHCC also
exhibited a high degree of methylation heterogeneity between lesions and patients. Overall
hypomethylation has been observed in mHCC lesions compared to paired normal liver
tissue. Abnormal DNA methylation of genes may play an important role in the early tumor
progression of mHCC [69]. Cancer stem cells (CSCs) promote the occurrence, develop-
ment, and recurrence of tumors. During cell division, the ubiquitin-like protein UHRF1
with PHD and ring finger domain 1 recruits DNMT1 to a hemimethylated DNA site and
maintains DNA methylation, thus allowing daughter cells to inherit DNA methylation
patterns. Knockout of UHRF1 in hepatocytes may alleviate DEN/CCL4-induced HCC by
regulating the self-renewal and differentiation of hepatic CSCs. Abnormal DNA methy-
lation promotes the occurrence and development of HCC, and folate supplementation
promotes the down-regulation of tumor-suppressor gene (TSG) expression in rat models of
DEN-induced liver cancer [70]. Therefore, the regulation of DNA methylation by folate
may be a major regulatory mechanism in HCC development.

3.5.4. Role of Folate Receptors in HCC

FRs are widely expressed in HCC cells. Treatment with HGF or TGF-β1 can increase
the expression of the glycosyltransferase FUT8 and up-regulate the core fucosylation of
N-glycans on FR FOLR1, thus enhancing folate uptake, and eventually promoting epithelial–
mesenchymal transition (EMT) [71], which is the key process of cancer metastasis.

Since FR-α is overexpressed in a variety of cancers, folate has been widely utilized to
facilitate the targeted delivery of nanomedicine. For folate-functionalized nanomedical
drugs, folate functionalization does not enhance the distribution of liposomes in FR-α
overexpressing tumors compared to that of normal liposomes, but leads to increased
liposomal capture by macrophages in tumors, the liver, and the spleen. In addition, folate-
functionalized polymer nanoparticles are also susceptible to natural IgM absorption, further
enhancing the targeting and efficacy of drugs [72]. The introduction of PEG and folate
targeting through intra-arterial approaches is also an effective strategy for targeted drug
delivery in HCC therapy. PEG has been used to enhance the water solubility of the vector
and to increase specific uptake for the interaction of the folate ligand with a variety of
FRs [73]. The novel folate-functionalized (doxorubicin, DOX) DOX@ZIF-8 nanoparticles
(DOX@ZIF-8-FA) used as a drug delivery system for liver cancer showed increased drug
loading and improved sustained drug delivery performance. In HepG2 cells, it has been
shown to have greater antitumor efficacy [74]. Through the specific distribution of FRs in
HCC cells, the specific binding of folate to FRs can significantly improve the targeting of
liver cancer therapy.

3.5.5. Other Mechanisms

Folate exerts anti-tumor activity by inhibiting early angiogenesis in rats, which is re-
lated to inhibiting the occurrence and development of HCC [75]. In addition, mitochondrial
DNA (mtDNA) deletion and low folate status are carcinogenic features associated with
HCC susceptibility. Folate status and liver injury are important factors for mtDNA loss in
lymphocytes. In the serum and lymphocytes of 90 HCC patients and 90 healthy controls
without cancer, it was found that the serum folate level and lymphocyte folate level of HCC
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patients were lower, and the cumulative frequency of lymphocyte mtDNA deletion was
greater [76]. Both genetic instability of mtDNA and decreased folate levels increase the risk
of HCC.

3.6. Therapeutic Manipulation of Folate for Liver Disease Treatment and Management

Folate plays an important role in the normal physiological processes in the body. As
the main organ of folate storage and metabolism, liver function affects the absorption and
metabolism of folate. In addition, folate regulates fatty acid metabolism, the inflamma-
tory response and autophagy, as well as mediating Hcy production. Folate levels also
affect liver function. Reduced serum folate levels are found in different liver diseases due
to impaired liver function, resulting in malabsorption of folate or insufficient intake of
folate. For patients with NAFLD, appropriate folate supplementation may be necessary.
Folate supplementation has a protective effect on rats with high fructose intake, which
may involve activation of LKB1/AMPK/ACC and increased SAM. This, in turn, inhibits
hepatic lipogenesis and ameliorates hepatic steatosis [77]. One randomized controlled trial
revealed no significant changes in serum liver enzyme levels, the degree of hepatic steatosis,
insulin resistance, or lipid status in patients with NAFLD after 8 weeks of continuous folic
acid supplementation (1 mg/day). However, it can inhibit the increase in Hcy. Therefore,
the investigators proposed to further study the use of folate of longer duration and at
different doses in patients with NAFLD [78]. The study revealed that folic acid treatment
was significantly associated with improvements in disease parameters. Folate significantly
reduced the expression of the pro-inflammatory cytokines TNF-α, CXCL8, and LC3B. In
addition, folate supplementation led to an increase in IL-22 levels in a dose-dependent
manner. Folate delays the progression of liver diseases by regulating pro-inflammatory
cytokines and autophagy [79]. In addition, the hepatoprotective effects of folic acid on
NAFLD may be partly attributed to its anti-inflammatory properties. Folic acid supplemen-
tation attenuates hepatic lipid accumulation and inflammatory foci aggregation induced
by a high-fat diet. This is associated with NF-κB activation and a significant decrease in
inflammatory cytokine expression [79]. Autophagy is an important physiological process
for maintaining homeostasis and plays an important role in many liver diseases. Homocys-
teination and ubiquitination of the autophagy/lysosomal fusion protein syntaxin17 (STX17)
lead to autophagic arrest during the development of NASH. VitB12 and folate supple-
mentation restore STX17 expression and autophagy, thereby improving the inflammatory
response and fibrosis in NASH [46].

Ethanol-induced oxidative stress and mitochondrial dysfunction are the core pathogenic
mechanisms of ALD. Mitophagy is an adaptive quality control mechanism that clears dys-
functional mitochondria and prevents liver injury caused by ALD. Folate reduces alcohol-
induced liver injury and oxidative stress. In addition, folate improves mitochondrial
function and inhibits ethanol-induced mitophagy by decreasing the expression of PINK1-
Parkin and Drp1 expression. This, in turn, inhibits the release of mitochondrial cytochrome
C into the cytoplasm, thereby preventing apoptosis [80]. Interestingly, pretreatment of hepa-
tocytes with folate also ameliorates Hcy-induced oxidative damage, mitochondrial division,
and mitophagy. Folate has a beneficial effect on the remodeling of mitophagy by scavenging
ROS and promoting Hcy metabolism [40]. In addition, folate inhibits ethanol-induced
increase in serum triglyceride (TG), total cholesterol (TC) and low-density lipoprotein
(LDL), reduces hepatic fat accumulation, and maintains alanine aminotransferase (ALT)
at normal levels. Ethanol disrupts liver’s immune homeostasis in the liver, while folate
limits ethanol-induced inflammatory damage by increasing the proportion of Treg cells in
the liver. Folate supplementation attenuates the ethanol-induced Th3/Treg imbalance by
altering the methylation pattern of the Foxp3 promoter [80]. Therefore, folate can be used
as a potential treatment for ALD.

The benefits of folate have also been found in viral hepatitis. Supplementation with
certain vitamins during pregnancy can affect a baby’s HBsAb levels by increasing cytokine
levels. IL-4 mediates the beneficial effects of maternal folate supplementation on HBsAb
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levels in infants [81]. Folate supplementation in pregnant hepatitis B surface antigen
(HBsAg)-positive women promotes the up-regulation of IL-4, which in turn leads to in-
creased anti-HBs levels in infants 11 to 13 months of age [82]. In addition, FRs can also
be used as specific therapeutic targets for tumors. By screening patients with colorectal
cancer using FR-labeled circulating tumor cells (FR + CTCs) and the metastasis-related
marker HSP90, researchers found that colorectal cancer patients with high expression of
FR + CTCs and HSP90 were at risk of liver metastasis and had a poorer prognosis [83].
These results indicate that FRs, as tumor-specific markers, can improve the early screening
and diagnosis of patients with colorectal cancer. FR-positive tumors are highly specific
to folate-PET tracers, and may be regarded as a potential test for the diagnosis and classi-
fication of patients with FR-high-expression tumors [84,85]. FRs have a high affinity for
folate and its derivatives, and based on this characteristic, imaging agents and therapeutic
drugs can be conjugated with folate to target tumor cells, for tumor imaging, such as single
photon emission computed tomography (SPECT), nuclear magnetic resonance imaging
(NMRI), fluorescence imaging, and tumor treatment, including chemotherapy, isotope
therapy, immunotherapy, antisense nucleotide therapy, and gene therapy.

4. Conclusions

Abnormal folate levels are associated with the occurrence and development of a variety
of liver diseases, and serum folate levels are negatively correlated with liver diseases such
as NAFLD, ALD, NASH, liver fibrosis, and HCC. Therefore, folate supplementation is
highly important for the treatment of liver diseases. However, excessive folate may lead to
a sharp decrease in liver fat and promote the rapid development of HCC, which suggests
that patients with liver disease need to be cautious about supplementation with folate.
Studies have indicated that folate deficiency is just as harmful as overdose. Folate deficiency
promotes the development of liver disease through mechanisms that affect methionine
metabolism, 1C metabolism, and epigenetic regulation of genes involved in liver injury.
Folate deficiency also leads to increased secretion of pro-inflammatory factors in the liver,
impairing hepatic lipid metabolism, and leading to HHcy, hepatic fat accumulation, and
fibrosis. Excessive folate can mask VitB12 deficiency, promote the development of HCC,
and increase the risk of cancer. Therefore, folate supplementation should be balanced.
The recommended intake of folate for the average adult is 400 µg per day. However,
because of the fact that the level of folate in patients with liver disease further decreases
with the development of the disease, there is no certain standard for the amount of folate
supplementation in people with liver disease, indicating that further study is necessary.
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