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N E U R O S C I E N C E

Network structure of the mouse brain connectome 
with voxel resolution
Ludovico Coletta1,2, Marco Pagani1, Jennifer D. Whitesell3, Julie A. Harris3,  
Boris Bernhardt4, Alessandro Gozzi1*

Fine-grained descriptions of brain connectivity are required to understand how neural information is processed 
and relayed across spatial scales. Previous investigations of the mouse brain connectome have used discrete an-
atomical parcellations, limiting spatial resolution and potentially concealing network attributes critical to connec-
tome organization. Here, we provide a voxel-level description of the network and hierarchical structure of the 
directed mouse connectome, unconstrained by regional partitioning. We report a number of previously unappre-
ciated organizational principles in the mammalian brain, including a directional segregation of hub regions into 
neural sink and sources, and a strategic wiring of neuromodulatory nuclei as connector hubs and critical orches-
trators of network communication. We also find that the mouse cortical connectome is hierarchically organized 
along two superimposed cortical gradients reflecting unimodal-transmodal functional processing and a modality-
specific sensorimotor axis, recapitulating a phylogenetically conserved feature of higher mammals. These find-
ings advance our understanding of the foundational wiring principles of the mammalian connectome.

INTRODUCTION
Studies examining the structural architecture of the brain have 
advanced our knowledge of how information is processed and inte-
grated across distributed and specialized neural circuits. Current 
network theory applied to brain connectomes has greatly contribut-
ed to this process, highlighting a series of common organizational 
principles underlying brain connectivity, many of which appear to be 
species and scale invariant (1). These include the presence of discrete 
regional subsystems (termed communities) critically interlinked 
by a small number of highly connected hub nodes, a configuration 
optimally suited for effective information processing, and integra-
tion of neural signals across sensory and cognitive domains (2). 
Brain communities and hub regions have been observed at differ-
ent investigational scales and using multiple connectivity readouts 
in several species, from the nematode Caenorhabditis elegans to 
humans (3–5).

Recently, the mesoscale connectome of the mouse brain has 
been mapped via the use of directional viral tracers, representing 
one of the best characterized directed mammalian connectome ever 
described to date (6, 7). The integration of this dataset with gene 
expression maps and layer-specific viral tracing have advanced our 
understanding of the wiring principles of the mammalian brain, re-
vealing a network core of highly interconnected and metabolically 
costly hub nodes (8), and a phylogenetically conserved feedforward-
feedback laminar hierarchy in intracortical structure (7). However, 
most investigations of the mouse connectome to date have been 
limited by the use of predefined anatomical parcellations in which 
connectional parameters, from which network attributes are com-
puted, are quantified under the assumption of regional homogene-
ity (6). This has typically entailed the interrogation of subsets of 

anatomically aggregated meta-regions [for example, 213 × 213 re-
gions in (8), or 130 × 130 in (5)], an option that greatly increases the 
computational tractability of the mouse connectome. However, the 
use of predefined meta-areas is non-ideal, as the sharp inter-areal 
boundaries that characterize most neuroanatomical parcellations 
reflect a discretization of otherwise regionally continuous cyto
architectural or anatomical parameters that may straddle cross-
regional network features. Moreover, the use of meta-regions might 
limit the resolution of topological mapping in the mouse connec-
tome, biasing the ensuing network metrics toward areas that are 
anatomically larger or more prominent, and potentially obscuring 
fine-grained or subregional attributes that could be critical to the 
network organization of the mammalian connectome. The recent 
release of a voxel-level data-driven model of the mouse connectome 
(9) offers the possibility of overcoming the limitations or regional-
aggregated investigations in this species. This resource entails an 
improved interpolation model for single tracer injection maps and 
provides whole-brain coverage, encompassing subcortical districts 
not covered by state-of-the-art parcellations (6, 9). Moreover, the 
voxel-wise mouse connectome is characterized by a sampling reso-
lution that is unprecedented for mammalian species, offering the 
opportunity to probe the topological structure of the mammalian 
connectome at a regional-scale never investigated so far.

Here, we leverage the voxel-level mouse connectome by Knox et al. 
(9) to provide a brain-wide, high-resolution description of the net-
work structure and hierarchical organization of the directed mouse 
connectome, unconstrained by regional partitioning (15,314 × 
15,314 matrix, Voronoi voxel volume 0.027 mm3 non-isotropic, 
mean spatial extension of Voronoi voxels: 242 m × 323 m × 
336 m; see Materials and Methods). Our results show that the 
mouse connectome is characterized by a finer network topography 
than previously reported, uncovering some previously underap-
preciated network features of the mammalian connectome. These 
include a segregation of hub regions into source and sink nodes, 
pointing at an organizational hierarchy in which higher-order cor-
tical areas serve as primary sources of neural output to the rest of 
the brain, and basal ganglia are configured as pivotal recipients of 
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incoming projections. Using in silico network attacks, we also un-
covered a strategic role of ascending modulatory nuclei as essential 
orchestrators of network communicability, a connectional property 
that makes these systems points of vulnerability for network func-
tion. We also found a tight interdependence between functional 
and structural brain organization, entailing the spatial arrangement 
of mouse cortical areas according to a hierarchy reflecting unimodal-
transmodal and modality-specific functional processing, hence 
broadly reconstituting basic organizational principles of the pri-
mate brain. Our findings define a high-resolution structural scaf-
fold linking mesoscale connectome topography to its macroscale 
functional organization and create opportunities for identifying 
targets of interventions to modulate brain function in a physiologi-
cally accessible species.

RESULTS
Global hubs and rich-club core of the  
voxel-wise mouse connectome
A defining characteristic of brain connectomes is the presence of 
spatially localized set of integrative hub regions, characterized by 
high connectivity density (2). Hub regions serve as focal points of 
network interaction and exert a tight influence on the structure and 
dynamics of brain networks (2). To identify regional features exhib-
iting hub-like properties at the voxel scale, we first mapped voxels 
exhibiting high connectivity strength using a spatially resampled 
(15,314 × 15,314) version of the Allen Institute mouse connectome 
(9), irrespective of the directionality of the connections. We termed 
the identified regions as global hubs to distinguish them from fur-
ther hub identification carried out using the directed connectome 
(described below). This analysis revealed several focal areas exhibit-
ing global hub-like properties (Fig. 1A). Consistent with the high 
centrality of hub regions, the identified foci were prominently located 
in associative cortical areas such as the prefrontal, anterior cingu-
late, posterior parietal, and retrosplenial cortices (Fig. 1A). An addi-
tional large cluster of hub voxels was apparent in dorsal portions of 
the hippocampus. Last, our fine-grained mapping also allowed the 
recognition of a small set of hub nodes in subregional portions of 
the basolateral and central amygdala.

In brain networks, highly connected central hub nodes have a 
tendency to be tightly interlinked with each other, defining a core 
network structure, often referred to as rich club, which supports the 
efficient integration of otherwise segregated neural systems (4, 8). 
To obtain a description of the mouse brain rich-club unconstrained 
by preexisting anatomical partitioning, we used the procedure de-
scribed by (8) on the ipsilateral voxel-wise connectome, bench-
marking our mapping against 1000 weighted rewired networks 
characterized by the same empirical in- and out-degree distribution 
(10). The obtained map revealed a more extended spatial topog-
raphy than observed with global hub mapping, encompassing 
two major antero-posterior integrative axes (Fig. 1B and fig. S3). 
The first of these included transmodal cortical integrators of sen-
sory input [i.e., insula and temporal association cortex (11)]. The 
second axis encompassed infralimbic and mid-thalamic compo-
nents of the fronto-hippocampal gateway (12). Nodal mapping also 
revealed the participation of midbrain nuclei such as the ventral 
tegmental area (VTA), pointing at a previously unappreciated in-
volvement of ascending dopaminergic nuclei as integral compo-
nents of the rich club of the mouse connectome.

The spatial extension of global hubs and rich-club voxels in most 
cases encompassed only a marginal portion of the corresponding 
anatomical structure as defined in the Allen Brain Atlas, significantly 
deviating from corresponding voxel-level distributions at the regional 
level (fig. S1). In keeping with this notion, a qualitative comparison 
of voxel-wise mapping with that obtained with a state-of-the-art an-
atomical parcellation (6) revealed substantial differences in the an-
atomical distribution of hub-like and rich-club regions (fig. S2). 
This result corroborates the specificity of our findings, suggesting 
that previous mapping of hub-like properties in the parcellated con-
nectome might have been resolution-limited.

Hub regions can be directionally segregated into neural 
sinks and sources
Our initial analyses were aimed at mapping global network features 
and, as such, were carried out on a nondirected version of the mouse 
connectome. However, directionality is a fundamental feature of 
brain connectomes, and most structural brain networks are intrin-
sically directed because of the monodirectional nature of axonal 
projections. Thus, directional encoding can critically add key in-
formation to the topological organization of brain networks (13), 
revealing organizational motifs that can be predictive of the infor-
mation flow and hierarchical organization of the mammalian brain. 
To probe how the direction of structural connections affects net-
work attributes, we parsed high connectivity strength regions based 
on their directional profile, resulting in the identification of a set 
of segregable nodes that we termed source and sink, characterized 
by high-strength outgoing or incoming connections, respectively 
(Fig. 2A).

Source node distribution broadly recapitulated the location of 
global hubs, encompassing higher-order areas such as the anterior 
cingulate and posterior parietal cortices, amygdala, and dorsal hip-
pocampus, together with posterior entorhinal areas (Fig. 2B). Map-
ping of sink nodes revealed the involvement of dorsal hippocampal 
areas along with an additional set of substrates, which comprised the 
basal ganglia throughout their antero-posterior extent (Fig.  2C). 
Participation of nuclei within the substantia nigra was also ap-
parent. These results show that high connection strength regions can 
be segregated on the basis of their directional profile and point at 
an organizational hierarchy in which higher-order areas, such as 
the prefrontal cortex, serve as primary sources of neural output to 
the rest of the brain, while basal ganglia are pivotal recipients of in-
coming projections. In keeping with what we observed with hub and 
rich-club regions, the identified sink and source voxel clusters 
showed prominent subregional distribution with respect to pre-
existing anatomical subdivision (fig. S1) and a remarkably different 
spatial organization when computed using an anatomical parcella-
tion (fig. S2), corroborating the specificity of our fine-grained map-
ping with respect to canonical parcellation-based approaches.

The observation of segregable sink and source high-connection 
strength areas prompted us to investigate whether such a hierarchy 
could be expanded to nonhub areas (i.e., to all brain regions, inde-
pendent of their connection strength), by computing the voxel-wise 
ratio between outgoing and incoming connection strength, a metric 
that we term “out/in ratio” (14). This analysis might allow us to dif-
ferentiate regions characterized by a net connectional imbalance 
from those exhibiting both high input and output density (e.g., dor-
sal hippocampus). The resulting out/in ratio map (Fig. 2D) revealed 
a prominent configuration of basal ganglia as regions characterized 



Coletta et al., Sci. Adv. 2020; 6 : eabb7187     18 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

Fig. 1. Global hubs and rich club of the mouse connectome. (A) Anatomical distribution of global hubs of the voxel-wise mouse connectome. Global hubs (yellow 
nodes on the left panel) were defined on the basis of nodal total strength. A frequency map was obtained by computing the fraction of times a node scored among the 
highest-ranking strength nodes, limiting the visualization to the nodes that were classified as hubs at least 90% of the time. (B) Anatomical distribution of the rich club 
(red nodes on the left panel) of the voxel-wise mouse connectome. The frequency map indicates fraction of times high-degree nodes were retained as significant with 
respect to a set of random networks. ACA, anterior cingulate area; ACAd, anterior cingulate area, dorsal part; AI, agranular insular area; Amy, Amygdala; dHP, dorsal hip-
pocampal area; ENT, entorhinal area; GP, globus pallidus; IL, infralimbic area; MOs, secondary motor area; PL, prelimbic area; PPC, posterior parietal cortex; RE, nucleus 
reuniens; RSP, retrosplenial area; TEa, temporal association areas.

Fig. 2. Source and sink hubs of the mouse connectome are spatially segregable. (A) Network schematic illustrating our topological classification of high strength 
regions into neural sources (red) and sinks (light blue). Source (B) and sink (C) hubs were defined on the basis of the voxel-wise strength of outgoing and incoming 
connectivity, respectively. Frequency maps were obtained by computing the fraction of times a node scored among the highest-ranking strength nodes, limiting the 
visualization to the nodes that were classified as hubs at least 90% of the time. (D) Out/in ratio mapping. For each node, we computed the ratio between the strength of 
the outgoing and incoming connectivity. Frequency maps were obtained by computing the fraction of times a node scored among the highest (red/yellow) or lowest 
ranking (light blue/blue) nodes as in (C) and (D). ACA, anterior cingulate area; Amy, Amygdala; CEREB, cerebellum; dHP, dorsal hippocampal area; ENT, entorhinal area; 
HP, hippocampus; MOp, primary motor areas; MOs, secondary motor area; PPC, posterior parietal cortex; RSP, retrosplenial area; SN, substantia nigra; SSp, primary 
somatosensory area; STR, striatum.
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by a low ratio of outgoing/incoming connections, corroborating a 
configuration of these substrates as connectivity sinks. Conversely, 
foci exhibiting a high out/in connection ratio were identifiable in 
higher-order cortical areas, such as the anterior cingulate and ento-
rhinal cortices, but also prominently encompassed some nonhub 
substrates, such as the cerebellum, and primary motor–sensory re-
gions. Together, these results show that the directed connectome is 
topologically rich and configured according to a global hierarchy 
that can be used to segregate regions in primary sources or receivers 
of axonal connections. Furthermore, they provide a fine-grained 
description of hub-like topography that may guide further targeted 
manipulations of salient network attributes in this species.

Structural communities of the voxel-wise connectome 
recapitulate large-scale fMRI networks of the mouse brain
The presence of distinct subnetworks or “communities” of tightly 
interlinked nodes is a hallmark of all mammalian connectomes 
mapped to date (15). Structural communities are composed of to-
pologically related neural elements reflecting regularities in wiring 
diagram, typically delineating groups of brain areas with shared 
functionality (16). Previous investigations of the community struc-
ture of the mouse connectome have been either anatomically biased 
by the use of meta-regions (5) or limited to the sole cortical mantle 
(7), preventing a fine-grained description of the community struc-
ture of the entire mouse connectome. To identify stable brain-wide 
communities in the directed connectome with voxel resolution, we 
used a multiscale modular decomposition approach (fig. S4) (5). 
This approach revealed five prominent communities, encompassing 
different combinations of cortical and subcortical regions (Fig. 3). 
Corroborating the robust structural foundations of resting-state 
functional magnetic resonance imaging (rsfMRI) network architec-
ture (17, 18), the identified structural communities exhibited a spa-
tial distribution closely recapitulating previously described rsfMRI 
connectivity communities of the mouse brain (19, 20). The first of 
these communities comprised transmodal cortico-limbic areas as 
well as the dorsal striatum and antero-medial thalamus, spatially 
reconstituting key components of the mouse default-mode network 
[DMN; (21)]. A second community encompassed latero-cortical 
motor-sensory areas as well as striatal and thalamic nuclei, which 
have been previously characterized as component of the mouse 
latero-cortical network (LCN). This network is considered to be a 
possible evolutionarily precursor of the human “task-positive” net-
work, as it appears to be tightly anticorrelated to DMN activity (20). 
A third module encompassed septo-hippocampal areas, while the 
fourth comprised olfactory areas and basal forebrain regions, once 
again recapitulating corresponding rsfMRI functional communities 
(19). Notably, anatomically similar structural connectivity (SC) 
partitions were also obtained using an agglomerative hierarchical 
clustering procedure (Dice coefficients of 0.7, 0.8, 0.9, and 0.9 for 
the DMN, LCN, hippocampal system, and olfactory/basal forebrain 
moduli, respectively), corroborating the validity of the nodal parti-
tioning reported here. By contrast, community detection in the par-
cellated connectome revealed three macromodules (fig. S2) whose 
spatial topography was not directly relatable to corresponding 
rsfMRI communities, underscoring a closer structural-functional 
correspondence of the voxel-wise connectome with respect to par-
cellated connectome.

The close topographical overlap between voxel-wise structural 
communities and corresponding rsfMRI functional networks 

prompted us to probe the relationship between SC and functional 
connectivity (FC) at the level of individual co-registered voxels. To 
this purpose, we carried out a correlation analysis between SC and 
FC for the DMN, LCN, and hippocampal networks—three well-
characterized distributed mouse rsfMRI networks (22) for which 
we identified unambiguous structural correlates. In keeping with 
recent investigations in primates (23), we found that voxel-wise 
correlation between FC and SC was nonlinear, reflecting con-
nection length–dependent contributions (fig. S5). Specifically, 
functional-structural correlation was moderate to high (Spearman’s 
rho = 0.35, 0.45, and 0.34 for DMN, LCN, and the hippocampal 
network, respectively) for relatively short connections (<1 mm; e.g., 
the scale of mouse cortical width), but lower for longer-range links 
(>2 mm, Spearman’s rho = 0.26, 0.38, and 0.17 for DMN, LCN, and 
hippocampal network, respectively). Consistent with the neural 
mass nature of rsfMRI fluctuations, the correlation between FC and 
SC was robustly linear when both quantities were resampled at a 
lower spatial resolution using an anatomical parcellation (Pearson’s 
r = 0.59, 0.55, and 0.54, P < 0.0001, for the DMN, LCN, and hippo-
campal network, respectively). Together, these findings underscore 
the robust structural foundations of functional network activity as 
inferred from rsfMRI and suggest that spontaneous fMRI signal 
fluctuations underscoring macroscale rsfMRI coupling reflect the 
pooled activity of large ensembles of neurons, exceeding the finer 
spatial scale of the voxel-wise mouse connectome (24–26).

Ascending modulatory nuclei are configured as  
between-network connector hubs
The observation of tightly overlapping structural and functional 
communities prompted us to investigate the topological structure 
and anatomical location of network nodes configured as connector 
hubs. These are nodal components critically configured as key or-
chestrators of intermodular communication, enabling the dynamic 
interaction of lower- and higher-order networks to control complex 
behavioral and cognitive functions (27).

We first located connector hubs irrespective of the directionality 
of the connections and termed the identified connector nodes global 
connectors (Fig. 3C). We found global connector hubs to be mainly 
localized in midbrain, hypothalamic, and medio-dorsal thalamic 
regions, with only a marginal cortical involvement limited to orbi-
tofrontal and temporal association areas. Midbrain connector hubs 
focally encompassed three major sets of ascending neuromodulatory 
nuclei, namely, the VTA and substantia nigra (dopamine), dorsal 
raphe nuclei (serotonin), and a set of voxels encircling the locus 
coeruleus (norepinephrine). Accounting for the directionality of 
the connections revealed evidence of a negligible topological segre-
gation for most of the identified connector nodes (Fig. 3C). As 
observed with other hub subtypes, most connector hub nodes ex-
hibited a significant subregional distribution with respect to a pre-
defined high-resolution anatomical parcellation (fig. S1B). Moreover, 
anatomical mapping of connector hubs using a parcellated connec-
tome failed to reveal the involvement of key neurotransmitter nu-
clei (e.g., VTA, raphe areas, and locus coeruleus), hence concealing 
a key topological attribute of the mouse connectome. Collectively, 
these results reveal that ascending modulatory systems are strategi-
cally wired as connector regions. The robust topographical corre-
spondence between functional and structural modules supports a 
role for the identified connector hubs as strategic orchestrators of 
brain-wide network activity (28), a notion consistent with emerging 
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evidence pointing at a pivotal contribution of catecholaminergic 
neurotransmission in modulating functional network activity and 
dynamics (29, 30).

Connector hubs are critical mediators of network 
communicability
Graph theory postulates a critical contribution of hub regions to 
network integrity and stability, a notion supported by computational 
modeling of the human brain connectome (31). These properties 
support a theoretical framework in which hub regions serve as pu-
tative points of vulnerability for network disruption in the mamma-
lian connectome (2). To test whether these assumptions hold for the 
voxel-wise mouse connectome, we performed a series of targeted in 
silico nodal attacks and assessed how these virtual lesions affect the 
ensuing network properties (Fig. 4). The effect of hub (or random 
node) removal was assessed using two well-characterized global 
network attributes: (i) the size of the giant component, i.e., the larg-
est subgraph in the network, a proxy for the network’s integrity 
(31), and (ii) global network efficiency, a measure of the ability of a 
network to efficiently route information (32). This latter attribute is 

a measure of integration closely related to characteristic path length, 
based on the intuition that short path lengths in a network will fa-
cilitate rapid and efficient communication. A globally efficient net-
work is therefore a network in which information can be efficiently 
routed in a cost-effective way. Targeted removal of sources and 
out-connector hub nodes did not produce appreciably larger net-
work fragmentation than observed with random nodal attacks 
(Fig. 4). Similarly, the removal of central nodes had an overall mar-
ginal impact in decreasing network efficiency, producing a frag-
mentation that was, on average, only ~1.5% greater than random 
node removal (P < 0.01; Fig. 4). These results are in line with previous 
observations suggesting that, independent of its sampling resolu-
tion (fig. S6A), the topological structure of the mouse connectome 
does not recapitulate a canonical scale-free organization (6, 33). 
They also support the notion that, irrespective of their classification 
and directionality, hub nodes of the voxel-wise connectome are not 
critical for the integrity and efficiency of brain network, making the 
mouse connectome highly resilient to targeted perturbations.

We therefore next probed whether hub regions could be key to 
a different communication mechanism other than the routing of 

Fig. 3. Connector hubs encompass key ascending neuromodulatory nuclei. (A) Network schematic illustrating a graph-based definition of communities and connector hubs. 
(B) Structural communities anatomically recapitulate functional (rsfMRI) networks of the mouse brain. Structural communities (SC; top row; see Materials and Methods) were 
matched to corresponding functional communities [FC; bottom row; Liska et al. (19)]. (C) Neuromodulatory nuclei are configured as connector hubs. Global (left), out-connector 
(middle), and in-connector (right) hubs were computed on the basis of the participation coefficient metric, accounting for outgoing or incoming connections only. ACA, anterior 
cingulate area; Acb, nucleus accumbens; AI, agranular insular area; Amy, amygdala; CS, superior central nucleus raphe; DRN, dorsal nucleus raphe; ENT, entorhinal area; 
HP, hippocampus; Ha, habenula; Hy, hypothalamus; LC, locus coeruleus; LHb, lateral habenula; MD, mediodorsal nucleus of the thalamus; MOp, primary motor areas; MOs, 
secondary motor area; OLF, olfactory areas; ORB, orbital areas; PG, pontine gray; PIR, piriform area; RE, nucleus reuniens; RSP, retrosplenial area; SEP, septal complex; STRd, stri-
atum dorsal region; STRv, striatum ventral region; TEa, temporal association areas; vHP, ventral hippocampal area; VIS, visual areas; VTA, ventral tegmental area; ZI, zona incerta.
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information through shortest paths (i.e., as measured by network 
efficiency). To this purpose, we measured the effect of virtual hub 
lesioning using total network communicability (34, 35). This graph 
attribute measures the network’s capacity for parallel information 
transfer, i.e., by taking into account the ability of information to 
disperse equally across all paths and walks in the network, i.e., not 
necessarily and exclusively through the shortest paths. This prop-
erty has therefore been equated to a measure of “bandwidth” or 
“broadcasting capacity” (34) for information transfer within a net-
work. Notably, we found that removal of connector hubs markedly 
reduced network communicability with respect to random node 
deletion (P < 0.001; Fig. 4). A replication of virtual lesioning using 
a state-of-the-art parcellation (6) produced similar results (fig. 
S6B), suggesting that the resiliency of the mouse connectome in 
terms of network integrity and efficiency, as well as its vulnerabili-
ty in terms of network communicability, are resolution-invariant 
properties. Together, these findings suggest that connector hubs, 
and the neurotransmitter nuclei therein contained, besides acting 
as pivotal orchestrators or intermodular communication, are also 
configured as key effectors of network communicability, enabling 
effective routing of information across regions via multiple parallel 
pathways.

The voxel-wise mouse connectome is organized along two 
superimposed cortical gradients
Recent functional and structural investigations in humans and pri-
mates have shown that the spatial arrangement of cortical con-
nectivity reflects two superimposed gradients along which cortical 
locations are ordered according to their similarity in connections to 
the rest of the cortex (18). A first dominant cortical gradient is an-
chored in sensorimotor regions and radiates toward higher-order 
transmodal areas; a second gradient exhibits instead an axis of dif-
ferentiation between sensorimotor modalities (18). The organi-
zation of the unimodal-transmodal gradient is thought to define a 
hierarchy of increasing functional integration that guides the prop-
agation of sensory inputs along multiple cortical relays into trans-
modal regions (36).

The fine-grained sampling of the voxel-wise connectome is ide-
ally suited to probe the structural foundations of these organiza-
tional axes at an unprecedented spatial resolution. To this aim, we 
first probed whether a similar organization is phylogenetically con-
served in rodents. We therefore applied diffusion map embedding 
(37) to the directed cortical connectome (Fig. 5). To account for the 
directional encoding of the connectome, the procedure was applied 
to a matrix mapping the connectional profile of each node, i.e., in-
corporating the information provided by both incoming and outgo-
ing connections. Notably, we found that the structural connectome 
exhibits two spatial gradients of connectivity broadly recapitulating 
organizational principles observed in primates. Specifically, a dom-
inant gradient (gradient A) involved a sensory-fugal transition be-
tween unimodal motor–sensory regions of the mouse LCN and 
transmodal components of the mouse DMN (Fig. 5A). A second 
gradient (gradient B) extended across unimodal visual and auditory 
cortices up to primary motor–sensory regions, hence providing a 
regional differentiation between sensorimotor modalities. The spa-
tial topography of cortical gradients appeared to be seemingly pre-
served when computed using a state-of-the-art parcellation (fig. S2G). 
However, resolution-dependent discrepancies in the topology of 
gradient B were apparent when a parcellation scheme was used, en-
compassing an atypical involvement of associative areas that departs 
from the modality-specific structure of analogous cortical gradients 
in higher mammals (fig. S2).

Gradients of SC and FC in the mouse cortex exhibit 
comparable topology
The close topographical overlap between structural and functional 
communities observed in our modular analyses prompted us to probe 
the presence of a similarly tight relationship between anatomical 
and rsfMRI gradient organization in the mouse brain (Fig. 5B). To 
this aim, we mapped cortical gradients with voxel resolution in the 
mouse functional connectome. This analysis revealed that the func-
tional connectome is organized into a unimodal-transmodal gradient 
(DMN-LCN, gradient A) and a modality-specific gradient (gradient 
B, Fig. 5B) closely recapitulating key topographical features of the 

Fig. 4. Connector hubs are critical effectors of network communicability. (A) Schematic illustration of targeted node removal and its effect on network integrity. (B to 
D) Effect of targeted hub removal on different network properties.
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structural voxel-wise connectome (spatial correlation, Spearman’s 
rho = 0.83, P < 0.01 for gradient A and rho = 0.60, P < 0.05 for 
gradient B, corrected for spatial autocorrelation). An anatomical 
classification of the regional constituents of the identified gradients 
revealed that the topographical organization of trans-modal and 
unimodal areas was broadly comparable across modalities (Fig. 5, 
C and D), although a small rearrangement in the spatial organiza-
tion of modality-specific areas in functional gradient B was apparent, 
peaking in auditory-somatosensory regions as opposed to auditory-
visual areas (fig. S7B). Notwithstanding these modality-specific dif-
ferences, unimodal versus polymodal cortical arrangement in the 
functional and axonal connectomes appeared to be largely similar, 
pointing at a common hierarchical organization for the functional 
and structural mouse connectome. Together, these results reveal a 
robust structural foundation for cortical gradient organization in 
the mammalian cortex and show that the mouse brain connectome 
recapitulates phylogenetically conserved architectural principles 
observed in higher mammalian species.

Gradients of SC reflect cortico-cortical laminar hierarchy 
and constrain fMRI network dynamics
Human studies have linked the organization of cortical gradients to 
hierarchical structure inferred from patterns of laminar cortical 
connectivity (38). The recent description of a feedforward-feedback 
laminar hierarchy in cortical regions of the mouse brain (7) allowed 
us to probe whether a similar organizational principle could explain 
the architectural organization of some of the gradients identified in 
the connectome. By computing the correlation between laminar 
hierarchy from (7) and structural gradient topography in a set of 
corresponding cortical regions, we found that the regional organi-
zation of the modality-specific gradient (gradient B) was robustly 
correlated with intracortical laminar hierarchy (Fig. 6A; Spearman’s 
rho = 0.49, P < 0.01 corrected for spatial autocorrelation), hence 
linking mouse cortical gradient (B) organization to patterns of lam-
inar connectivity. Intralaminar cortical hierarchy was instead not 
predictive of unimodal-polymodal gradient (gradient A) topogra-
phy (Fig. 6A; Spearman’s rho = 0.17, P = 0.33, corrected for spatial 
autocorrelation).

We finally noted that the anatomical organization of the unimodal-
polymodal gradient A was anatomically consistent with the topog-
raphy of dominant patterns of blood oxygen level–dependent (BOLD) 
fMRI coactivation [coactivation patterns (CAPs)] recently described 
in the mouse (24). CAPs serve as recurring “building blocks” of 
spontaneous fMRI network dynamics and are characterized by a 
distinct anatomical topography involving infraslow oscillatory tran-
sitions differentially affecting unimodal latero-cortical areas and 
midline polymodal regions (24, 39). The observation of a possible 
anatomical overlap between cortical gradient organization and 
dominant CAP topography may therefore explain the so far un-
accounted specific anatomical organization of these large-scale dy-
namic fluctuations (24). In keeping with this notion, we found a 
strong spatial correspondence (Fig. 6B; Spearman’s rho = 0.60 and 
P < 0.05, corrected for spatial autocorrelation) between gradient A 
and dominant CAP topography. Conversely, the modal-specific 
gradient B did not show a significant relationship with the spatio-
temporal structure of this dominant CAP (Fig. 6B, right panel; 
Spearman’s rho = 0.09 and P = 0.35, corrected for spatial auto-
correlation). These results suggest that the hierarchical organiza-
tion of the cortical connectome may critically shape and constrain 
spontaneous patterns of fMRI network dynamics.

DISCUSSION
Here, we provide a fine-grained description of salient architectural 
motifs of the mouse connectome, without the imposed limits of dis-
crete regional parcellations. Departing from regional-constrained 
studies, we find that hub regions and core network components of 
the voxel-wise mouse connectome exhibit a rich topography en-
compassing key cortical and subcortical relay regions. We also typ-
ify regional substrates based on their directional topology into sink 
or source regions and report a previously unappreciated role of 
modulatory nuclei as critical effectors of intermodular and network 
communicability. Last, we demonstrate a close spatial correspon-
dence between the mesoscale topography of the mouse connectome 
and its functional macroscale organization and show that, like in 
primates and humans, the mouse cortical connectome is organized 

Fig. 5. Gradients of SC and FC in the mouse cortex exhibit comparable topology. Structural (A) and functional (B) gradients of cortical organization in the mouse connec-
tome. Gradient A encompasses a unimodal-polymodal spectrum of cortical regions extending from motor-sensory LCN (light blue/blue) to the DMN (yellow/red). Gradient B 
extends antero-posteriorly across primary sensorimotor (yellow) and transmodal associative regions (blue). (C and D) Regional scatter plots of gradient organization for SC (C) 
and FC (D). ACA, anterior cingulate area; Au, auditory area; DMN, default mode network; LCN, latero-cortical network; SSp, primary somatosensory area; Vis, Visual areas.
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along two major topographical axes that can be linked to hierar-
chical patterns of laminar connectivity and shape the topography of 
fMRI dynamic states, respectively.

Our regionally unconstrained mapping of hub-like regions com-
plements and expands previous investigation of the mouse connec-
tome, providing a spatially precise identification of network features 
and hierarchical motifs that may guide future manipulations of 
nodal properties in this species (5). These include a fine-grained lo-
calization of hub-like properties in subregional components of large 
integrative areas, such as the dorso-lateral hippocampus or the cen-
tral and basolateral amygdala, which were previously been con-
sidered as regionally homogeneous (5). Similarly, our rich-club 
mapping revealed a more detailed spatial topography than previ-
ously reported (8), revealing two major organizational axes of high 
relevance for sensory integration and higher cognitive functions, and 
which recapitulate organizational features observed also in non-
mammalian species (40). Notably, perturbational studies support the 
biological relevance of our findings, as chemogenetic inactivation of 
the nucleus reuniens of the thalamus—a pivotal component of the 
mouse rich club—has been recently shown to impair hippocampal-
dependent cognitive function in mice (41). These results suggest 
that subcortical relay stations are core components of nodal rich 
clubs across evolution, serving as critical integrators between top-
down and bottom-up functional processing. Our analyses also show 
that hub-like network attributes in the voxel-wise mouse connec-
tome are neuroanatomically segregable. This finding suggests that 
the network structure of the mammalian connectome is the result 
of converging evolutionary pressure, resulting in a regional organi-
zation in which spatially distinct hub-like regions delineate a hierar-
chy between higher-order highly interconnected associative regions 

and bottom-up input from neuromodulatory areas configured as 
critical effectors of interregional communication.

Our results also revealed previously unappreciated organiza-
tional features of the mouse connectome that advance our under-
standing of the fundamental wiring principles of the mammalian 
brain in three main directions. First, the use of a high-resolution 
and directed connectome enabled us to segregate hub regions into 
source and sink areas. The ensuing classification revealed the emer-
gence of a global hierarchy in which higher-order cortical areas and 
hippocampal regions serve as primary sources of neural input to the 
rest of the brain, and basal ganglia (plus focal mesencephalic nuclei) 
are wired as major receivers of distributed neural input. This hierar-
chical configuration follows a phylogenetic gradient in the arrange-
ment of SC and is optimally designed for the execution of rapid 
motor responses in response to salient external stimuli (42). Such a 
hierarchical configuration could also be expanded to nonhub regions 
via a brain-wide computation of the ratio of outgoing and incoming 
connectivity strength, defining a related organizational axis with 
motor-related nuclei, such as the cerebellum and basal ganglia, 
being located at its extremes. Notably, most of the network and to-
pological attributes we describe in the present work appear to be 
resolution specific (fig. S2), suggesting that previous topological 
mapping of the mouse connectome may have been biased by the 
coarser resolution of existing regional parcellations.

A second notable feature is our observation of a strategic config-
uration of ascending modulatory systems as connector hubs and 
essential effectors of network communicability. Previous investiga-
tions of the regionally segregated mouse connectome have produced 
a largely cortico-centric description of connector hubs, involving 
cingulate, orbitofrontal, and posterior association cortices, together 

Fig. 6. Gradients of SC reflect cortico-cortical laminar hierarchy and constrain fMRI network dynamics. (A) Modality-specific gradient B (right), but not polymodal-
unimodal gradient A (left), reflects hierarchical intra-laminar organization of the mouse cortex. (B) Unimodal-polymodal DMN-LCN gradient A, but not modality-specific 
gradient B, closely recapitulates the spatial topography of dominant cortical CAPs governing fMRI dynamics in the mouse. ACA, anterior cingulate area; RSP, retrosplenial 
area; SSp, primary somatosensory area; Vis, Visual areas.
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with the basal ganglia and regionally undifferentiated midbrain re-
gions (5). Our results shift the focus from the cortex to subcortical 
relay stations and document that ascending neurotransmitter systems 
are central to the mouse connectome and are configured as inter-
modular connector hubs. The observed spatial correspondences 
between the structural and functional topography of the mouse 
connectome argue for a critical role for these neuromodulatory 
nuclei in shaping large-scale neural activity. This notion is consistent 
with the observation that catecholaminergic and serotonergic activ-
ities critically control functional network topography and dynamics 
(29, 43). Together with the observation that connector hub removal 
critically diminishes network communicability, these results sug-
gest that the ascending modulatory systems are strategically wired 
as central orchestrators of large-scale intermodular communica-
tion, enabling the parallel routing of large chunks of information 
across the network. This network property might be key in ensuring 
the effective and finely tuned control of complex behavioral and 
physiological states exerted by these systems. At the same time, 
these properties might render these nodes key points of vulnerabil-
ity for functional network disruption in brain disorder, a notion 
consistent with emerging evidence linking neuromodulatory dys-
function to neurodegenerative pathologies (44). Targeted removal 
of global hubs did only negligibly affect measurements of network 
integrity and efficiency when compared to random node deletion. 
This finding suggests that the mammalian connectome is structur-
ally highly resilient and argues against a role for this class of hub 
regions as critical mediators of network integrity in the mouse con-
nectome. This result is partly supported by analogous investigations 
of the human connectome. For example, Crossley et al. (45) reported 
a linear decrease in global efficiency in a targeted attack for human 
structural networks, analogously to what we observed for the mouse 
connectome. Similarly, Alstott et al. (46) found functional network 
fragmentation to occur only when about 75% of the high strength 
nodes were removed. It should, however, be noted that other re-
ports seem to be at odds with these results, suggesting a significant 
vulnerability of the human connectome against targeted attacks in 
human networks [see (31) for a recent overview on the topic]. 
Whether these discrepancies reflect modality- and resolution-related 
discrepancies, or a lower proportion of long-range integrative fibers 
in rodents owing to evolutionary scaling of white/gray matter ratio 
(47), remains to be established.

Last, our voxel-wise description of two principal axes of cortical 
organization in the mouse connectome, and their topological link-
ing with cortico-laminar organization and patterns of spontaneous 
fMRI dynamics, establishes a direct link between the mesoscale to-
pography of the mouse connectome and its functional macroscale 
organization. These results suggest that the spatial arrangement of 
cortical areas along unimodal-polymodal and modality-specific gra-
dients represents a general evolutionarily conserved principle gov-
erning the hierarchical organization of the mammalian cortex across 
evolution, and one that might intimately constrain the emergence 
and topology of spontaneous brain activity. This notion is consist
ent with a recent description of a cortical hierarchy in the parcellated 
mouse brain, as assessed by using an imaging marker of intracorti-
cal myelin content (48). Our findings expand these previous obser-
vations by providing cross-modal and voxel-wise evidence of two 
superimposing functional and structural cortical gradients broadly 
recapitulating organizational principles observed in the human and 
primate brain. These include a hierarchical organization reflecting a 

well-characterized feedforward-feedback laminar hierarchy (7) and 
a spectrum between unimodal regions and transmodal areas. It should 
be noted, however, that in the mouse the latter are known to exhibit 
a much lower degree of regional specialization than in primates, an 
observation that explains a categorization of latero-posterior visual 
and auditory territories as polymodal components of the posterior 
parietal cortex (49, 50). Our results also revealed that a dominant 
cortical gradient spatially shapes the emergence of prevailing pat-
terns of cortical coactivation governing spontaneous fMRI dynamics, 
further relating the topography of the connectome with the struc-
ture and temporal evolution of spontaneous cortical activity (24). 
The notion of a tight constraining effect of the structural connec-
tome on functional network topography was further corroborated 
by evidence of largely overlapping functional and structural com-
munities. This finding expands previous investigations of the mouse 
functional connectome (51, 52), by highlighting a robust structural 
basis for distributed fMRI networks of the mouse brain such as the 
DMN and LCN. Such a close spatial overlap, however, does not ap-
pear to comprise hub topography, as previous voxel-wise mapping 
of functional hubs in the mouse only partly recapitulated the rich 
connectional features reported here (19). This incongruity might 
reflect the fact that the spontaneous fMRI signal is a neural mass 
phenomenon, reflecting local and remote contributions that are 
negligibly constrained by more fine-grained topological features of 
the structural connectome.

Multiple lines of future research that expand and complement 
our work can be envisaged. Rich-club mapping was carried out here 
and in previous studies (8) on the ipsilateral connectome to enable 
computational tractability. Further testing of rich-club topography 
using a whole-brain connectome may be warranted to corroborate 
the validity of these findings. Similarly, future network investiga-
tions using the full-resolution, nonsymmetrized connectome from 
(9) may complement our work by revealing attributes especially 
sensitive to the microscale properties of the mouse connectome. 
Last, future differentiations of the excitatory or inhibitory connec-
tional output for each of the mapped network features via cell type–
specific tracing could greatly expand the scope of our findings, 
especially for cerebellar and striatal areas characterized by high 
density of inhibitory populations.

In summary, here, we provide a precise characterization of the 
network structure of the mouse connectome, with voxel resolu-
tion. Our results reveal a high-resolution structural scaffold linking 
mesoscale connectome topography to its macroscale functional or-
ganization and create opportunities for identifying targets of inter-
ventions to modulate brain function and its network structure in a 
physiologically accessible species.

MATERIALS AND METHODS
Construction of the structural connectome
Our work leverages a high-resolution models of the mouse brain 
connectome (100 m3) previously released by Knox and colleagues 
(9). The Knox connectome is based on 428 viral microinjection ex-
periments in C57BL/6J male mice obtained from the Allen Mouse 
Brain Connectivity Atlas (http://connectivity.brain-map.org/). The 
connectome data were derived from imaging enhanced green fluo-
rescent protein (eGFP)–labeled axonal projections that were then 
registered to the Allen Mouse Brain Atlas and aggregated according to a 
voxel-wise interpolation model (9). All the additional computational 

http://connectivity.brain-map.org/
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steps detailed below were implemented to make this resource com-
putationally tractable and suited to the topological analyses we de-
scribed in our manuscript. Before constructing the SC matrix, we 
ensured symmetry along the right-left axis for all the major macro-
structures of the mouse brain. This step was required because the 
computation of most graph-based metrics requires the use of a 
square connectivity matrix as input. To this purpose, we flipped each 
macrostructure (isocortex, hippocampal formation, subcortical plate, 
pallidum, striatum, pons, medulla, midbrain, thalamus, hypothal-
amus, cerebellum, and olfactory bulb) along the sagittal midline 
(once for the right hemisphere and once for the left hemisphere) 
and we took the intersection with the respective nonflipped macro-
structure This procedure resulted in the removal of a set of nonsym-
metric voxel (total fraction, 8.6%), the vast majority of which reside 
in fringe white/gray matter or cerebrospinal fluid/gray matter inter-
faces. The removal of these nonsymmetric voxels did not substan-
tially affect the network structure of the resampled connectome, 
as assessed with a spatial correlation analysis between the symme-
trized and nonsymmetrized right ipsilateral (i.e., squared) connectome 
(spatial correlation, Spearman’s rho = 0.98, 0.93, and 0.97 for global, 
incoming, and outgoing connectivity strength, respectively). We then 
filtered out fiber tracts and ventricular spaces, and estimated SC us-
ing a resampled version of the recently published voxel scale model of 
the mouse structural connectome (9), to make the original matrix com-
putationally tractable. Resampling of the Knox et al. connectome was 
carried out by aggregating neighboring voxels according to a Voronoi 
diagram based on Euclidean distance between neighboring voxels 
(fig. S8). Voronoi-based resampling allowed us to spatially weight 
voxels with respect to neighboring areas, preserving the intrinsic ar-
chitectural foundation of the connectome (9). Moreover, this procedure 
allowed us to minimize spatial blurring and boundary effects be-
tween ontogenically distinct neuroanatomical divisions of the mouse 
brain, or white/gray matter, and parenchymal/ventricular interfaces. 
Last, by averaging the connectivity profile of neighboring voxels based 
on their relative spatial arrangement, this strategy has also the ad-
vantage of mitigating limitations related to the enforced smoothness 
of source space used by the original kernel interpolation used by (9).

The used Voronoi-based aggregation strategy entails the identi-
fication, for each voxel of the mouse connectome, of its 27 closest 
neighbors as per Euclidean distance, and the subsequent averaging 
of their connectivity profiles into a single value. We also made sure 
not to include the same 27 voxels in the computation of a new down-
sampled voxel, to avoid spatial redundancy and oversampling. As a 
trade-off between spatial resolution and computational tractability, 
we decided to reduce spatial resolution by a factor of 3, therefore 
aggregating the connectivity profile of 27 voxels into a single one. 
To keep the estimation of SC consistent with the procedure of (9) 
and minimize mixing or cross-regional anatomical features, a 
Voronoi diagram was computed for each of the 12 same major brain 
divisions of the Allen Institute atlas separately and for one hemi-
sphere only, flipping the resulting diagram across the sagittal mid-
line to ensure Voronoi grid symmetry across the two hemispheres. 
Given that connectome resampling was carried out on the original 
100-m resolution connectome from (9), the resulting averaged 
Voronoi voxels are characterized by a total volume of 0.027 mm3 
but are not necessarily isotropic or regular. The average spatial ex-
tension of the obtained Voronoi voxels in each plane corresponds 
to 242 m × 323 m × 336 m in the x (sagittal), y (horizontal), and 
z (coronal) planes, respectively.

To probe whether the used Voronoi resampling procedure (and 
the resulting anisotropic Voronoi voxels) would affect the connec-
tional and spatial properties of the mouse connectome, we computed, 
for each Voronoi voxel, the average spatial correlation between the 
connectivity profile of each of its 27 original constituting 100-m3 
voxels across 12 macrostructures. This computation yielded an 
average Spearman rho correlation of 0.98, 0.96, 0.99, 0.99, 0.99, 
0.99, 0.99, 0.998, 0.97, 0.98, 0.98, and 0.99 for the cerebellum, sub-
cortical plate, hippocampal formation, isocortex, medulla, midbrain, 
olfactory areas, pallidum, pons, striatum, and thalamus, respec-
tively, corroborating the specificity of the used resampling strategy 
and suggesting that the resampled connectome offers a reliable 
fine-grained representation of the most salient connectional features 
of the original Knox et al. connectome.

A whole-brain connectome was then built under the assumption 
of brain symmetry (5). Forty-four dangling nodes (i.e., nodes with 
no outgoing connectivity) were next removed from the resulting 
matrix, resulting in a final weighted and directed 15,314 × 15,314 
matrix composed of 0.027-mm3 aggregate Voronoi voxels. The ob-
tained Voronoi diagram allowed us to map the results back into the 
original 100-m three-dimensional coordinate system of the Allen 
Institute mouse brain connectome [CCFv3 (53)].

Both the original voxel-wise connectome from (9) and our re
sampled version were almost 100% dense, raising the issue of how to 
account for and remove weak or irrelevant connections. To address 
this problem, we used a recently developed method based on graph 
percolation (54). Briefly, this procedure consists of iteratively re-
moving the weakest connections until the giant component of the 
graph starts breaking apart. The threshold that maximizes sparsity 
without breaking the giant component (i.e., the largest integral 
graph within the matrix) is the one that should be selected for 
the analysis. Bordier et al. (54) showed that the threshold ob-
tained through percolation analysis maximizes information on the 
network community structure. This sparsification procedure re-
sulted in a network density of 22%. A comparison of multiple topo-
logical attributes and metrics (i.e., global, sink, source hubs, in/out 
ratio, modules, and gradients) at different thresholds (percolation 
threshold, 30 and 40%, respectively) revealed that all the probed pa-
rameters are highly robust to thresholding (Dice coefficient > 0.97 
for all modules and hubs at all thresholds; Spearman rank cor-
relation of >0.99 for out/in ratio and >0.97 for all gradients, at all 
thresholds).

Regional quantifications of network properties and correlations 
between structural and functional attributes were carried out using 
three main sets of predefined anatomical parcellations of the mouse 
connectome. To quantify the subregional localization of network 
attributes (fig. S1), we used one of the finest parcellation available of 
the mouse connectome [i.e., the lowest hierarchical level in the 
Allen Mouse Brain Atlas, excluding layer encoding; (53)]. This par-
cellation was volumetrically matched to the sampling dimension of 
our voxels by discarding small nuclei whose spatial extension was—
for either hemisphere—lower than the resolution of our voxel-wise 
connectome (45 of 323 regions; table S1). Regional quantifications 
of subregional localizations were then limited to the remaining set 
of 278 areas. Correlation between FC and SC was carried out on a 
set of meta-regions to reduce spatial resolution and maximize the 
contrast with corresponding correlations at the voxel level. The list 
of the 89 regions used for these comparisons is reported in table S2. 
Meta-regions were selected to cover the anatomical distribution of 



Coletta et al., Sci. Adv. 2020; 6 : eabb7187     18 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 14

the functional modules described in (19). Regional quantification of 
structural gradient features and cortical hierarchy were carried out 
using the original cortical parcellation described in (7), correspond-
ing to the isocortical subset in table S1. Last, to probe the robust-
ness and resolution dependence of the topological properties 
we described in the present work, we recomputed all the network 
attributes and metrics using the state-of-the-art parcellated mouse 
connectome described in (6) (426 × 426 connectivity matrix).

Hub and rich-club mapping
Normalized out-strength (source), in-strength (sink), and in + out 
strength (global) hub regions of the voxel-wise connectome were 
computed at the percolation threshold. To map the anatomical 
extension of hub-like areas and obtain a “hubness” index for indi-
vidual voxels, for each metric, we first iteratively identified and la-
beled the highest-ranking voxels at increasing percentile threshold 
(50th to 99th). The obtained information was then combined into a 
single frequency (%) map by plotting the number of times a voxel 
was labeled as hub across varying percentile thresholds. We limited 
the visualization to the nodes that were classified as hubs at least 
90% of the time, with the aim to capture top strength nodes and 
produce heatmaps where hotter colors indicate hub-like voxels cor-
responding to highest percentile ranking. This approach ultimately 
led to the final representation of nodes exceeding the 94% strength 
percentile for all hub categories. No correlation between global con-
nectivity strength (total, incoming, outgoing) and injection density 
or distance inferred from Knox et al. was observed (P > 0.6, r < 0.17, 
all six correlation pairs), arguing against a confounding contri-
bution of regional injection inhomogeneity in our subregional hub 
mapping.

The network core or “rich club” of the mouse connectome was 
mapped using with the weighted variant described in (8), limiting 
the analysis to the weighted ipsilateral connectome to ensure the 
computational tractability of the corresponding null models (8). 
Specifically, we first obtained a percolation threshold specific for 
the ipsilateral connectome and we then computed the normalized 
rich-club coefficient, defined as the ratio between the empirical 
rich-club coefficient and the rich-club coefficient obtained from an 
ensemble of 1000 rewired networks where each network maintained 
the empirical in and out degree, together with the total wiring 
length of each node [as assessed by Euclidean distance; (10, 55)]. 
Because of the high computational demands of the rewiring proce-
dure, we left a margin of 5% error on nodal wiring length constraint. 
Instead of testing all possible degree configurations, which usually 
range from 1 to k, with k being the highest degree found in the net-
work, we restricted the mapping between 6720 and 8143, corre-
sponding to the 90th and 99th percentile, respectively, of the total 
degree distribution. This choice was motivated to both reduce the 
influence of low degree nodes, unlikely to represent hubs of the 
network, and to reduce the computational demands associated with 
rich-club mapping with our high-resolution matrix. Statistical 
significance (P < 0.05) was assessed by obtaining a P value di-
rectly from this null distribution. Across all normalized rich-club 
coefficients, we next computed for each node the fraction of times it 
was included in the rich club to produce a frequency map, similarly 
to the procedure described for the definition of source, sinks, and 
global hubs. Given the more restricted percentile range explored 
for the rich club with respect to global hubs, the rich club (Fig. 
1B) was mapped over a wider frequency range (0.2 to 1) than the 

other metrics. We observed that all rich-club coefficients tested 
in the abovementioned range yielded statistically significant results 
(P < 0.001).

Multiscale modular decomposition and  
participation coefficient
We analyzed the network structure of the weighted and directed 
mouse structural connectome using the Louvain algorithm as im-
plemented in the Brain Connectivity Toolbox (32). Similarly to the 
procedure outlined in (5), we systematically varied (from 0.3 to 
3.0 in 0.1 step, 100 repetitions at each step) the resolution param-
eters controlling the size of the modules, performing consensus 
clustering (56) and thus obtaining a representative community sub-
division for each of the tested resolution setting. As in (5), we next 
sought to identify a range of gamma yielding topographically stable 
partitions (fig. S4). To this purpose, we computed adjusted mutual 
information to assess the spatial similarity between the modular 
partitions obtained at different gamma values, producing a  × 
 matrix.

We next computed, for increasing mutual information thresh-
olds (ranging from 0.9 to 1.0 to 0.005 step), a modular partition of 
the corresponding  ×  matrix via a consensus clustering (56). The 
identified modules in these  ×  matrices define a discrete  inter-
val within which modular partitions of the connectome are topo-
graphically comparable. We finally obtained a single agreement 
matrix by computing the binarized fraction of times each pair of 
nodes (i.e., gamma values) would be classified as part of the same 
module, for each modular partition of the thresholded  ×  matri-
ces. The resulting final  ×  matrix (fig. S4) is assumed to provide 
an optimized representation of the discrete gamma intervals yield-
ing stable modular partitions across spatial resolution hierarchies. 
Given the focus of this work on brain-wide network organization 
and its relationship with previous community partitioning of large-
scale FC, for all subsequent analyses, we focused on the first stable 
hierarchy level (0.6 < Ƴ < 1.1). Using normalized mutual informa-
tion index [as in (5)] instead of the adjusted mutual information 
yielded similar results, with the highest hierarchy level being identi-
cal across the two measures. Within the chosen 0.6 < Ƴ < 1.1 inter-
val, we selected  = 1 as representative resolution parameter, and at 
the selected spatial scale, we run 500 independent iterations of the 
Louvain algorithm, followed again by consensus clustering. A com-
putation of the Dice coefficient for all the structural community 
across all the 0.6 < Ƴ < 1.1 interval (0.1 step) produced mean values 
of 0.98, 0.98, 0.98, 0.93, and 0.94 for the cerebellar-pontine, basal-
olfactory, hippocampal, default-mode, and latero-cortical modules, 
respectively, supporting the validity of our gamma selection, and 
corroborating the notion of a stable partition topography within the 
selected 0.6 <  < 1.1 range. We finally probed the statistical signifi-
cance of the final partition against 1000 randomly rewired networks 
characterized by the same empirical in- and out-degree distribu-
tion, and by maintaining the total wiring length of each node (8, 55). 
Specifically, we used the total connectivity strength within each 
module as significant variable, reasoning that the internal cohesion 
of a given partition should be higher than expected by chance. We 
found that the total connectivity strength of each module always 
exceeded the total connectivity strength of the 1000 rewired networks, 
suggesting that the degree sequences and the total wiring length of 
each node cannot adequately account for the spatial organization of 
the communities of the mouse structural connectome.
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Module topography in the structural connectome was further 
corroborated using an agglomerative hierarchical clustering proce-
dure of a matrix obtained by computing between-nodes similarity 
(as by Spearman rank correlation) based on the connectivity profile 
of each node. A comparison of the obtained clusters using the Dice 
coefficient revealed an overall high concordance between the results 
obtained with these two procedures. We found a Dice coefficient of 0.7 
for the DMN, 0.82 for the LCN, 0.91 for the hippocampal module, and 
0.92 for the olfactory-basal forebrain community. Last, we found 
that the pontine-cerebellar module was almost equally represented by 
two clusters, one encompassing the cerebellum and the other covering 
pons and medulla (Dice coefficient of 0.66 and 0.56, respectively).

Our module detection procedure led to the identification of 
N = 7 modules, including two symmetric monohemispheric DMN 
and two olfactory-basal forebrain components, which we have joined 
into a single module for consistency with functional mapping and 
before computing their significance. The functional (rsfMRI) mod-
ules described in Fig. 2 were obtained from (19). The procedure for 
functional module detection has been extensively described in the 
original work (19). To better match SC and FC modules, the basal 
forebrain and ventral midbrain modules identified in (19) were 
merged together to constitute a single ventral brain community. Last, 
to map the anatomical extension of global (in + out), in-connector, 
and out-connector hubs, we carried out a voxel-wise computation 
of participation coefficient [i.e., a network measure of connection 
diversity; (57)] and iteratively identified and labeled the highest-
ranking voxels at increasing percentile threshold (50th to 99th). The 
obtained information was then combined into a single frequency 
(%) map by plotting the number of times a voxel was labeled as hub 
across varying percentile thresholds. We limited the visualization to 
the nodes that were classified as hubs at least 90% of the time.

Virtual lesion mapping
The role of hubs for the network global functioning was probed by 
means of targeted virtual attacks. For each of the metrics of interest 
(in and out strength, and global participation coefficient), we removed 
a given fraction of the highest-ranking nodes (from 5 to 40%, in 5% 
step by zeroing all the incoming and outgoing connections), com-
paring the size of the giant component, global efficiency (measured 
as the average inverse shortest path length), and total network com-
municability, here limited to map path length ≤ 3 corresponding to 
a polysynaptic connectome (34). Metrics were computed before 
and after attack, and changes with respect to these indices were 
expressed as a percentage of the intact network’s value. For each 
fraction of removed nodes, we compared targeted hub deletion to 
1000 random attacks, assessing statistical significance (P < 0.05) by 
obtaining a P value directly from the null distribution. To limit in-
ferences of virtual lesions to a nodal range that is biologically mean-
ingful, we restricted the illustration of in silico lesions to the 5 to 
20% range (Fig. 4).

Functional and structural gradients
Gradient computations were explicitly aimed at probing the pres-
ence of evolutionarily relevant mouse cortical topographies captur-
ing the polymodal-unimodal and modality-specific organization of 
cortical connectivity previously reported for the human and pri-
mate brain (18, 58). To this aim, we applied diffusion map embed-
ding on SC and FC as previously described (18, 37). Briefly, this 
nonlinear dimensionality reduction technique seeks to project high 

dimensional connectivity data into a lower dimensional Euclidean 
space, identifying spatial gradients in connectivity patterns. The 
cortical SC (FC) matrix is first mapped into an affinity matrix that 
represent the similarity of connectivity profiles across nodes. The 
eigenvectors describing the diffusion operator formed on the nor-
malized graph Laplacian of the affinity matrix identify gradients in 
connectivity patterns over space.

To compute SC gradients, we first extracted from the nonthresh-
olded whole-brain connectome the nodes belonging to the isocor-
tex, and we next computed a new threshold via percolation analysis 
resulting in a density of 7%. The structural affinity matrix was then 
built on the basis of the connectional profile of each node, i.e., by 
incorporating the information provided by both incoming and out-
going connections. The functional affinity matrix was built using 
the same steps described by (18). In reporting the results, we explic-
itly looked for gradients capturing polymodal-unimodal sensory-
fugal differentiation as well as a modality-specific organization of 
cortical connectivity as described in recent human and primate work 
(18, 58). To this purpose, we first ranked SC and FC gradients based 
on explained variance (fig. S7). We next visually inspected the top 
three ranking SC and FC gradients and found that the SC and FC 
gradient #1 were characterized by a clear unimodal-polymodal dif-
ferentiation (gradient A in Fig. 5, A and B), whereas the second-
ranked functional and the third-ranked structural gradients delineated 
a comparable modality-specific spatial configuration of cortical con-
nectivity (gradient B). In keeping with this observation, these pairs 
of FC and SC gradients exhibited highly concordant topographies 
(fig. S7; Spearman’s rho = 0.83 and 0.78, respectively).

We additionally computed the correlation between SC gradients 
spatial maps and a dominant rsfMRI CAPs published by (24), in an 
attempt to establish a link between the organization of the structural 
connectome and FC dynamics. In their work, Gutierrez-Barragan et al. 
(24) described three pairs of recurring oscillatory states that account 
for more than 60% of rsfMRI variance. Notably, two of these 
oscillating patterns are characterized by a conserved cortical topog-
raphy entailing the opposing engagement of latero-cortical and 
DMN regions reminiscent of the mapped cortical gradients, the 
main difference between them being a differential involvement of 
subcortical structures (i.e., hippocampus). To correlate the topogra-
phy of these dominant CAPs with that of the structural gradients, 
we therefore generated a mean cortical CAP out of these two fluctu-
ating states, using the mean value across the hemispheres. We did 
not consider the third pair of states [CAPs 3 and 4 in (24)] owing to 
its more widespread cortical topography and strong coherence with 
fMRI global signal, implicating the involvement of a possible global 
external input to the emergence of this meta-state. Last, we also 
computed the correlation between SC gradients and cortical hierar-
chy scores computed on the basis of feedforward-feedback laminar 
connectivity patterns of the mouse brain as described and computed 
in (7), using the same set of cortical brain regions described by the 
authors. For all the spatial correlational analyses involving gradients, 
we accounted for the spatial autocorrelation using Moran spectral 
randomization as implemented in the BrainSpace toolbox, using 
Euclidean distance between nodes as input for computing the Moran 
eigenvector maps (37).

rsfMRI data
The rsfMRI dataset used in this work consists of N = 15 scans 
in adult male C57BL/6J mice that are publicly available (22, 24). 
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All in vivo experiments were conducted in accordance with the 
Italian law (DL 2006/2014, EU 63/2010, Ministero della Sanità, Roma) 
and the recommendations in the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. Animal re-
search protocols were reviewed and consented by the animal care 
committee of the Italian Institute of Technology and Italian Ministry 
of Health. Animal preparation, image data acquisition, and image 
data preprocessing for rsfMRI data have been recently described in 
greater detail elsewhere (19, 24, 59). Briefly, rsfMRI data were ac-
quired with a 7.0-T scanner (Bruker BioSpin, Ettlingen) equipped 
with BGA-9 gradient set, using a 72-mm birdcage transmit coil, and 
a four-channel solenoid coil for signal reception. Single-shot BOLD 
echo planar imaging time series were acquired using an echo planar 
imaging sequence with the following parameters: repetition time/
echo time, 1000/15 ms; flip angle, 30°; matrix, 100 ×100; field of 
view, 2 × 2 cm2; 18 coronal slices; slice thickness, 0.50 mm; 500 
(n = 21) or 1500 (n = 19) volumes; and a total rsfMRI acquisition 
time of 30 min.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabb7187/DC1

View/request a protocol for this paper from Bio-protocol.
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