
Citation: Reinertsen, A.F.; Vik, A.;

Hansen, T.V. Biology and Total

Synthesis of n-3 Docosapentaenoic

Acid-Derived Specialized

Pro-Resolving Mediators. Molecules

2024, 29, 2833. https://doi.org/

10.3390/molecules29122833

Academic Editor: Antonio Massa

Received: 5 April 2024

Revised: 10 June 2024

Accepted: 12 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Biology and Total Synthesis of n-3 Docosapentaenoic
Acid-Derived Specialized Pro-Resolving Mediators
Amalie Føreid Reinertsen , Anders Vik and Trond Vidar Hansen *

Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068,
0316 Oslo, Norway; a.f.reinertsen@farmasi.uio.no (A.F.R.); anders.vik@farmasi.uio.no (A.V.)
* Correspondence: t.v.hansen@farmasi.uio.no

Abstract: Research over the last 25 years related to structural elucidations and biological inves-
tigations of the specialized pro-resolving mediators has spurred great interest in targeting these
endogenous products in total synthesis. These lipid mediators govern the resolution of inflammation
as potent and stereoselective agonists toward individual G-protein-coupled receptors, resulting
in potent anti-inflammatory activities demonstrated in many human disease models. Specialized
pro-resolving mediators are oxygenated polyunsaturated products formed in stereoselective and
distinct biosynthetic pathways initiated by various lipoxygenase and cyclooxygenase enzymes. In
this review, the reported stereoselective total synthesis and biological activities of the specialized
pro-resolving mediators biosynthesized from the polyunsaturated fatty acid n-3 docosapentaenoic
acid are presented.
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1. Introduction
1.1. Polyunsaturated Fatty Acids and Health Effects

A high dietary intake of ω-3 long-chain polyunsaturated fatty acids (PUFAs) is as-
sociated with many beneficial health effects [1]. These PUFAs include eicosapentaenoic
acid (EPA, 1), docosahexaenoic acid (DHA, 2), and n-3 docosapentaenoic acid (n-3 DPA,
3) (Figure 1). The ω-3 PUFAs are essential nutrients that cannot be biosynthesized by the
human body in sufficient amounts and must therefore be obtained from the diet.
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1. Introduction 
1.1. Polyunsaturated Fatty Acids and Health Effects 

A high dietary intake of ω-3 long-chain polyunsaturated fatty acids (PUFAs) is 
associated with many beneficial health effects [1]. These PUFAs include eicosapentaenoic 
acid (EPA, 1), docosahexaenoic acid (DHA, 2), and n-3 docosapentaenoic acid (n-3 DPA, 
3) (Figure 1). The ω-3 PUFAs are essential nutrients that cannot be biosynthesized by the 
human body in sufficient amounts and must therefore be obtained from the diet. 
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Figure 1. Chemical structures of the ω-3 PUFAs EPA (1), DHA (2), and n-3 DPA (3) as well as the ω-
6 PUFA arachidonic acid (AA (4)). 

Moreover, the dietary ω-3 PUFAs have been shown to be associated with preventing 
a variety of inflammatory disorders [2], including cardiovascular diseases [3], rheumatoid 
arthritis [4], Alzheimer’s disease [5], asthma [6], and type 2 diabetes [7]. Until recently, no 
molecular basis or cellular mechanisms have been established for the health effects 
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Figure 1. Chemical structures of the ω-3 PUFAs EPA (1), DHA (2), and n-3 DPA (3) as well as the ω-6
PUFA arachidonic acid (AA (4)).

Moreover, the dietary ω-3 PUFAs have been shown to be associated with preventing a
variety of inflammatory disorders [2], including cardiovascular diseases [3], rheumatoid
arthritis [4], Alzheimer’s disease [5], asthma [6], and type 2 diabetes [7]. Until recently,
no molecular basis or cellular mechanisms have been established for the health effects
accounted for the ω-3 PUFAs. However, the diligent and continuous efforts led by Professor
Charles N. Serhan and collaborators over the last 25 years have demonstrated that the three
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ω-3 PUFAs 1–3, but also the ω-6 PUFA arachidonic acid (AA, 4, Figure 1), are precursors for
the enzymatically formed oxygenated products named specialized pro-resolving mediators
(SPMs). SPMs potently down-regulate the inflammatory process and possess nanomolar
pro-resolving bioactions [8–10]. Since uncontrolled inflammation is a common theme
for the human diseases listed above, the pro-resolving and anti-inflammatory bioactions
reported for the SPMs have attracted great interest in biomedical research [11]. SPMs are
also highly interesting targets for stereoselective total synthesis, enabling drug discovery
projects [12].

1.2. Inflammation, Resolution of Inflammation, and Lipid Mediators in Inflammation

The inflammatory process is an essential part of the protective response to tissue injury
and infection by invading microbial pathogens [13]. The inflammatory response may be
divided into acute and chronic inflammation, which are defined according to the nature
of the inflammatory cells appearing in tissue [13]. Acute inflammation is further divided
into the initiation phase and the resolution phase of inflammation. The former has the
classic cardinal signs such as rubor (redness), calor (heat), tumor (swelling), and dolor
(pain), described by Celsus in the 1st century [9], in addition to the loss of function, which
was added by Rudolf Virchow in the 19th century [14]. Although the primary goal of the
inflammation phase is to regain homeostasis [15], if kept uncontrolled, it may result in the
development of a chronic state of inflammation.

The course from initiation to the resolution of acute inflammation is illustrated in
Figure 2 and shows the most central cell types in the different stages of inflammation. In the
early stages of the inflammatory process, activated endothelial cells start to produce pro-
inflammatory mediators, such as cytokines and chemokines, as well as chemoattractants
like histamine and bradykinin. Additionally, pro-inflammatory lipid mediators, such as
the leukotrienes (LTs) and prostaglandins (PGs), are biosynthesized from AA (4) after its
release from the phospholipid membrane. These mediators increase vessel permeability,
vasodilation, and the recruitment of leukocytes to the site of injury, leading to the classic
cardinal signs of inflammation [9,13].
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Basophils, eosinophils, neutrophils, monocytes, and lymphocytes are examples of
leukocytes. The neutrophils, also known as the polymorphonuclear neutrophils (PMNs),
are the most predominant of these cell types in the early stages of inflammation [16]. The
PMNs are among the first cells to appear at the site of injury or infection and act as the host’s
first line of defense, as these cells swarm to the inflamed tissue. The PMNs are essential
for further acceleration of the inflammatory process by the production of inflammatory
mediators, including cytokines, chemokines, lipid mediators, and growth factors [13].
The inflammatory response needs to be terminated once the incoming stimulus, caused
by tissue injury or invasion of pathogens, has been defeated. During the termination of
ongoing inflammation, also referred to as the resolution phase, PMNs are gradually being
replaced by mononuclear cells, mainly monocytes (Figure 2). These cells differentiate
into macrophages in the tissue and are often referred to as phagocytic cells, meaning they
ingest foreign material and cell debris in a process named phagocytosis. Macrophages also
clear apoptotic cells and cellular debris in a process named efferocytosis. Phagocytosis
and efferocytosis are typical processes associated with SPMs during the resolution of
inflammation. Another important event in the resolution phase of inflammation is the
timely lipid mediator class switch, illustrated in Figure 3. Herein, the biosynthesis of the
pro-inflammatory LTs and PGs, such as leukotriene B4 (LTB4, 5) and prostaglandin E2 (PGE2,
6), are diminished, and replaced by an enhanced biosynthesis of SPMs, such as lipoxin
A4 (LXA4, 7), protectin D1 (PD1, 8), resolvin D1 (RvD1, 9) and maresin 1 (MaR1, 10), thus
initiating resolution of inflammation [17]. The release of AA (4) from the cell membrane
by cytosolic phospholipase A2 (cPLA2) is the first and overall rate-determining step in the
biosynthesis of eicosanoids by effector and immune cells, as illustrated in Figure 3. This
unbound form of intracellular AA (4) is rapidly converted in a cell type-specific manner
by the cyclooxygenase (COX) or lipoxygenase (LOX) enzymes to generate lipid mediators,
such as LTB4 (5) and PGE2 (6) [13], with pro-inflammatory properties.

Failure to reduce further neutrophil recruitment and clearance of apoptotic cells by
macrophages may result in the development of a chronic state of inflammation [9,18]. Chronic
inflammation is defined according to the accumulation of lymphocytes, macrophages, and
plasma cells in the tissue and not by the duration of the inflammatory process [19]. When
present in extravascular sites, these cells may lead to the secretion of a variety of factors, one
example being tumor necrosis factor-β (TNF-β). Such factors activate fibroblasts and result
in the production of cross-linked collagen, which may, in turn, lead to extensive collagenous
scars [13]. This highly undesirable outcome of the acute inflammatory response has proved
to be a part of the pathogenesis of various disorders [2–7,20]. As stated above, the ideal
outcome of an inflammation is resolution, a process that is governed by SPMs. Thus, the
active process of resolution of inflammation by SPMs biosynthesized from the ω-3 PUFAs
EPA (1), DHA (2), and n-3 docosapentaenoic acid (n-3 DPA, 3) is a dynamic and detailed
programmed response, and not just a means of passive dilution of chemoattractants, as
previously thought [13]. These active processes leading to the resolution of inflammation
are considered a biomedical paradigm shift [21,22]. Resolving inflammatory exudate
converts the ω-3 PUFAs 1–3 to families of structurally distinct signaling molecules, named
resolvins, protectins, and maresins, while the ω-6 PUFA AA (4) forms lipoxins [8]. SPMs are
agonists in the resolution phase of inflammation and exert their bioactions by stereoselective
interaction with G-protein-coupled receptors (GPCRs), hence limiting the infiltration of
PMNs and enhancing the clearance of apoptotic cells by phagocytosis [18]. The importance
of SPMs in the resolution phase of inflammation may lead to the development of small
organic molecular drugs that are not immunosuppressive [18,21] or constitute a new way to
treat inflammation in the future based on the principles of resolution pharmacology [22–24].



Molecules 2024, 29, 2833 4 of 27

Molecules 2024, 29, x FOR PEER REVIEW 3 of 28 
 

 

illustrated in Figure 3. This unbound form of intracellular AA (4) is rapidly converted in 
a cell type-specific manner by the cyclooxygenase (COX) or lipoxygenase (LOX) enzymes 
to generate lipid mediators, such as LTB4 (5) and PGE2 (6) [13], with pro-inflammatory 
properties. 

 
Figure 2. The figure illustrates the two major outcomes of the inflammatory process. 

 

Figure 3. PUFAs, such as DHA (2) and AA (4), are released from the phospholipid membrane because
of injury or infection, thus resulting in the biosynthesis of a variety of lipid mediators through
the COX- and LOX pathways. The initiation of inflammation stimulates the biosynthesis of pro-
inflammatory lipid mediators (LTB4 (5), PGE2 (6) followed by a lipid mediator class switch toward the
biosynthesis of the anti-inflammatory and pro-resolving SPMs, e.g., LXA4 (7), PD1 (8), RvD1 (9), and
MaR1 (10). The figure also highlights some anti-inflammatory drug classes that target the biosynthesis
of lipid mediators, hence downregulating both the pro-inflammatory and the host protective roles of
the prostaglandins. These traditional pharmaceuticals interrupt the normal resolution phase.

1.3. Overview of Specialized Pro-Resolving Mediators

Research over the last three decades has led to the structural elucidations and biological
investigations of the SPM families outlined in Figure 4. SPMs have shown potent and
interesting biological effects in many human disease models and cell systems [25–28].

The resolvins biosynthesized from DHA (2) are termed D-series resolvins (RvDs), while
EPA (1) gives rise to the E-series resolvins (RvEs). DHA (2) also gives rise to the protectins
and maresins, including the sulfido-conjugated compounds called protectin conjugates
in tissue regeneration (PCTRs), resolvin conjugates in tissue regeneration (RCTRs), and
maresin conjugates in tissue regeneration (MCTRs) (Figure 4). The term “resolvins” reflects
their resolving features during inflammation [29], and the “protectins” got their name
due to their potent protective activity in inflammatory and neuronal systems [30]. The
“maresins” were assigned this name due to their role as macrophage mediators that resolve
inflammation [31]. Hamberg, Serhan, and Samuelsson reported in 1984 that AA (4) was
biosynthesized into lipoxins A4 and B4 [32,33]. The n-3 DPA (3)-derived SPMs include
the n-3 DPA resolvins, n-3 DPA maresins, n-3 DPA protectins [34], and the most recently
identified 13-series resolvins (RvTs) [35].
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and n-3 DPA (3) and the ω-6 PUFA AA (4). The number of each reported n-3 DPA-derived SPM is
provided in parentheses.

1.4. Specialized Pro-Resolving Mediators Derived from n-3 DPA

In 2013, Dalli, Collas, and Serhan reported that n-3 DPA (3), like EPA (1) and DHA
(2), is a substrate for 5-, 12-, and 15-LOX enzymes in mice and human leukocytes, leading
to the discovery of the novel n-3 DPA-derived SPMs [34,35]. These SPMs share structural
resemblance with the DHA-derived protectins, maresins, and resolvins, except for the
absence of the C4–C5 Z-olefin in the n-3 DPA-derived respective protectins, maresins, and
resolvins. Hence, these 12 SPMs are congeners of the DHA-derived SPMs. In addition,
Dalli, Chiang, and Serhan reported investigations of the transcellularly biosynthesis using
n-3 DPA (3) and COX-2 during neutrophil–endothelial cell interactions. These studies
resulted in the identification of the four-membered 13-resolvins (RvTs) [35]. The naming
originates from the first and common oxygenation step occurring at carbon thirteen [35].
The hitherto reported stereoselective total syntheses of the n-3 DPA SPMs are discussed
below, but first, the individual families of the n-3 DPA-derived SPMs are presented.

1.4.1. Biosynthesis of n-3 DPA Protectins

As their names suggest, PD1n-3 DPA (11) and PD2n-3 DPA (12) are both biosynthesized
from n-3 DPA (3) [34,36,37]. 15-LOX activity on n-3 DPA (3) yields the known 17(S)-HpDPA
(13) intermediate that is further subjected to 15-LOX and 15-LOX-2 to yield the epoxide
intermediate 14 [36,37]. Different epoxide hydrolase activities lead to the formation of either
PD1n-3 DPA (11) or PD2n-3 DPA (12) [37]. The biosynthetic pathways of n-3 DPA protectins,
in contrast to the other n-3 DPA families of SPMs, have been studied in detail [36,37], as
illustrated in Scheme 1.
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1.4.2. Biosynthesis of n-3 DPA Maresins

The maresins derived from n-3 DPA (3) comprise MaR1n-3 DPA (15), MaR2n-3 DPA (16),
and MaR3n-3 DPA (17). n-3 DPA (3) is a substrate for 12-LOX, and this oxygenase forms the
common and known intermediate 14(S)-HpDPA (18), as shown in Scheme 2. Enzymatic
epoxidation of 18 by 12-LOX most likely forms an epoxide that undergoes ring opening
by different epoxide hydrolases, producing either MaR1n-3 DPA (15) or MaR2n-3 DPA (16).
Alternatively, the insertion of molecular oxygen at C21 in 18 and additional peroxidase
activity forms MaR3n-3 DPA (17). Of note, these biosynthetic pathways are presented based
on prior knowledge [8,34] and have not been established by experiments.
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1.4.3. Biosynthesis of n-3 DPA Resolvins

The n-3 DPA-derived resolvins consist of RvD1n-3 DPA (19), RvD2n-3 DPA (20), and
RvD5n-3 DPA (21). The proposed biosynthesis suggests the insertion of molecular oxygen to
n-3 DPA (3) by 15-LOX to yield the common and known intermediate 17(S)-HpDPA (13),
as shown in Scheme 3. Then, 5-LOX catalyzes the formation of another hydroperoxide
in the C7 position to yield the intermediate 7(S),17(S)-dihydroperoxy-RvDn-3 DPA (22).
An enzymatic conversion yields an epoxy intermediate that is further hydrolyzed by
different epoxide hydrolase enzymes to afford either RvD1n-3 DPA (19) or RvD2n-3 DPA (20).
Alternatively, direct peroxidase activity on 22 gives rise to RvD5n-3 DPA (21) [34]. As of today,
no direct evidence is available for the biosynthesis presented in Scheme 3, but it should
share great similarities to the biosynthesis of the DHA-congener resolvin D1 (9) [29,38] (see
Figure 3).
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A self-limited model of inflammation was applied to investigate tissue levels of n-3
DPA products during onset and resolution of inflammation [34]. In these studies, the con-
centration of RvD1n-3 DPA (19) showed a bi-phasic profile by reaching a maximum during
peak neutrophil infiltration and late into resolution. The peak level of RvD2n-3 DPA (20)
accorded with the onset of resolution, i.e., the point where PMN levels reach ~50% of trans-
port maximum (Tmax). The level of RvD5n-3 DPA (21) gradually increased over the course of
inflammation resolution, with a maximum in the late stages of the resolution phase.

1.4.4. Biosynthesis of 13-Series Resolvins

In 2015, a new series of n-3 DPA-derived resolvins was reported and termed 13-series
resolvins [35]. Their names are supported by the common 13(R)-alcohol moiety in all four
structures [39]. The biosynthesis of the RvTs commences with the insertion of molecular
oxygen at C13 by COX-2 enzymes to yield 13(R)-HpDPA (24), as shown in Scheme 4. The
peroxide intermediate 24 is then subjected to peroxidase enzymes to yield the 13(R)-alcohol
25 [40]. Different enzymatic activities on 25 form the four RvTs 26–29. Interestingly, the
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biosynthetic formation of these SPMs was increased by atorvastatin via S-nitrosylation of
the COX-2 enzymes and reduced by COX-2 inhibitors [35].
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try-based identification using multiple reacting monitoring (MRM) is therefore used to 
establish the structures from biological sources [8]. The inconvenience of this method is 
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n-3 DPA (3) is an intermediate in the biosynthesis of DHA (2) from EPA (1) [41–43],
as shown in Scheme 5. EPA (1) is converted to n-3 DPA (3) by elongase enzymes. Further
elongase and ∆6-desaturase activities on 3 yield the 24:6 n-3 fatty acid (30) via 31, which
is finally converted to DHA (2) by β-oxidation. The absence of the C4-C5 Z-configured
double bond in n-3 DPA makes this PUFA incapable of biosynthesizing the RvD3, RvD4,
and RvD6 n-3 DPA congeners since this double bond is involved in the biosynthesis of
RvD3, RvD4, and RvD6. The naming of the n-3 DPA maresins, protectins, and resolvins is
based on the chemically similar structures as the DHA-derived SPMs [34].
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DPA (3).

2. Stereoselective Syntheses of n-3 DPA-Derived SPMs

Since SPMs are biosynthesized only on the nano- to picogram scale, direct NMR analy-
ses for their individual structural elucidations are not possible. Hence, mass spectrometry-
based identification using multiple reacting monitoring (MRM) is therefore used to establish
the structures from biological sources [8]. The inconvenience of this method is that it can
only provide the basic structures without stereochemistry. Hence, matching the biogenic
product with the product obtained by stereoselective total synthesis with defined stereo-
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chemistry is necessary to establish the complete stereochemical assignment of the SPMs.
Specialized pro-resolving mediators are interesting biotemplates in drug development
efforts with the aim to provide new anti-inflammatory agents without immunosuppressive
effects [21,23]. The n-3 DPA (3)-derived SPMs are no exception [44].

The following sections provide an overview of the hitherto published syntheses of the
various SPMs derived from n-3 DPA (3). In addition, an overview of the biological studies
reported is also presented.

2.1. Synthesis and Biological Studies of PD1n-3 DPA (11)

The first total synthesis of PD1n-3 DPA (11) was reported in 2014 [45]. This was a
convergent synthesis with Wittig salt 32, aldehyde 43, and alkyne 45 as key fragments
(Scheme 6). The Wittig salt 32 was prepared in four steps from cycloheptanone (33). A
Baeyer–Villiger oxidation of 33 yielded the lactone 34 in 93% yield, which was treated with
catalytic amounts of H2SO4 in MeOH to yield the ring-opened hydroxy methyl ester 35 in
87% yield. An Appel reaction using Ph3P, I2, and imidazole in CH2Cl2 was next applied
to convert the alcohol moiety in 35 to the corresponding iodide 36. Finally, refluxing 36
with Ph3P in MeCN yielded the desired Wittig salt 32 in 77% yield over the two steps. For
the synthesis of the key fragment 43, the known aldehyde 37 was prepared as previously
reported from commercially available pyridinium-1-sulphonate (38) using a two-step pro-
tocol [46,47]. The first treatment of salt 38 with aqueous potassium hydroxide at −20 ◦C
yielded the glutaconaldehyde potassium salt 39, which was transformed further with the
Br2/PPh3 complex to aldehyde 37 in 41% yield over the two steps. Then, an Evans–Nagao
acetate aldol with chiral auxiliary 40 and aldehyde 37 was executed, which yielded the
aldol product 41 in 15.3:1 dr, according to the procedure of Olivio and coworkers [48].
Protection as TBS-ether 42 and reductive removal of the auxiliary yielded aldehyde 43,
as earlier reported in the literature [49,50]. Aldehyde 43 was then reacted in a highly
Z-selective Wittig reaction with the ylide of 32 to furnish the desired Z-alkene 44 in 54%
yield. The yield in this reaction was hampered by the elimination of the TBS-protected
alcohol in 44 to yield an all-conjugated system. Alkyne 45 was prepared from commer-
cially available 1-butyne and THP-protected (S)-glycidol, as reported earlier [51,52]. A
Sonogashira cross-coupling reaction between the vinylic bromide in 44 and alkyne 45 was
achieved to yield 46 an excellent 92% yield using catalytic amounts of Pd(PPh3)4 and CuI in
Et2NH. Deprotection of the two silyl ethers in 46 was achieved using TBAF in THF at 0 ◦C,
which afforded 47. A Z-selective reduction of the internal alkyne in 47 was then carried out
using Lindlar’s catalyst in a solvent system containing EtOAc/pyridine/1-octene (10:1:1) to
obtain PD1n-3 DPA methyl ester (48) in 50% yield. Finally, saponification of the methyl ester
48 using LiOH in H2O/MeOH (1:1) at 0 ◦C afforded the natural product 11 in 71% yield
and chemical purity >98% based on HPLC chromatography. The longest linear sequence of
this synthesis was 10 steps, with an overall yield of 9%. Matching experiments between
synthetic and endogenous PD1n-3 DPA (11) provided evidence for the absolute configura-
tion to be (7Z,10R,11E,13E,15Z,17S,19Z)-10,17-dihydroxydocosa-7,11,13,15,19-pentaenoic
acid (11).

PD1n-3 DPA (11) is the n-3 DPA SPM member that has been the subject of most biologi-
cal studies. This SPM displays potent anti-inflammatory and pro-resolving bioactivities
comparable to those of PD1 (8) in that it decreases neutrophil recruitment during peritonitis
and increases macrophage phagocytosis of both zymosan A and apoptotic neutrophils [45].
A recent study revealed that PD1n-3 DPA (11) regulated neuroinflammation and reduced
weight loss and cognitive deficit during epileptogenesis, in addition to halting the ensuing
epileptic seizures [53]. Another interesting study uncovered the protective effects of 11
against colitis and intestinal inflammation in mice [54].
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CH2Cl2; (ii) cat. H2SO4, MeOH; (iii) Ph3P, I2, imidazole, CH2Cl2; (iv) Ph3P, MeCN, ∆; (v) KOH
(aq), −20 ◦C to rt; (vi) Br2, PPh3, CH2Cl2, 0 ◦C, then p-TsOH, Et2O; (vii) TiCl4, (i-Pr)2NEt, CH2Cl2,
−78 ◦C; (viii) TBSOTf, 2,6-lutidine, CH2Cl2, −78 ◦C; (ix) DIBAL-H, CH2Cl2, −78 ◦C; (x) NaH-
MDs, THF, −78 ◦C; (xi) Pd(PPh3)4, CuI, Et2NH; (xii) TBAF, THF, 0 ◦C; (xiii) H2, Lindlar’s catalyst,
EtOAc/pyridine/1-octene; (xiv) LiOH (aq), MeOH, 0 ◦C.

2.2. Synthesis of PD2n-3 DPA (12)

The hitherto only reported total synthesis of PD2n-3 DPA (12) was published in 2020
by Primdahl, Tungen, and Hansen [55]. This convergent synthesis relied on the two key
fragments, aldehyde 56 and Wittig salt 57 (Scheme 7). For the synthesis of key aldehyde
56, compound 49 [56] was prepared from 2-deoxy-D-ribose (50). Conversion of 50 into
its thioacetal 51 was followed by global protection into 52 and cleavage of the thioacetal
to afford aldehyde 49. A Z-selective Wittig reaction of aldehyde 49 with the ylide of
commercially available propyltriphenylphosphonium bromide, the latter obtained in situ
after treatment with NaHMDS, afforded 53 (Scheme 7). Selective deprotection by PTSA
in EtOH/MeOH at −20 ◦C revealed the primary alcohol 54, which was further partially
oxidized to 55 using Dess–Martin periodinane. Aldehyde 55 was then reacted in a double
E-selective Wittig reaction with (triphenylphosphoranylidene)acetaldehyde in toluene at
elevated temperature to yield the key fragment 56. The other key fragment, Wittig salt
57, was obtained by following a four-step sequence. Firstly, a Z-selective Wittig reaction
between aldehyde 59 and the ylide of 32, the latter obtained after reaction with NaHMDS,
yielded Z-alkene 60. Then, deprotection yielded alcohol 61, and an Appel reaction and
quaternization with triphenylphosphine afforded 57 (Scheme 7). The two key fragments,
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aldehyde 56 and Wittig salt 57, were joined by a Z-selective Wittig reaction to afford
compound 58. The final steps included deprotection of the TBS-ethers in compound 58
with TBAF to yield the diol 62, which was hydrolyzed to PD2n-3 DPA (12). This convergent
synthesis provided the target molecule PD2n-3 DPA (12) in 10 steps (longest linear sequence)
and 5% overall yield. As of today, no biological studies with 12 have been reported.
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HCl, rt., 3 h; (ii) TBSOTf, 2,6-lutidine, 0 ◦C, 16 h; (iii) NBS, 2,6-lutidine, acetone/H2O, 0 ◦C, 1 h;
(iv) NaHMDS, BrPh3P(CH2)2CH3, CH2Cl2, −78 ◦C to rt; (v) PTSA, EtOH/MeOH (1:1), −20 ◦C to
rt; (vi) DMP, NaHCO3, CH2Cl2, rt; (vii) (triphenylphosphoranylidene)acetaldehyde, toluene, 95 ◦C;
(viii) NaHMDS, HPMA, THF, then 59, −78 ◦C; (ix) CSA, MeOH/CH2Cl2 (2:1); (x) PPh3, I2, imidazole,
CH2Cl2, then Ph3P, MeCN, ∆; (xi) NaHMDS, THF, HMPA, −78 ◦C; (xii) TBAF, THF, 0 ◦C to rt;
(xiii) LiOH, THF/MeOH/H2O (2:2:1), 0 ◦C.

2.3. Synthesis and Biological Evaluations of MaR1n-3 DPA (15)

The only synthesis of MaR1n-3 DPA (15) was reported in 2014 [57]. This convergent
synthesis relied on a Sonogashira reaction between the two key fragments alkyne 69
(Scheme 8) and vinyl bromide 70, and a sp3–sp3 Negishi cross-coupling reaction between
bromide 72 and 4-ethoxy-4-oxobutylzinc bromide (Scheme 9). The synthesis of alkyne
69 commenced with the protection of the alcohol moiety in commercially available (S)-
(−)-α-hydroxy-γ-butyrolactone (63) using TBSOTf and 2,6-lutidine in CH2Cl2 to yield
compound 64 in near quantitative yield, as shown in Scheme 8. Lactone 64 was then
reduced to the corresponding lactol using DIBAL-H in CH2Cl2 at −78 ◦C, followed by
a solvent switch to THF and reacted in a Colvin homologation reaction using LDA and
trimethylsilyldiazomethane (TMSCHN2) to afford alcohol 65 in 57% isolated yield. Swern
oxidation yielded aldehyde 66, which was subjected to a Z-selective Wittig reaction with
the ylide of 67. This yielded the desired alkyne 69 in 83% yield. The Wittig salt 67 was
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prepared in 90% yield from commercially available (Z)-3-hexen-1-ol (68) over two steps
using a literature procedure [58].
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Reagents and conditions: (i) TBSOTf, 2,6-lutidine, CH2Cl2, −78 ◦C; (ii) DIBAL-H, CH2Cl2, −78 ◦C,
then LDA, TMSCHN2, THF, −78 ◦C; (iii) (COCl)2, DMSO, Et3N, CH2Cl2, −78 ◦C; (iv) I2, PPh3,
imidazole, CH2Cl2, then PPh3, MeCN, ∆; (v) NaHMDS, HMPA, THF, −78 ◦C.
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The vinyl bromide 70 was prepared by reduction of known 42 (see Scheme 6 for the
synthesis of 42) with LiBH4 in a solvent system containing Et2O and MeOH. A Sonogashira
cross-coupling reaction of alkyne 69 and the vinylic bromide in 70 yielded the product 71 in
an acceptable 68% yield. The primary alcohol in 71 was transformed to the corresponding
bromide 72 to be further reacted in a sp3–sp3 Negishi cross-coupling reaction using the
commercial palladium-based PEPPSI™-IPr catalyst, which yielded the alkyne 73. This is
an example of an early application of the sp3–sp3 Negishi cross-coupling reaction in the
total synthesis of an advanced natural product. Removal of the two TBS-ethers in 73 using
fluoride anions yielded the diol 74 in near quantitative yield. The internal alkyne in 74
was reduced in a highly Z-selective fashion by employing Lindlar’s catalyst in a mixed
solvent system containing EtOAc, pyridine, and 1-octene under a hydrogen atmosphere.
Finally, saponification of the ethyl ester yielded the desired MaR1n-3 DPA (15) in 86% yield
and chemical purity >98% based on HPLC analyses. This convergent synthesis yielded
MaR1n-3 DPA (15) over 11 steps (longest linear sequence) and 12% overall yield.

Matching experiments between synthetic and human macrophage MaR1n-3 DPA (15)
demonstrated that the synthetic material co-elutes with the naturally occurring 15, estab-
lishing the absolute configuration to be (7S,8E,10E,12Z,14S,16Z,19Z)-7,14-dihydroxydocosa-
8,10,12,16,19-pentaenoic acid. MaR1n-3 DPA (15) was next assayed for its potential to enhance
human macrophage efferocytosis, a highly important pro-resolution hallmark. The results
provided clear evidence for the potent bioactions of 15 and its corresponding ethyl ester in
stimulating efferocytosis of apoptotic human neutrophils by macrophages [57].
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2.4. Synthesis of MaR2n-3 DPA (16)

A stereoselective total synthesis of MaR2n-3 DPA (16) was reported in 2020 [59]. The
key fragments in this synthesis were alkyne 76 (Scheme 10), aldehyde 49, and Wittig salt
67 (Scheme 11). Alkyne 76 was synthesized in a four-step sequence, starting with a Bayer–
Villiger oxidation of commercially available cycloheptanone (33), which was followed
by Fischer esterification of the corresponding lactone of 33, as shown in Scheme 10, to
yield compound 35 in 31% yield. Next, partial oxidation of the primary alcohol moiety
in 35 using the Dess–Martin periodinane reagent afforded aldehyde 77 in 92% yield. A
Seyferth–Gilbert homologation reaction, using the Ohira–Bestmann reagent, with aldehyde
77 produced the terminal alkyne 76 in 41% yield.
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Scheme 10. Synthesis of terminal alkyne 76 needed for the synthesis of MaR2n-3 DPA (16) [59].
Reagents and conditions: (i) m-CPBA, CH2Cl2, then MeOH, H2SO4; (ii) DMP, NaHCO3, CH2Cl2; (iii)
dimethyl(1-diazo-2-oxopropyl) phosphonate, K2CO3, MeOH.
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Scheme 11. Final steps in the stereoselective synthesis of MaR2n-3 DPA (16) [59]. Reagents and
conditions: (i) NaHMDS, CH2Cl2, −78 ◦C; (ii) para-toluene sulfonic acid, MeOH, −20 ◦C; (iii) DMP,
NaHCO3, CH2Cl2; (iv) (triphenylphosphoranylidene)acetaldehyde, toluene, ∆; (v) CrCl2, dioxane,
THF, CHI3, 0 ◦C; (vi) CuI, Pd(PPh3)4 (5 mol%), alkyne 76, Et2NH; (vii) TBAF, THF; (viii) Lindlar’s
catalyst (Pd/CaCO3), EtOAc/pyridine/1-octene, H2 (g); (ix) LiOH, H2O, MeOH, 0 ◦C.



Molecules 2024, 29, 2833 14 of 27

Aldehyde 49 was prepared as previously reported [56] (see Scheme 7). A Z-selective
Wittig reaction with the ylide of Wittig salt 67, the latter obtained in situ after reacting 67
with NaHMDS at −78 ◦C and aldehyde 49, yielded Z-alkene 78. Selective deprotection of
the primary TBS-ether in 78 using para-toluene sulfonic acid (PTSA) in MeOH at −20 ◦C
revealed the primary alcohol 79, which was further oxidized to the corresponding aldehyde
80 using the Dess–Martin periodinane (DMP) reagent. Next, an E-selective Wittig between
aldehyde 80 and (triphenyl-phosphoranylidene)acetaldehyde in toluene at elevated temper-
ature afforded the α,β-unsaturated aldehyde 81 in 60% yield. A Takai olefination reaction
was then performed on aldehyde 81 to yield the E,E-vinylic iodide 82 in 73% isolated yield
after chromatographic purifications. A palladium-mediated Sonogashira cross-coupling
reaction between vinylic iodide 82 and alkyne 76 yielded the key intermediate 83 in 50%
yield. Diol 84 was prepared by deprotection of the two TBS-ethers in 83 using TBAF in
THF. A Lindlar hydrogenation protocol afforded the desired methyl ester 85 in 72% yield
and chemical purity >95% based on HPLC analysis. Finally, a mild hydrolysis of the
methyl ester 85 yielded the desired natural product MaR2n-3 DPA (16) in 97% isolated yield.
Matching experiments of synthetic and endogenous 16 revealed that the right stereoiso-
mer was prepared, thus establishing the absolute configuration of MaR2n-3 DPA (16) to
be (7Z,9E,11E,13R,14S,16Z,19Z)-13,14-dihydroxydocosa-7,9,11,16,19-pentaenoic acid (16).
MaR2n-3 DPA (16) has not been utilized in any biological studies.

2.5. Synthesis and Biological Evaluations of RvD1n-3 DPA (19)

In 2019, a total synthesis of RvD1n-3 DPA (19) was reported [56]. This convergent syn-
thesis relied on a Sonogashira cross-coupling reaction between the two key fragments,
vinyl iodide 90 and alkyne 91 (Scheme 12). Vinyl iodide 90 was prepared in six steps
from the known aldehyde 49 (Scheme 7). First, aldehyde 49 was reduced to the corre-
sponding alcohol with NaBH4 in MeOH, followed by an Appel halogenation to yield
the bromide 86. This bromide was subjected to a sp3-sp3 Negishi cross-coupling reaction
with 4-ethoxy-4-oxobutylzinc bromide using the palladium-based PEPPSITM-IPr catalyst to
furnish compound 87 in 54% isolated yield. Selective removal of the primary TBS-ether
using PTSA revealed the primary alcohol 88. Partial oxidation of 88 using Dess–Martin
periodinane, followed by an E-selective Wittig reaction, yielded the α,β-unsaturated alde-
hyde 89 in 58% yield over the two steps. A Takai olefination reaction converted alde-
hyde 89 to the vinyl iodide 90. The other key fragment, alkyne 91, was prepared from
the previously prepared compound 45 [51,52] in a three-step sequence, including a zir-
conation/iodination reaction, a Sonogashira coupling, and a deprotection reaction. A
Sonogashira cross-coupling was then performed to unite 90 and 91. The product herein,
92, was next assumed to be reduced in a Z-selective manner; however, both the trusted
Boland and Lindlar reductions on 92 and its triol failed to yield the desired ethyl ester 93.
The Karstedt alkyne hydrosilylation/protodesilylation protocol [60] was then utilized to
convert internal alkyne 92 to the corresponding Z-alkene, which gratefully yielded, via
94a and 94b, the desired RvD1n-3 DPA ethyl ester (93) in 78% yield over the two steps and
with chemical purity > 97% based on HPLC analysis. A mild saponification of the ethyl
ester yielded RvD1n-3 DPA (19). Metabololipidomics LC-MS/MS experiments were used to
determine if the synthetic and authentic material of RvD1n-3 DPA (19) matched. Identical
retention time and co-elution of synthetic and authentic 19 provided evidence for the right
stereoisomer to be synthesized, thus establishing the absolute configuration of 19 to be
(7S,8R,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-9,11,13,15,19-pentaenoic acid.

The synthetic material of RvD1n-3 DPA (19) showed potent agonism toward the hu-
man receptor GPR32 in an impedance assay, and this SPM displayed nanomolar anti-
inflammatory, pro-resolution, and anti-bacterial effects [56].
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CH2Cl2, rt, 20 h; (vi) Ph3P=CHCHO, toluene, 95 ◦C, 18 h; (vii) CrCl2, CHI3, THF/dioxane, 0 ◦C
to rt, 1.5 h; (viii) Cp2ZrCl2, DIBAL-H, then I2, THF, 0 ◦C, 30 min; (ix) TMSCCH, piperidine, CuI,
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2.6. Synthesis and Biological Evaluations of RvD2n-3 DPA (20)

The stereoselective total synthesis of RvD2n-3 DPA (20) was reported as a convergent
synthesis, relying on a Sonogashira cross-coupling reaction between the two key fragments
vinyl iodide 95 and alkyne 97 (Schemes 13 and 14) [61]. For the synthesis of vinyl iodide
95, aldehyde 55 was first prepared from commercially available and cheap 2-deoxy-D-
ribose (50) as previously reported in the literature [55] (Scheme 7), and then 55 was reacted
in an E-selective Wittig reaction with commercially available (triphenylphosphoranyli-
dene)acetaldehyde to yield α,β-unsaturated aldehyde 96 in 71% yield. A Takai olefination
reaction on 96 furnished the desired vinyl iodide 95 in an excellent 82% yield.
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CH2Cl2; (v) K2CO3, MeOH, 0 °C to rt; (vi) Bu3SnH, AIBN (16 mol%), benzene, 80 °C; (vii) I2, CH2Cl2; 
(viii) TMSCCH, CuI (12 mol%), Pd(PPh3)2Cl2 (5 mol%), Et3N, THF, 0 °C to rt; (ix) K2CO3, MeOH, 0 
°C to rt ; (x) vinyl iodide 95, CuI (9 mol%), Pd(PPh3)4 (3 mol%), Et2NH, benzene; (xi) TBAF, THF, 0 
°C to rt. 
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cross-coupling reaction with 95, commercially available and cheap diester 98 was first se-
lectively hydrolyzed using aqueous NaOH in THF at a lowered temperature. The carbox-
ylic acid 99 was then converted to its acid chloride in situ, followed by a Friedel–Crafts 
acylation with bis(trimethylsilyl)acetylene (BTMSA) to yield 100 in acceptable 59% yield. 
The Midland (S)-Alpine-borane reagent was then applied to synthesize (S)-alcohol 101 in 
93% enantiomeric excess and 95% yield. The alcohol in 101 was protected using TBSCl 
and imidazole in CH2Cl2 to yield 102, followed by removal of the TMS group using K2CO3 
in MeOH to obtain terminal alkyne 103. Hydrostannylation of 103 yielded 104, which was 
subjected to an in situ iodination protocol to prepare vinyl iodide 105. Vinyl iodide 105 
was in fact first reported in 2020 by Rodriguez and Spur for the total synthesis of RvT1 
(26) and RvT4 (29) [62]. The greatest difference between the two syntheses of 105 was the 
use of the Midland Alpine-borane reagent for the asymmetric reduction of the acetylenic 
ketone herein rather than the ruthenium-catalyzed asymmetric reduction. Also, the avail-
ability of reagents was crucial for choosing different reaction conditions for the synthesis 
of vinyl iodide 105 herein. Next, a Sonogashira cross-coupling between 105 and trime-
thylsilylacetylene yielded crude 106, which was directly subjected to a TMS-deprotection 
step to obtain terminal alkyne 97 in 81% yield. Vinyl iodide 95 and alkyne 97 were reacted 
in a Sonogashira cross-coupling reaction with Pd(PPh3)4 (3 mol%) and CuI (9 mol%) as the 
catalysts of choice to afford the internal alkyne 107. The protection groups were then re-
moved with TBAF in THF to yield triol 108 in an excellent 93% yield.  

For the Z-selective reduction of the internal alkyne in 108, several different strategies 
were attempted [63,64] that proved problematic. No product formation was observed us-
ing the Lindlar catalyst. The Karstedt platinum-catalyzed alkyne 

Scheme 14. Synthesis of internal alkyne 97 and coupling of fragments [61]. Reagents and conditions:
(i) NaOH (aq), THF, then HCl (aq), 0 ◦C; (ii) (COCl)2, DMF (cat), CH2Cl2, 0 ◦C to rt, then AlCl3,
BTMSA, CH2Cl2, 0 ◦C to rt; (iii) (S)-Alpine-borane, THF to ~neat, −10 ◦C to rt; (iv) TBSCl, imidazole,
CH2Cl2; (v) K2CO3, MeOH, 0 ◦C to rt; (vi) Bu3SnH, AIBN (16 mol%), benzene, 80 ◦C; (vii) I2, CH2Cl2;
(viii) TMSCCH, CuI (12 mol%), Pd(PPh3)2Cl2 (5 mol%), Et3N, THF, 0 ◦C to rt; (ix) K2CO3, MeOH,
0 ◦C to rt; (x) vinyl iodide 95, CuI (9 mol%), Pd(PPh3)4 (3 mol%), Et2NH, benzene; (xi) TBAF, THF,
0 ◦C to rt.

For the preparation of the terminal alkyne 97 needed for the subsequent Sonogashira
cross-coupling reaction with 95, commercially available and cheap diester 98 was first
selectively hydrolyzed using aqueous NaOH in THF at a lowered temperature. The
carboxylic acid 99 was then converted to its acid chloride in situ, followed by a Friedel–
Crafts acylation with bis(trimethylsilyl)acetylene (BTMSA) to yield 100 in acceptable 59%
yield. The Midland (S)-Alpine-borane reagent was then applied to synthesize (S)-alcohol
101 in 93% enantiomeric excess and 95% yield. The alcohol in 101 was protected using
TBSCl and imidazole in CH2Cl2 to yield 102, followed by removal of the TMS group using
K2CO3 in MeOH to obtain terminal alkyne 103. Hydrostannylation of 103 yielded 104,
which was subjected to an in situ iodination protocol to prepare vinyl iodide 105. Vinyl
iodide 105 was in fact first reported in 2020 by Rodriguez and Spur for the total synthesis
of RvT1 (26) and RvT4 (29) [62]. The greatest difference between the two syntheses of
105 was the use of the Midland Alpine-borane reagent for the asymmetric reduction of
the acetylenic ketone herein rather than the ruthenium-catalyzed asymmetric reduction.
Also, the availability of reagents was crucial for choosing different reaction conditions
for the synthesis of vinyl iodide 105 herein. Next, a Sonogashira cross-coupling between
105 and trimethylsilylacetylene yielded crude 106, which was directly subjected to a TMS-
deprotection step to obtain terminal alkyne 97 in 81% yield. Vinyl iodide 95 and alkyne 97
were reacted in a Sonogashira cross-coupling reaction with Pd(PPh3)4 (3 mol%) and CuI
(9 mol%) as the catalysts of choice to afford the internal alkyne 107. The protection groups
were then removed with TBAF in THF to yield triol 108 in an excellent 93% yield.

For the Z-selective reduction of the internal alkyne in 108, several different strate-
gies were attempted [63,64] that proved problematic. No product formation was ob-
served using the Lindlar catalyst. The Karstedt platinum-catalyzed alkyne hydrosilyla-
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tion/protodesilylation protocol [60] was successful for the synthesis of structurally similar
RvD1n-3 DPA (19) [56]; hence, this reaction was attempted next for the Z-selective reduction
of 107. Using this procedure, the protodesilylation step could also remove the silyl ethers
in one pot. Unfortunately, the two-step reaction afforded a mixture of the desired product
109 and inseparable by-products. HPLC analysis revealed a chemical purity of disap-
pointingly 81% after extensive purification by flash chromatography utilizing different
combinations of eluent systems. Finally, a Z-selective hydrogenation protocol using potas-
sium cyanide and zinc in 1-propanol/H2O [65] yielded the natural product 20 (Scheme 15).
However, due to issues in the purification step, re-esterification with TMS-diazomethane
in toluene/MeOH was needed, which afforded the RvD2n-3 DPA methyl ester (109) in 59%
yield over the two steps and in >96% chemical purity based on HPLC analysis. Hydrolysis
of 109 to RvD2n-3 DPA (20) was performed just prior to matching experiments and biologi-
cal testing due to the inherent chemical-sensitive nature of this SPM. MRM LC-MS/MS
matching experiments were conducted that revealed that the synthetically produced ma-
terial 20 was indeed identical to that of biologically produced RvD2n-3 DPA (20). Also,
these studies confirmed the structure of 20 to be (7S,8E,10Z,12E,14E,16R,17S,19Z)-7,16,17-
trihydroxydocosa-8,10,12,14,19-pentaenoic acid (20).
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Reagents and conditions: (i) Zn/KCN, 1-propanol/H2O, then TMSCHN2, toluene/MeOH; (ii) LiOH
(aq), THF, −78 to 4 ◦C.

RvD2n-3 DPA (20) potently increased the uptake of the Gram-positive S. aureus bacteria
in macrophages [61]. The effects were dose-dependent, between 0.01 and 10 nM. Moreover,
using the same doses, macrophages pretreated with synthetic 20 also showed a statistically
significant increase in the digestion of zymosan A bioparticles, a type of macromolecules
derived from the yeast wall of Saccharomyces cerevisiae, thus providing evidence for its anti-
fungal activity as well [61]. The clearance of such pathogens and inflammatory molecules
by macrophages is a key step in the resolution phase of inflammation [66].

2.7. Synthesis and Biological Evaluations of RvD5n-3 DPA (21)

The stereoselective synthesis of RvD5n-3 DPA (21) was reported very recently [67]. This
convergent synthesis relied on the two key fragments, vinyl iodide 110 (Scheme 16) and
alkyne 115 (Scheme 17), which were combined in a Sonogashira cross-coupling reaction.
The synthesis of vinyl iodide 110 was achieved in seven steps starting from commer-
cially available and affordable (Z)-4-heptenal (111), as previously reported [68]. The most
prominent step herein was the Macmillan organocatalytic α-oxyamination reaction, which
afforded the diol 112 in 82% yield and 98% ee. Diastereomerically pure 110 was obtained
from diol 112 after an E-selective Takai olefination reaction as the most pivotal step.
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Sonogashira coupling with vinyl iodide 110 to yield the carbon backbone 116 in an ac-
ceptable 62% yield. The alkyne 115 is most likely highly unstable and prone to rapid de-
composition, hence the slightly modest yield in this step, although using 2.5 equivalents 
of 115. For the Z-selective reduction of the two internal alkynes in 116, the Lindlar hydro-
genation protocol was first attempted, but no reduction of the triple bonds was observed. 
A Z-selective hydrogenation protocol utilizing Pd/BaSO4/quinoline was then applied, 
which showed rapid and selective conversion of the two internal alkynes to the respective 
Z-alkenes and furnished compound 117 in 71% yield. Finally, a mild removal of the TBS-
ethers using catalytic amounts of acetyl chloride in dry MeOH afforded the RvD5n-3 DPA 
methyl ester (118) in 68% yield and chemical purity of 97% based on HPLC analysis. This 
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(ii) AgNO3, KCN, THF, EtOH, H2O; (iii) Pd(PPh3)2Cl2 (5 mol%), CuI (11 mol%), Et3N, vinyl iodide
110, THF; (iv) Pd/BaSO4, quinoline, EtOAc; (v) cat. AcCl, MeOH.

For the synthesis of the other fragment, alkyne 115, the known vinyl iodide 105 [61]
was reacted in a Sonogashira cross-coupling reaction with commercially available 113 to
afford the coupled product 114 in quantitative yields (Scheme 17). Next, compound 114 was
reacted with AgNO3 and KCN to gently remove the TMS-protection group and reveal the
terminal alkyne 115. Alkyne 115 was further reacted in another palladium-mediated Sono-
gashira coupling with vinyl iodide 110 to yield the carbon backbone 116 in an acceptable
62% yield. The alkyne 115 is most likely highly unstable and prone to rapid decomposition,
hence the slightly modest yield in this step, although using 2.5 equivalents of 115. For the
Z-selective reduction of the two internal alkynes in 116, the Lindlar hydrogenation protocol
was first attempted, but no reduction of the triple bonds was observed. A Z-selective
hydrogenation protocol utilizing Pd/BaSO4/quinoline was then applied, which showed
rapid and selective conversion of the two internal alkynes to the respective Z-alkenes and
furnished compound 117 in 71% yield. Finally, a mild removal of the TBS-ethers using
catalytic amounts of acetyl chloride in dry MeOH afforded the RvD5n-3 DPA methyl ester
(118) in 68% yield and chemical purity of 97% based on HPLC analysis. This convergent
synthesis achieved the methyl ester of RvD5n-3 DPA in 8% overall yield over 12 steps (longest
linear sequence).

Hydrolysis of the methyl ester 118 to RvD5n-3 DPA (21) was conducted just prior to
analyses due to the inherent chemically sensitive nature of this SPM. Firstly, matching
experiments with synthetic and biogenic 21 provided evidence for the right stereoisomer to
be synthesized. Next, agonism studies of RvD5n-3 DPA (21) with the human receptor GPR101
were measured. These results confirmed the nanomolar agonism of RvD5n-3 DPA (21) toward
this GPCR. Additionally, the anti-inflammatory, pro-resolution, and anti-bacterial effects of
21 [67] were evaluated and confirmed [69].

2.8. Synthesis and Biological Actions of RvT1 (26) and RvT4 (29)

Rodriguez and Spur reported the only total synthesis of RvT1 (26) and RvT4 (29) so far
in 2020 [62]. These two SPMs are structurally quite similar (see Scheme 4), and the authors
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came up with a clever solution where RvT1 (26) could be produced from synthetic RvT4
(29) by a lipoxygenation of the latter. One of the two key fragments in this synthesis, vinylic
iodide 105, was prepared in a nine-step sequence (Scheme 18), starting from dicarboxylic
acid 119. The diacid 119 was first esterified to yield the diester 98, followed by selective
hydrolysis of one of the methyl esters using porcine pancreatic lipase. The resulting product
99 was next transformed into the corresponding acid chloride 120, which was reacted in a
Friedel–Crafts acylation with bis(trimethylsilyl)acetylene (BTMSA) in the presence of AlCl3
to yield the propargyl ketone 100 in 65% yield over the two steps. A Noyori asymmetric
hydrogenation protocol was applied to introduce the (S)-alcohol at C7 in an excellent 97%
yield and >94% ee. TBS-protection of the alcohol, followed by TMS-deprotection of the
terminal acetylene, produced compound 103 in 91% yield over the two steps. Finally, a
standard hydrostannylation/iodination protocol afforded the vinyl iodide 105 in 83% yield.

Molecules 2024, 29, x FOR PEER REVIEW 20 of 28 
 

 

authors came up with a clever solution where RvT1 (26) could be produced from synthetic 
RvT4 (29) by a lipoxygenation of the latter. One of the two key fragments in this synthesis, 
vinylic iodide 105, was prepared in a nine-step sequence (Scheme 18), starting from dicar-
boxylic acid 119. The diacid 119 was first esterified to yield the diester 98, followed by 
selective hydrolysis of one of the methyl esters using porcine pancreatic lipase. The result-
ing product 99 was next transformed into the corresponding acid chloride 120, which was 
reacted in a Friedel–Crafts acylation with bis(trimethylsilyl)acetylene (BTMSA) in the 
presence of AlCl3 to yield the propargyl ketone 100 in 65% yield over the two steps. A 
Noyori asymmetric hydrogenation protocol was applied to introduce the (S)-alcohol at C7 
in an excellent 97% yield and >94% ee. TBS-protection of the alcohol, followed by TMS-
deprotection of the terminal acetylene, produced compound 103 in 91% yield over the two 
steps. Finally, a standard hydrostannylation/iodination protocol afforded the vinyl iodide 
105 in 83% yield. 

 
Scheme 18. Preparation of compound 105 needed for the total synthesis of RvT4 (29) and RvT1 (26) 
by Rodriguez and Spur [62]. Reagents and conditions: (i) TMSCl, 2,2-dimethoxypropane, CH3OH, 
rt; (ii) porcine pancreatic lipase, 0.05 M phosphate buffer pH 7, 1 N NaOH; (iii) (COCl)2, cat. DMF, 
CH2Cl2, rt; (iv) BTMSA, AlCl3, CH2Cl2, 0 °C; (v) RuCl[(S,S)-TsDPEN](p-cymene), cetrimonium bro-
mide (CTAB), HCOONa, H2O, EtOAc, rt; (vi) TBSCl, imidazole, 4-DMAP, CH2Cl2, 0 °C to rt; (vii) 
K2CO3, Na2SO4, CH3OH, rt; (viii) (Bu)3SnH, AIBN, benzene, reflux; (ix) I2, CH2Cl2, 0 °C. 

The other key fragment in this synthesis, terminal alkyne 121, was prepared starting 
from commercially available and optically pure glycidol derivative 122, which was reacted 
with trimethylsilylacetylene, n-BuLi, and BF3·Et2O to yield the secondary alcohol 123, as 
shown in Scheme 19. The secondary alcohol in 123 was then protected using TBSCl, imid-
azole, and 4-DMAP, followed by selective deprotection of the primary TBS-ether using 
CSA in CH2Cl2/MeOH. Treatment of the resulting alcohol 125 with Dess–Martin perio-
dinane yielded the corresponding aldehyde 126, which was reacted in an E-selective Wit-
tig reaction with (triphenylphosphoranylidene)acetaldehyde to obtain the α,β-unsatu-
rated aldehyde 127. A Z-selective Wittig reaction between 127 and known phosphorane 
67 provided compound 128 in 82% yield. Removal of the TMS-protection group revealed 
the terminal acetylene 121, which was next reacted with vinyl iodide 105 in a Sonogashira 
cross-coupling reaction, providing the whole carbon skeleton of the target compounds. 
The two TBS-protection groups in 129 were then removed using acetyl chloride in MeOH 
to yield diol 130. A Boland reduction protocol was applied to selectively reduce the inter-
nal triple bond in 130 to predominantly yield the Z-olefin 131. Hydrolysis of the methyl 
ester 131 afforded the desired natural product RvT4 (29). To obtain RvT1 (26), RvT4 (29) 
was subjected to a lipoxygenation using lipoxidase type I-B from soybean. After the re-
duction of the resulting hydroperoxide with tris(2-carboxyethyl)phosphine hydrochloride 
(TCEP-HCl), pure RvT1 (26) was obtained after HPLC purification and desalting.  

Scheme 18. Preparation of compound 105 needed for the total synthesis of RvT4 (29) and RvT1 (26)
by Rodriguez and Spur [62]. Reagents and conditions: (i) TMSCl, 2,2-dimethoxypropane, CH3OH,
rt; (ii) porcine pancreatic lipase, 0.05 M phosphate buffer pH 7, 1 N NaOH; (iii) (COCl)2, cat. DMF,
CH2Cl2, rt; (iv) BTMSA, AlCl3, CH2Cl2, 0 ◦C; (v) RuCl[(S,S)-TsDPEN](p-cymene), cetrimonium
bromide (CTAB), HCOONa, H2O, EtOAc, rt; (vi) TBSCl, imidazole, 4-DMAP, CH2Cl2, 0 ◦C to rt; (vii)
K2CO3, Na2SO4, CH3OH, rt; (viii) (Bu)3SnH, AIBN, benzene, reflux; (ix) I2, CH2Cl2, 0 ◦C.

The other key fragment in this synthesis, terminal alkyne 121, was prepared starting
from commercially available and optically pure glycidol derivative 122, which was reacted
with trimethylsilylacetylene, n-BuLi, and BF3·Et2O to yield the secondary alcohol 123,
as shown in Scheme 19. The secondary alcohol in 123 was then protected using TBSCl,
imidazole, and 4-DMAP, followed by selective deprotection of the primary TBS-ether using
CSA in CH2Cl2/MeOH. Treatment of the resulting alcohol 125 with Dess–Martin periodi-
nane yielded the corresponding aldehyde 126, which was reacted in an E-selective Wittig
reaction with (triphenylphosphoranylidene)acetaldehyde to obtain the α,β-unsaturated
aldehyde 127. A Z-selective Wittig reaction between 127 and known phosphorane 67
provided compound 128 in 82% yield. Removal of the TMS-protection group revealed the
terminal acetylene 121, which was next reacted with vinyl iodide 105 in a Sonogashira
cross-coupling reaction, providing the whole carbon skeleton of the target compounds. The
two TBS-protection groups in 129 were then removed using acetyl chloride in MeOH to
yield diol 130. A Boland reduction protocol was applied to selectively reduce the internal
triple bond in 130 to predominantly yield the Z-olefin 131. Hydrolysis of the methyl ester
131 afforded the desired natural product RvT4 (29). To obtain RvT1 (26), RvT4 (29) was sub-
jected to a lipoxygenation using lipoxidase type I-B from soybean. After the reduction of the
resulting hydroperoxide with tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl),
pure RvT1 (26) was obtained after HPLC purification and desalting.
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Scheme 19. Preparation of the ꞷ-fragment 121 and coupling of fragments to complete the synthesis 
of RvT4 (29). RvT1 (26) was prepared from enzymatic hydroxylation of RvT4 (29) [62]. Reagents and 
conditions: (i) Trimethylsilylacetylene, n-BuLi, BF3·Et2O, THF, –78 °C; (ii) TBSCl, imidazole, 4-
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0 °C to rt; (x) Zn(Cu/Ag), CH3OH, H2O, 40–45 °C; (xi) 1 N LiOH, MeOH/H2O 1/1, 0 °C to rt; (xii) 
lipoxidase type I-B from soybean, 0.01 M borate buffer pH 10.7, rt; (xiii) TCEP-HCl, rt. 

Patients with rheumatoid arthritis have an increased risk of developing cardiovascu-
lar diseases, including atherosclerosis. To this end, RvT4 (29) recently proved to enhance 
macrophage cholesterol efflux in arthritic mice to reduce vascular diseases and thus limit 
morbidity in inflammatory arthritis [70].  

2.9. Synthesis of RvT2 (27) and Biological Actions of the RvTs 
Rodriguez and Spur have disclosed the hitherto only synthesis of RvT2 (27) [71]. The 

synthesis commenced with the preparation of aldehyde 132 (Scheme 20). Firstly, commer-
cially available S-(−)-1,2,4-butanetriol was transformed to the corresponding crystalline 
phosphonium iodide 133 and thus reacted with aldehyde 134 in a Wittig reaction to afford 
olefin 135. The double bond was next reduced using platinum on carbon under a hydro-
gen atmosphere to yield the saturated compound 136 in quantitative yield. Removal of 
the acetonide-protection group using diluted HCl, followed by TBS-protection, yielded 
the desired silylated compound 138. Selective removal of the TBS-ether of the primary 
alcohol to yield 139 was achieved in an acceptable 49% yield. Finally, oxidation of the 
primary alcohol 139 using Dess–Martin periodinane afforded compound 132.  

Scheme 19. Preparation of the ω-fragment 121 and coupling of fragments to complete the synthesis
of RvT4 (29). RvT1 (26) was prepared from enzymatic hydroxylation of RvT4 (29) [62]. Reagents and
conditions: (i) Trimethylsilylacetylene, n-BuLi, BF3·Et2O, THF, –78 ◦C; (ii) TBSCl, imidazole, 4-DMAP,
CH2Cl2, 0 ◦C to rt; (iii) CSA, CH2Cl2/MeOH 1/1, 0 ◦C; (iv) Dess–Martin periodinane, CH2Cl2, rt;
(v) (Triphenylphosphoranylidene)acetaldehyde, MeCN, 30 ◦C; (vi) 67, n-BuLi, THF, –78 ◦C to 0 ◦C;
(vii) K2CO3, CH3OH, rt; (viii) 105, Pd(PPh3)4, CuI, piperidine, benzene, rt; (ix) CH3COCl, MeOH,
0 ◦C to rt; (x) Zn(Cu/Ag), CH3OH, H2O, 40–45 ◦C; (xi) 1 N LiOH, MeOH/H2O 1/1, 0 ◦C to rt; (xii)
lipoxidase type I-B from soybean, 0.01 M borate buffer pH 10.7, rt; (xiii) TCEP-HCl, rt.

Patients with rheumatoid arthritis have an increased risk of developing cardiovascular
diseases, including atherosclerosis. To this end, RvT4 (29) recently proved to enhance
macrophage cholesterol efflux in arthritic mice to reduce vascular diseases and thus limit
morbidity in inflammatory arthritis [70].

2.9. Synthesis of RvT2 (27) and Biological Actions of the RvTs

Rodriguez and Spur have disclosed the hitherto only synthesis of RvT2 (27) [71]. The
synthesis commenced with the preparation of aldehyde 132 (Scheme 20). Firstly, commer-
cially available S-(−)-1,2,4-butanetriol was transformed to the corresponding crystalline
phosphonium iodide 133 and thus reacted with aldehyde 134 in a Wittig reaction to afford
olefin 135. The double bond was next reduced using platinum on carbon under a hydrogen
atmosphere to yield the saturated compound 136 in quantitative yield. Removal of the
acetonide-protection group using diluted HCl, followed by TBS-protection, yielded the
desired silylated compound 138. Selective removal of the TBS-ether of the primary alcohol
to yield 139 was achieved in an acceptable 49% yield. Finally, oxidation of the primary
alcohol 139 using Dess–Martin periodinane afforded compound 132.

The synthesis of the other key fragment in this synthesis, the Wittig salt 140, began
with the reaction of L-(+)-ribose (141) with methyl (triphenylphosphoranylidene)acetate, as
shown in Scheme 21. This E-selective Wittig reaction yielded 142, which was used directly
in the next step to yield the diacetonide-protected compound 143. Selective removal of
the terminal acetonide using amberlyst® 15 yielded compound 144. Cleavage of the diol
using NaIO4 afforded aldehyde 145, which was reacted in an E-selective Wittig reaction
with (triphenylphosphoranylidene)acetaldehyde to yield 146 and then further subjected to
a Z-selective Wittig reaction with the ylide prepared from phosphonium iodide 67. The
product herein, 147, was reduced with DIBAL-H at low temperature to convert the ester
moiety to the corresponding alcohol. The resulting alcohol 148 was then transformed to
the Wittig salt 140 and reacted with aldehyde 132 in a new Z-selective Wittig reaction to
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provide 149 in 29%, containing the carbon backbone of the target compound. Finally, acidic
removal of the acetonide-protection group, followed by basic hydrolysis of the methyl ester,
provided the natural product RvT2 (27). Also, the synthesis of the 13(R)-epimer of RvT2
(27) was reported by Rodriguez and Spur by following the same synthetic route as for 27,
starting from D-(−)-arabinose instead of L-(+)-ribose (141) [71].
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Scheme 21. Synthesis of compound 140 and coupling of fragments to furnish RvT2 (27) [71]. Reagents
and conditions: (i) methyl (triphenylphosphoranylidene)acetate, benzoic acid, 1,4-dioxane, reflux;
(ii) acetone/2,2-dimethoxypropane (2/1), p-toluenesulfonic acid, rt; (iii) amberlyst® 15, MeOH/H2O
9/1, rt; (iv) NaIO4, CH3OH/H2O 10/4, 0 ◦C to rt; (v) (triphenylphosphoranylidene)acetaldehyde,
benzene, rt; (vi) 67, n-BuLi, THF, −78 ◦C to −20 ◦C; (vii) DIBAL-H, CH2Cl2, −78 ◦C to −20 ◦C;
(viii) CBr4, Ph3P, CH2Cl2, 0 ◦C; (ix) Ph3P, CH2Cl2, 0 ◦C to rt; (x) 132, KHMDS, THF, −78 ◦C to −20 ◦C;
(xi) 2 N HCl, MeOH, 0 ◦C to rt, 76%; (xii) 1 N LiOH, MeOH/H2O 2/1, 0 ◦C to rt.
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Recently, the SPMs 26–29 were reported to reduce neutrophil extracellular traps (NETs)
in human blood [72]. The formation of NETs is primarily through a cell death process called
NETosis [73] and is a way for neutrophils to protect the host against invading pathogens.
NETs can trap microbes [74]; however, excessive formation is known to be a source of
collateral tissue damage in the pathology of an array of diseases [75–80]. This phenomenon
is especially known in SARS-CoV-2 infections [81] and acute respiratory distress syndrome
(ARDS) [82]. Hence, the role of the RvTs in decreasing NETosis could be utilized to find a
new approach for treating such infections in the future. As of today, no details on the total
synthesis of RvT3 (28) have been reported.

2.10. Synthesis and Biological Actions of the ω-22 Monohydroxylated Metabolite 22-OH-PD1 (151)

At the current time, few reports exist on the further metabolism of n-3 DPA-derived
SPMs. However, the further metabolism of 11 has been studied, which showed that the
monohydroxy metabolite named 22-OH-PD1n-3 DPA (151) was formed in human serum and
neutrophils (Scheme 22). The Hansen group exploited the similarity with PD1n-3 DPA (11) to
synthesize its ω-oxidation further metabolite 151 [83]. Known aldehyde 66 [57] was reacted
in a Z-selective Wittig reaction with the ylide of commercially available 152, the latter
obtained after reaction with NaHMDS, to obtain Z-olefin 153 in 74% yield. Compound
153 was next reacted in a palladium-mediated Sonogashira cross-coupling reaction with
compound 44 to nicely yield the coupled product 154. The three TBS-ethers in 154 were
then removed using excess TBAF to afford triol 155, which was further subjected to a
Boland reduction protocol to yield 22-OH-PD1n-3 DPA methyl ester (156) in an acceptable
46% yield. Finally, a saponification of the methyl ester in 156 yielded the metabolite 151 in
90% yield and 94% chemical purity (based on HPLC).
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Scheme 22. Synthesis of the ω-22 monohydroxylated metabolite 151 [83]. Reagents and condi-
tions: (i) NaHMDS, THF, HMPA, −78 ◦C; (ii) Pd(PPh3)4, CuI, Et2NH, rt; (iii) TBAF, THF, −78 ◦C;
(iv) Zn(Cu/Ag), MeOH/H2O, rt; (v) LiOH, MeOH, H2O, 0 ◦C. The synthesis of compound 44 is
presented in Scheme 6.

Since SPMs are formed in nano- to picogram amounts at the site of injury, SPM
metabolites are even more challenging to isolate and characterize. Hence, LC/MS-MS data
were attained that showed that the biosynthetic and synthetic materials of 151 matched data
from MRM experiments [83]. Biosynthetic studies with human neutrophils and human
monocytes revealed in both experiments the direct formation of 22-OH-PD1n-3 DPA (151)
from PD1n-3 DPA (11) [83]. Moreover, studies adding n-3 DPA to human neutrophils also
allowed the detection of the metabolite 151 and its precursor PD1n-3 DPA (11) [83].
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3. Conclusions

n-3 DPA is a PUFA that has gained an increased interest in biomedical and life science
research [84]. Biosynthetic studies in the presence of this PUFA and several oxygenase
enzymes enabled the discovery of seven resolvins, three maresins, and two protectins [85],
whereas ten of these have been prepared and confirmed by stereoselective total synthe-
sis [45,55–57,59,61,62,67,71]. However, based on the chemical structure of n-3 DPA and
the catalytic mechanisms of LOXs, several additional new DPA-derived SPMs are envi-
sioned. Among those, sulfido-conjugated n-3 DPA-derived SPMs, similar to their original
congeners, should be formed since epoxides are intermediates [36,37]. Moreover, the n-3
DPA-derived families of SPMs should also be attractive as substrates for receptor and
metabolism studies, where less knowledge is available at this point. As of today, only
the metabolite of PD1n-3 DPA (11), named 22-OH-PD1n-3 DPA (151), has been reported and
studied [83]. The biological evaluations of simpler chemical synthetic analogs of the 12
n-3 DPA-derived SPMs known will also be of future interest. Some studies have emerged
recently [86,87]. However, success in such endeavors is dependent on stereoselective syn-
thesis of the native SPMs highlighted herein, but also the synthesis of isomers [88] and
analogs [86], in particular since SPMs are produced in nanogram amounts in living systems,
making NMR studies for their exact structural elucidation impossible to perform [89].
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