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Abstract: Background: Peru is one of the most biodiverse countries in the world, which is reflected in
its wealth of knowledge about medicinal plants. However, there is a lack of information regarding
intestinal absorption and the permeability of natural products. The human colon adenocarcinoma
cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims
to develop a quantitative structure–property relationship (QSPR) model using machine learning
algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru.
Methods: A dataset of 1817 compounds, including experimental log Papp values and molecular
descriptors, was utilized. Six QSPR models were constructed: a multiple linear regression (MLR)
model, a partial least squares regression (PLS) model, a support vector machine regression (SVM)
model, a random forest (RF) model, a gradient boosting machine (GBM) model, and an SVM–RF–
GBM model. Results: An evaluation of the testing set revealed that the MLR and PLS models
exhibited an RMSE = 0.47 and R2 = 0.63. In contrast, the SVM, RF, and GBM models showcased
an RMSE = 0.39–0.40 and R2 = 0.73–0.74. Notably, the SVM–RF–GBM model demonstrated superior
performance, with an RMSE = 0.38 and R2 = 0.76. The model predicted log Papp values for 502 natural
products falling within the applicability domain, with 68.9% (n = 346) showing high permeability,
suggesting the potential for intestinal absorption. Additionally, we categorized the natural products
into six metabolic pathways and assessed their drug-likeness. Conclusions: Our results provide
insights into the potential intestinal absorption of natural products in Peru, thus facilitating drug
development and pharmaceutical discovery efforts.

Keywords: Caco-2 cell line; permeability; intestinal absorption; bioavailability; machine learning;
molecular descriptor; drug discovery; natural products

1. Introduction

Peru is one of the most biodiverse countries in the world, because it possesses over
70% of the planet’s biodiversity, which is represented in a variety of ecosystems [1]. The
richness of this diversity is reflected in the country’s wealth of knowledge about medicinal
plants, which has been passed down by several generations for treating various condi-
tions [2]. Some examples include Uncaria tomentosa (“Uña de gato”), which is used for
treating various health problems, such as gastric ulcers, viral infections, arthritis, and other
inflammatory problems [3]; Plukenetia volubilis (“Sacha inchi”), which is traditionally used
for skin care to soften skin, heal wounds, and treat insect bites and skin infections [4]; and
Hypericum laricifolium (“Hierba de la fortuna”), which used for inflammation, infections,
and musculoskeletal and bone pain [5]. However, there is a lack of information regarding
the pharmacological properties, safety, and efficacy of natural products present in natural
resources used in oral administration [6,7].

Natural products are organic compounds obtained from natural resources, such as
plants, animals, and microorganisms that exhibit biological activities [8,9]. Historically,
they have been used as the primary source of compounds for medicines, cosmetics, and
food products [10]. They can be classified into primary and secondary metabolites [11].
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Secondary metabolites are compounds that may provide an evolutionary advantage due
to the organism adapting to its environment [8,11], and they are derived from biosyn-
thetic intermediates, such as acetyl coenzyme A, shikimic acid, mevalonic acid, and 1-
deoxyxylulose-5-phosphate [8,9]. Natural products can be categorized into six metabolic
pathways: terpenoids, polyketides, fatty acids, alkaloids, shikimates and phenylpropanoids,
and amino acids and peptides [12].

The gastrointestinal tract is a channel lined with epithelium that extends from the
mouth to the anus and is responsible for food digestion, nutrient absorption, waste product
excretion, and water reabsorption [13]. The absorptive region, which includes the stomach,
small intestine, and part of the large intestine, is composed of a layer of epithelial cells called
enterocytes [13]. Enterocytes represent the largest population of intestinal cells, presenting
an apical membrane facing the gastrointestinal lumen and a basolateral membrane facing
the serosal side [13,14]. The intestinal barrier separates the intestinal lumen from the internal
host, facilitating the exchange of molecules and nutrient absorption, while preventing water
and electrolyte loss, and the entry of antigens and microorganisms into the body [15,16].

The efficacy of oral drug administration relies on intestinal absorption of the com-
pound [17]. According to the Biopharmaceutics Classification System, aqueous solubility
and permeability are properties that influence oral absorption [18]. Intestinal permeability
is a property that describes the facility with which molecules pass through the intestinal
epithelium via simple passive diffusion [13]. It is classified into effective permeability or the
human jejunal permeability rate, which is determined from intestinal perfusion studies [19],
and the apparent permeability (Papp), which is the amount of compound transported per
unit of time.

The human colon adenocarcinoma cell line (Caco-2) is commonly used as an in vitro
assay to measure apparent permeability, due to its physiological and morphological prop-
erties, similar to enterocytes [20]. However, this assay is time consuming due to the long
culture periods between 21 and 24 days, making it challenging to perform high-throughput
screening [21]. An alternative approach for predicting apparent permeability in the Caco-2
cell line is quantitative structure–property relationship (QSPR) modeling. It is a mathemati-
cal model that correlates experimental values with chemical structure features to predict
the properties of new chemical entities [22]. Chemical structure features are represented by
numerical physicochemical parameters called molecular descriptors. Molecular descriptors
are determined experimentally or computationally, and are utilized in the development
QSPR models [22].

Machine learning (ML) is a technique that uses algorithms to analyze data, learn from
it, and then make predictions about new datasets [23]. ML is widely used in all stages
of drug discovery, including ligand identification, target validation, and identification
of prognostic biomarkers [23]. ML is divided into supervised learning methods, which
are used to develop training models to predict future values, and unsupervised learning
methods, which enable the clustering of data [23]. ML models have been utilized in QSPR
studies to predict the apparent permeability of Caco-2 cells. One of the pioneering efforts
was that by Norinder et al. [24], who developed a PLS model using 17 compounds. Since
this initial study, the availability of experimental data has increased, leading to a growth
in QSPR studies aimed at predicting Caco-2 cell permeability, involving varying in data
sizes, descriptor types and quantities, and modeling methods. Various types of descriptors,
encompassing both 2D and 3D molecular descriptors, have been utilized, and a range of
regression algorithms have been employed, including multiple linear regression (MLR),
partial least squares (PLS), support vector machine (SVM), random forest (RF) [20,21,25–27],
and gradient boosting [28].

There is a need to obtain more pharmacological information on natural products,
such as apparent permeability, which is highly correlated with intestinal absorption and
determines the efficacy of orally administered compounds. This study focuses on the
development of QSPR models using ML algorithms to correlate experimental values on the
apparent permeability in the Caco-2 cell line with calculated molecular descriptors. Then,
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the best-performing QSPR model is utilized to predict the apparent permeability of natural
products from the biodiversity in Peru. These findings will allow the pharmacokinetic
and pharmacodynamic properties of natural products to be inferred, such as absorption
and potential bioavailability, providing insights into the compounds responsible for the
pharmacological activity of natural resources.

2. Results and Discussion
2.1. Analysis of the Datasets

In this study, we employed a dataset source from the literature [28] comprising of
1817 unique compounds. The diversity of the dataset was evaluated based on five physic-
ochemical properties: molecular weight (MW) (437.95 ± 152), logP (1.56 ± 2.0), number
of hydrogen acceptors (7.24 ± 3.8), number of hydrogen donors (2.81 ± 2.6), topological
surface area (TPSA) (106.51 ± 59.3), and number of rotatable bonds (6.23 ± 4.3). The log
Papp values exhibited a mean of −5.34, ranging from a minimum of −7.70 to a maximum
of −3.78. Both the training and testing sets exhibited a comparable distribution of log Papp
values, as illustrated in Figure 1a. Additionally, principal component analysis (PCA) was
performed using 41 selected descriptors. The first 40 principal components (PCs), which
explained 99.8% of the cumulative variance, were plotted in pairs along the x-axis and
y-axis (Figure S3). Furthermore, the first four PCs are plotted in Figure 1b,c. This analysis
validated the suitability of the partitioning of our datasets, as the chemical space for both
the training and testing sets exhibited a similarity. Consequently, the testing set, utilized
for external validation, adequately represented the distribution of the log Papp values and
chemical space present in the training set.
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sets; (b) PCA plot for PC1 and PC2 based on 41 selected descriptors; (c) PCA plot for PC3 and PC4
based on 41 selected descriptors. Training set (red) and testing set (blue).

2.2. Feature Selection and Development of QSPR Models

To evaluate the impact of our feature selection approach, we developed six QSPR mod-
els: MLR, PLS, SVM, RF, GBM, and SVM–RF–GBM. These models were constructed using
three different datasets: a dataset without feature selection (523 predictors), a dataset with
RFE (60 predictors), and a dataset with both RFE and GA (41 predictors). We evaluated the
performance of each model using RMSE and R2 metrics for the training set, cross-validation,
and testing set to evaluate the performance of each model (Tables S5, S6 and 1). Superior
model performance is indicated by low RMSE values and high R2 values, while inferior
performance is characterized by high RMSE values and low R2 values. Our results indicated
that the performance metrics across the three datasets were quite similar for each model.
This suggests that our feature selection approach effectively reduced the model complexity
by eliminating less important predictors, while preserving the predictive performance. Con-
sequently, we selected the RFE–GA approach, which identified 41 molecular descriptors
for subsequent analysis.

The MLR and PLS models exhibited similar predictive capabilities, as observed from
their RMSE and R2 values across the training, testing, and cross-validation sets. Both
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models demonstrated the lowest performance, with the highest RMSE and lowest R2 values
(RMSETest = 0.47 and R2

Test = 0.63). The SVM, RF, and GBM models showed enhanced
predicted performance (RMSETest = 0.40, 0.39, and 0.39, respectively, R2 = 0.73, 0.74,
and 0.74, respectively). To further improve the predictive capacity, an ensemble of SVM,
RF, and GBM was utilized to create the SVM–RF–GBM model, which exhibited superior
performance (RMSETest = 0.38 and R2 = 0.76) and was selected for subsequent analysis
(Figure 2 and Table S7). These results suggest that the apparent permeability in Caco-2 cells
is influenced by multiple variables with non-linear relationships. The SVM–RF–GBM model
demonstrates a predictive capability comparable to that reported by Wang and Chen [28],
with similar R2 values and a marginally lower RMSE in this study (Table 1), despite
employing different modeling approaches. These findings imply that there is a multivariate
explanation for apparent permeability, as it is influenced by 41 molecular descriptors.
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Table 1. Metrics for training set, testing set, and cross-validation, along with hyperparameters,
employing RFE and GA for feature selection.

Model RMSETrain R2
Train RMSECV R2

CV RMSETest R2
Test Hyperparameters

MLR 0.43 0.70 0.44 0.68 0.47 0.63 -
PLS 0.43 0.70 0.44 0.68 0.47 0.63 ncomp = 11
SVM 0.28 0.87 0.40 0.74 0.40 0.73 sigma = 0.015, C = 2
RF 0.16 0.97 0.40 0.75 0.39 0.74 mtry = 18

GBM 0.19 0.94 0.40 0.74 0.39 0.74 n.trees = 100, interaction.depth = 16
SVM–RF–GBM 0.19 0.94 0.38 0.76 0.38 0.76 -
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2.3. Mechanism Interpretation

In accordance with the OECD guidelines, a QSPR study should include mechanism
interpretation whenever possible. Apparent permeability quantifies the transport rate of
a compound across Caco-2 cells over time, facilitating the inference of pharmacological
parameters, such as absorption and bioavailability [29].

Table 2 reveals that the top ten descriptors that are predominantly associated with
hydrogen bonds, including maxHBint7, maxHBint5, maxHBint9, maxHBint3, Eta_D_epsiD,
and maxHBd, consistent with the findings by Wang and Chen [28]. Additionally, descriptors
related to lipophilicity, such as AlogP and electrotopological state indices (E-state) [30],
offer electronic and topological insights into the molecular structure. E-state indices are
classified into four groups: E-state sums, Atom-type counts, the E-state minimum, and the
E-state maximum [30,31].

Table 2. The ten best molecular descriptors according to the SVM–RF–GBM model.

Molecular Descriptor Group r Description

maxHBint7 E-state −0.50 Maximum E-state descriptors of strength for potential hydrogen bonds of
path length 7

ALogP Constitucional 0.46 Ghose-Crippen LogKow
SpMAD_Dzs Barysz matrix −0.43 Spectral mean absolute deviation from Barysz matrix/weighted by I-state

maxHBint5 E-state −0.48 Maximum E-state descriptors of strength for potential hydrogen bonds of
path length 5

maxHBint9 E-state −0.47 Maximum E-state descriptors of strength for potential hydrogen Bonds of
path length 9

Eta_D_epsiD ETA index −0.39 Eta measure of hydrogen bond donor atoms

maxHBint3 E-state −0.46 Maximum E-state descriptors of strength for potential hydrogen bonds of
path length 3

SHED_DL Pharmacophore descriptor −0.47 SHED donor–lipophilic
maxHBd E-state −0.35 Maximum E-states for (strong) hydrogen bond donors

Hypertens.80 Drug-like index 0.41 Ghose–Viswanadhan–Wendoloski antihypertensive-like index at 80%

r: Pearson’s correlation coefficient.

According to the QSPR SVM–RF–GBM model, the top ten molecular descriptors
exhibit moderate to low linear correlation (Table 2) with the experimental log Papp values,
as indicated by the Pearson correlation coefficient (r). The importance of the variables for
each model are detailed in the supplementary information (Figures S4 and S5). Furthermore,
the 41 molecular descriptors demonstrated moderate, low, or no linear correlation with
the experimental log Papp values, as depicted in the scatter plot (Figures S6 and S7).
Additionally, outliers are observed.

2.4. Applicability Domain of the SVM–RF–GBM Model

The applicability domain determines the compounds for which the log Papp predic-
tions may not be reliable, in accordance with the third criterion in the OECD principles [32].
Leverage values for both the training and testing sets were obtained by calculating the hat
matrix of the training set. The Williams plot exhibited x-axis leverages and y-axis stan-
dardized residuals. The horizontal dashed lines indicate a standard residual of ±3, while
the vertical dashed line denotes the warning leverage, h* = 0.0866, indicating the limits
of the applicability domain. According to the Williams plot, 38 outliers were identified
outside the applicability domain, 31 (2.13%) outliers of which were from the training set
and 7 (1.93%) of which were from the testing set (Figure 3).
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2.5. Comparative Analysis of the SVM–RF–GBM Model and the Other Models

We compared our results with those of previous QSPR investigations targeting the
prediction of log Papp values in Caco-2 cells (Table 3). This comparison encompassed
details such as the methodology employed, molecular descriptors utilized, number size,
and RMSETest and R2

Test values. Our methodology used a combination of 2D and 3D de-
scriptors sourced from PaDEL-Descriptor and alvaDesc, drawing from a substantial dataset
comprising 1817 compounds. In contrast, the study conducted by Wang and Chen [28]
employed a dual-RBF neural network model utilizing only 2D descriptors, achieving a
similar performance, with an RMSETest of 0.39 and an R2

Test of 0.76. Other investigations
featured QSPR models constructed with smaller sample sizes, thereby limiting the diversity
of the compounds amenable to prediction.

Table 3. Comparative results of QSPR studies.

Study Method Descriptors N RMSETest R2
Test Reference

This study SVM–RF–GBM 2D and 3D descriptors from
PaDEL-Descriptor and alvaDesc 1817 0.38 0.76 -

Wang and Chen, 2020 Dual-RBF neural
network

2D descriptors from
PaDEL-Descriptor 1827 0.39 0.76 [28]

Wang et al., 2016 Boosting 2D and 3D MOE descriptors 1017 0.31 0.812 [21]

Lanevskij et al., 2019 Non-linear least
squares log Do/w, pKa, NHD, Vx 442 0.49 0.77 [20]

2.6. Prediction of Log Papp Values for Natural Products from Peru

The SVM–RF–GBM model predicted the log Papp values of 516 natural products sourced
from the biodiversity in Peru. However, 14 compounds were excluded due to falling outside
the applicability domain based on the warning leverage, h* = 0.0866, which defines the
boundary. One duplicate compound (gallic acid) was removed as it appeared in two differ-
ent articles. Subsequently, the remaining 13 compounds outside the applicability domain
were removed (Figure 4): SCH 644343, SCH 644342, hexahydroxydiphenic acid (HHDP),
cinchonain Ib, gallic acid, 2,4,6-trihydroxybenzaldehyde (THBAL), 2,4,6-trihydroxybenzoic
acid (THBA), ariakemycin A, ariakemycin B, pumilacidin C, pumilacidin E, cubene, and
crofelemer. The final dataset, used for further analysis, comprised 502 compounds.
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The distribution of the log Papp values revealed that 68.93% (n = 346) of the com-
pounds exhibited values greater than −5, classifying them as having high intestinal ab-
sorption [33]. Another 21.51% (n = 108) fell within the range between −6 to −5, indicating
medium intestinal absorption. Finally, 9.56% (n = 48) of the compounds had Log Papp
values below −6, suggesting low intestinal absorption. The log Papp value distribution
showed a mean log Papp value of −4.91, with values ranging from −6.59 (minimum) to
−3.99 (maximum) (Figure 5a).

The natural products were classified into six metabolic pathways: alkaloids, fatty acids,
polyketides, terpenoids, shikimates and phenylpropanoids, and amino acids and peptides
(Figure 5b). The natural products showed a diverse distribution of the log Papp values in
each pathway, encompassing high, medium, and low apparent permeability. For a clearer
overview of the compounds characterized by high permeability, each metabolic pathway
was further subdivided into chemical groups, with the exception of polyketides and amino
acids and peptides. Upon analyzing these chemical groups, 11 groups primarily exhib-
ited high apparent permeability (log Papp > −5) [33] (Figure 5c). These groups included
apocarotenoids, fatty esters, monoterpenoids, diterpenoids, sesquiterpenoids, fatty acyls,
lysine alkaloids and pseudoalkaloids, and polyketides, indicating the potential for high
intestinal absorption via passive transport. Additionally, eight groups showed a distribu-
tion of log Papp values primarily in the medium to high permeability range, encompassing
phenylpropanoids, stilbenoids, phenolic acids, coumarins and diarylheptanoids, lignans,
isoflavonoids, fatty acids and conjugates, and fatty amides. The remaining eight groups
demonstrated a mixed distribution, with compounds falling into low, medium, and high
log Papp categories, including tryptophan alkaloids, tyrosine alkaloids, meroterpenoids
and triterpenoids, steroids, ornithine alkaloids, flavonoids, amino acids and peptides,
and xanthones.

In the terpenoid pathway, apocarotenoids, meroterpenoids, diterpenoids, and sesquiter-
penoids primarily exhibited high apparent permeability. In the fatty acid pathway, fatty
esters and fatty acyls showed high permeability. Phenolic compounds, which constitute
the largest group of secondary metabolites in plants, are primarily derived from the shiki-
mate and phenylpropanoid pathway [34]. These compounds exhibited distributions of
low, medium, and high apparent permeability, aligning with the chemical diversity of
this group. Furthermore, we identified 50 compounds containing glycosidic bonds, with
the majority falling into the low permeability category (n = 28), followed by the medium
permeability category (n = 9), and the high permeability category (n = 13).
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For a compound to cross the intestinal barrier, it must possess a certain degree of
lipophilicity, while maintaining solubility in water. Compounds need to be dissolved in an
aqueous medium to pass through the lipid bilayer of enterocytes. Some examples of natural
products displaying high apparent permeability include α-ionone, R-(−)-Linalool, and
methylcativate. These compounds are characterized by a predominance of hydrophobic
regions, such as methyls, cyclohexanes, alkanes, and alkenes, facilitating the crossing of the
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lipid bilayer. Additionally, they contain few polar groups like carbonyl, hydroxyl, and ester
groups, enabling the formation of hydrogen bonds with water molecules and providing
solubility in an aqueous medium. Conversely, compounds with low apparent permeability,
such as betacyanin, luteolin-7-O-glucoside, and genistin, are marked by the presence of
numerous polar groups, such as carboxyl, hydroxyl, ether, and carbonyl, alongside fewer
hydrophobic regions, leading to low lipophilicity and, subsequently, reducing the ability to
cross the lipid bilayer [35].

2.7. Evaluation of Drug-Likeness of Natural Products

Assessing the drug-likeness of natural products is a pivotal step for predicting their
potential as orally administered drug. The apparent permeability in Caco-2 cell lines
serves as an indicator of intestinal absorption, a critical factor in the efficacy of orally
administrated medications. Permeability is characterized by various physicochemical
properties, including the molecular weight (MW), the octanol–water partition coefficient
(logP), the number of hydrogen bond donors (HBDs), the number of hydrogen bond
acceptors (HBAs), the topological surface area (TPSA), and the number of rotatable bonds
(RBNs), all of which are known to influence intestinal permeability [36,37]. The Lipinski
rule of five (Ro5) [36] is a well-established set of criteria utilized for assessing permeability
in oral drugs, encompassing parameters such as MW ≤ 500, ClogP ≤ 5 (or MLogP ≤ 4.15),
HBD ≤ 5, and HBA ≤ 10. Veber et al. [37] expanded upon these criteria, including
TPSA ≤ 140 and RBN ≤ 10.

In this study, we characterized our natural product dataset using these six physico-
chemical descriptors (Figure 6). About 75.5% (n = 374) of the natural products exhibited
an MlogP < 5, 90.0% (n = 452) had an MW ≤ 500, 90.4% (n = 454) met the criteria for a
HBA ≤ 10, 88.2% (n = 443) satisfied a HBD ≤ 5, 79.4% (n = 399) possessed an RBN ≤ 10,
and 86.4% (n = 434) adhered to a TPSA ≤ 140. Moreover, 90% (n = 450) of the natural
products in our dataset conformed to the Ro5 requirement for oral bioavailability, while
10% (n = 52) fell outside the Ro5 boundary in regard to at least one molecular property
(Figure 7a). These results suggest that the majority of natural products in our dataset are
suitable for oral administration.
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Figure 7. (a) Bar chat depicting the compliance of natural products with Ro5; (b) distribution
of predicted log Papp values among natural products categorized according to their compliance
with Ro5.

Additionally, 99.4% (n = 344) of the natural products with high apparent permeability
(log Papp > −5) conformed to the Ro5 requirement (Figure 7b), further supporting their
suitability for oral administration and validating the predicted log Papp values generated
by our SVM–RF–GBM model for crossing the intestinal barrier.

To gain a deeper understating of compounds well suited for oral administration
based on the predicted log Papp values of our natural product dataset, we employed eight
drug-likeness scores (DLSs). These indices are defined as the ratio between the number of
satisfied rules (nRules) and the total number of rules (tRules) (Equation (1)) [38], as follows:

DLS =
nRules
tRules

(1)

• DLS_01 is derived from a modified version of Ro5 [36], comprising four rules, accord-
ing to Equation (1);

• DLS_02 is defined by six rules, including a HBD ≤ 5, a HBA in the range 1–8, an MW
in the range 200–450, an MlogP in the range −2.0–4.5, an RBN in the range from 1–9,
and the number of rings ≤ 5 [39];

• DLS_03 incorporates criteria such as a HBD ≤ 5, a HBA ≤ 10, an MW from 200 to
500, an MlogP in the range −5.0–5.0, an RBN ≤ 8, and a formal charge in the range
−2–2 [40];

• DLS_04 is defined by parameters including a HBD ≤ 5, a HBA in the range 2–10, an
MW in the range 78–500, an MlogP in the range −0.5–5.0, the ratio of the number of
Csp3 atoms to the total number of non-halogen atoms in the range 0.15–0.8, the ratio of
the number of hydrogen atoms to the total number of non-halogen atoms in the range
0.6–1.6, and the ratio of molecular unsaturation (Unsat-p) in the range 0.10–0.45 [41];

• DLS_05 relies on criteria such as the ratio of the total number of oxygen and nitro-
gen atoms and the number of Csp3 atoms in the range 0.10–1.80, and a descriptor
Unsat-p ≤ 0.43 [42];

• DLS_06 is based on a HBD ≤ 5, a HBA ≤ 10, an MW ≤ 500, an MlogP ≤ 5, an
RBN ≤ 10, and a TPSA ≤ 140 [43];

• DLS_07 is based on the criteria of an RBN ≤ 10, and a TPSA ≤ 140 [37];
• DLS_cons represents the average drug-likeness score obtained from the previously

described criteria.

We found that the majority of natural products with high apparent permeability
(log Papp > −5) exhibited drug-likeness scores within the range of 0.75 to 1, indicating their
potential as drugs (Figure 8a–h). Specifically, DLS_cons revealed that 82.7% (n = 286) of the
predicted high apparent permeability of the natural products achieved scores within this
range. These different approaches to assessing drug-likeness based on various criteria of
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molecular properties expressed in scores are consistent with the predicted log Papp values
generated by the SVM–RF–GBM model, reaffirming its robust predictive capability.
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Figure 8. (a–h) Distribution of predicted log Papp values grouped by eight drug-likeness score
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3. Materials and Methods

A workflow illustrating the development of the QSPR models and the predictions
involving natural products sourced from the biodiversity in Peru is shown in Figure 9.
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3.1. Data Collection

A dataset was compiled consisting of molecules with a measured logarithm of appar-
ent permeability (log Papp) in Caco-2 cells and their simplified molecular input line entry
specification (SMILES), as reported by Wang and Chen [28].

Apparent permeability is measured in vitro in cell lines and is calculated using
Equation (2) [19,29].

Papp =
dQ/dt
C0 × A

(2)
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where Papp is measured in cm s−1; dQ/dt is the drug permeation rate through the cells or
the amount of substance transferred across the membrane per unit of time (µmol s−1); C0 is
the initial concentration of the donor compartment (µM); and A is the area of the monolayer
(cm2) [29].

Initially, a total of 1827 molecules were obtained. Duplicated molecules were re-
moved based on their SMILES codes, resulting in a refined dataset containing 1817 unique
molecules (Table S1).

Natural products sourced from the biodiversity in Peru were gathered from the
literature up to 2019, encompassing 48 articles [3–5,44–88]. The collected data encompassed
the SMILES codes, chemical names, organism names, common organism names, and digital
object identifiers (DOIs). The pathway classification of natural products was conducted
using NPClassifier [12], based on 3 levels, namely the pathway, group, and subgroup, and
considered its presence on the glycosidic bond, wherein the SMILES code was used to
classified them.

3.2. The Calculation and Optimization of the 3D Structure

The generation of 3D coordinates from the SMILES format was performed using
the Molconvert software version 24.1.2. Subsequently, hydrogens were added under the
condition of pH = 7.4. The 3D structures were then optimized using the steepest descent
method with the Merck molecular force field 94 (MMFF 94) [89]. This optimization process
was executed using 5000 steps, with the OpenBabel software 3.1.1 [90]. In cases where
certain molecules could not be optimized using MMFF 94, the Generalized Amber Force
Field (GAFF) [91] method was employed.

3.3. Molecular Descriptor Calculation

A total of 7110 molecular descriptors were calculated, encompassing both 2D and 3D
molecular descriptors, using the SMILES codes of the compounds. The calculation was
carried out using PaDEL-Descriptor 2.21 [92], which contributed 1785 descriptors, and
alvaDesc v2.0.16 [38], which provided 5235 descriptors.

3.4. Splitting of the Dataset

In order to prevent overfitting, the dataset was split into a training set and a testing set,
maintaining an 80:20 ratio. This partitioning resulted in 1455 molecules in the training set
and 362 molecules in the testing set. The training set was employed for model development,
while the testing set was reserved for external validation.

3.5. Preprocessing

The dataset initially contained missing values, which was addressed by imputing
them using the median value. Subsequently, to eliminate uninformative variables and
mitigate redundancy, the descriptors with low variance and those displaying high correla-
tions (indicated by a Pearson correlation coefficient absolute value > 0.70) were removed.
The remaining dataset contained 521 descriptors. Finally, the descriptors were centered
and scaled.

3.6. Feature Selection

Feature selection is a set of methods for reducing dimensionality by selecting a sub-
set of variables from the original feature set while eliminating irrelevant, redundant, or
noisy features. Consequently, it can lead to enhanced learning performance, reduced
computational expenses, and improved model interpretability.

To achieve this, recursive feature elimination (RFE) was employed to select the most
informative molecular descriptors. This method involved an iterative process, where sub-
sets of descriptors ranging from 1 to 200 were evaluated. At each iteration, a random forest
model was trained on the selected subset of descriptors, and the performance was assessed
using 5-fold cross-validation (CV), which was repeated 20 times to ensure its robustness.
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RFE involves fitting a random forest model to all the predictors, initially, and then ranking
each predictor based on its importance to the model. Subsequently, at each iteration of the
feature selection, the least important predictor is removed, and the model is retrained. This
iterative process of removing predictors, one by one, continues until the optimal subset
of descriptors is determined based on the root mean square error (RMSE) performance
metric. This iterative process led to the selection of 60 molecular descriptors (Table S2 and
Figure S1). Subsequently, a genetic algorithm (GA) was integrated with a random forest al-
gorithm to further refine the selection. The GA employed a systematic approach inspired by
principles of natural selection for modeling. The GA parameters were configured as follows:
maximum generations = 100, population per generation = 50, crossover probability = 0.8,
mutation probability = 0.1, and elitism = 0. Moreover, 5-fold cross-validation was employed
for the model evaluation. The GA process began by initializing a population of potential
solutions, where each solution represented a subset of molecular descriptors. Then, the
fitness of each solution was evaluated using a fitness function. In this case, the fitness
function aimed to minimize the RMSE metric. Through selection, crossover, and mutation
operations, the population iteratively evolved over 100 generations (Figure S2). The process
terminated after reaching the maximum generation limit, culminating in the identification
of a subset of 41 molecular descriptors optimized for modeling. Additionally, principal
component analysis (PCA) was conducted to visualize the distribution of the 41 selected
descriptors in chemical space.

3.7. Modeling

In this study, six QSPR models were constructed using the training set, incorporating
the 41 selected molecular descriptors as independent variables and the log Papp value as
the dependent variable (training set and testing set are given in Tables S3 and S4). The
models employed in this study are described below.

Multiple linear regression (MLR), a linear model that leverages multiple independent
variables to predict one dependent variable, was used [22]. It assumes a linear relationship
between the independent variables and the dependent variable. Partial least squares (PLS), a
model that transforms original independent variables into principal components or latent
variables represented as linear combinations of independent variables, was used [22]. This
method is particularly useful when the predictors are highly collinear or when there are
more predictors than observations. Support vector machine (SVM), an algorithm suitable for
regression and classification problems, was used. During the regression, the input data is
transformed into a feature space through a kernel function, finding a hyperplane that best fits
the feature space [93]. For this study, a radial basis function kernel was selected. Decision trees
are non-parametric algorithms that partition data into smaller regions using a set of splitting
rules. These models produce simple rules that are easy to interpret; however, they typically
lack predictive performance capabilities compared to more complex algorithms [93]. Random
forest (RF) regression, which combines a set of decision trees with good predictive ability
and averages their results to enhance the model’s predictive performance, was used [93,94].
Gradient boosting machine (GBM), an algorithm that combines shallow decision trees to
facilitate learning and improve prediction accuracy, was also used [93]. Unlike RF models,
GBM builds trees sequentially, with each tree correcting the error of its predecessor. Ensemble
methods, which integrate the best-performing models to create a new model or meta-model,
achieving a predictive performance surpassing that of individual models, were used [93,94].
In this study, a linear model was trained using predicted values from the SVM, RF, and GBM
models using the ensemble method, denoted as SVM–RF–GBM.

During model training, the hyperparameters were adjusted to control the model’s
complexity. To assess the impact of the model tuning parameters on the performance and
determine the optimal hyperparameter settings, we utilized 5-fold cross-validation, which
was repeated five times. The hyperparameters for each model were as follows: MLR, no
hyperparameters; PLS, the number of components (ncomp); SVM, sigma (sigma) and cost
(C); RF, the number of randomly selected predictors (mtry); GBM, the number of boost-
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ing iterations (n.trees) and the max tree depth (interaction.depth); and SVM–RF–GBM,
no hyperparameters. The following parameters were employed for model building:
MLR, no additional parameters were employed; PLS, ncomp = 40; SVM, epsilon = 0.1,
C = 2, and sigma = 0.015; RF, mtry = 18 and number of trees = 500; GBM, n.trees = 100,
interaction.depth = 16, shrinkage = 0.1, and the minimum number of observations in the
terminal nodes of the trees (n.minobsinnode) = 10.

3.8. Model Validation

For model validation, we employed 5-fold cross-validation repeated five times for
internal validation, while the testing set was used for external validation. The performance
of each model was evaluated using six statistical parameters: the root mean square error of
the training set (RMSETrain), the coefficient of determination of the training set (R2

Train), the
root mean square error of the cross-validation (RMSECV), the coefficient of determination
of the cross-validation (R2

CV), the root mean square error of the testing set (RMSETest), and
the coefficient of determination of the testing set (R2

Test).

3.9. Applicability Domain

The applicability domain of the QSPR model ensures that the models can reasonably
and accurately predict uncertain compounds [95]. The leverage values or hat values measure
the distance of a data point from the center of the distribution of the training set and are
employed to assess whether a compound falls within the domain. The hat values are
calculated from the diagonal values in the hat matrix (H), which are defined by Equation (3).

H = X′(X′X
)−1X (3)

In a training set matrix with molecular descriptors of n rows and p columns, Xn×p, the hat
matrix (H) is calculated using Equation (3), where X′ is the transpose matrix and (X′X)−1

is the inverse matrix of (X′X).
The applicability domain can be determined by analyzing the leverage and standardize

residuals to create a Williams plot. Leverages greater than the warning leverage (h*) indicate
that the predicted values are unreliable [95,96]. The warning leverage (h*) is computed
as 3 (p + 1)/n, where n is the number of compounds and p is the number of predictors.
Furthermore, standardized residuals were computed for both the training and testing
sets [96]. However, this approach does not allow for calculating the leverage values for new
datasets. Therefore, for a new dataset denoted as a matrix (u), the hat matrix is calculated
using Equation (4).

h = u′(X′X
)−1u (4)

where X is the matrix of the training set, u is the matrix of the unknown dataset, and u′ is
the transpose matrix. Finally, the leverage values of the new sample, h, are obtained from
the diagonal of the matrix.

In accordance with the OECD guidelines [32], a QSPR study should encompass an
applicability domain. The leverage values for the training and testing sets were calculated
using the training set of the hat matrix, and standardized residuals were computed for both
sets. Subsequently, a Williams plot was constructed using the leverages and standardized
residuals [96].

3.10. Computational Processing

The computational experiments were conducted at the Center for High Computational
Performance of the Peruvian Amazon, affiliated with the Research Institute of the Peruvian
Amazon (IIAP) [97]. To perform various essential tasks, the following software tools were
employed: OpenBabel version 3.1.1 was utilized for the addition of hydrogens, structure
minimization, and conformer search; Molconvert was used to create 3D structures from the
SMILES format; Marvin version 21.20.0; and the R programming language version 4.1.1 [98]
was used for data analysis, modeling, validation, and visualization.
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4. Conclusions

In this study, we established six QSPR models employing ML algorithms to predict
Caco-2 cell apparent permeability: MLR, PLS, SVM, RF, GBM, and SVM–RF–GBM. Utilizing
the data of 1817 molecules, a subset of the original database of 1827 molecules, we evaluated
the performance of these models. Among them, the SVM–RF–GBM model demonstrated
superior performance based on both internal and external validation metrics. This model
was further employed to predict the log Papp values for a collection of natural products
sourced from the biodiversity in Peru.

We assembled a comprehensive database comprising 516 natural products from the
biodiverse in Peru. These compounds were classified into six metabolic pathways, encom-
passing alkaloids, fatty acids, polyketides, terpenoids, shikimates and phenylpropanoids,
and amino acids and peptides. Furthermore, the SVM–RF–GBM model was utilized to
predict the apparent permeability in Caco-2 cells for 516 natural products, where 502 nat-
ural products fell within the applicability domain of the model. We found 346 natural
products (68.9%) exhibited high permeability, with 344 (99.4%) conforming to the Ro5 crite-
ria, suggesting their potential suitability for oral administration and favorable intestinal
absorption. These findings provide valuable insights into the apparent permeability of a
diverse array of natural products from the biodiversity in Peru. The development of QSPR
models and the compilation of this natural product database offer valuable tools for further
research in drug development and pharmaceutical discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17060750/s1, Figure S1: Recursive feature elimination for
molecular descriptor selection; Figure S2: Genetic algorithm for molecular descriptor selection;
Figure S3: Plot of the first 40 principal components (PCs) based on 41 selected descriptors. Figure S4:
Importance of top ten molecular descriptors in QSPR models; Figure S5: Relative variable importance
chart for the SVM–RF–GBM model; Figures S6 and S7: Correlation between experimental log Papp
values and selected molecular descriptors; Table S1: Dataset for modeling; Table S2: Results of
recursive feature elimination; Table S3: Training set; Table S4: Testing set; Table S5: Metrics for
training set, testing set, and cross-validation, without feature selection; Table S6: Metrics for training
set, testing set, and cross-validation, employing RFE for feature selection; and Table S7: Experimental
and predicted log Papp values.
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