View full-text article in PMC Sensors (Basel). 2024 Jun 9;24(12):3754. doi: 10.3390/s24123754 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 2 RF-SGB-SVM Algorithm for Drowsiness Prediction Require: CSFE Features, TrainedRF, TrainedXGB, TrainedSVM Ensure: Predictions (Drowsy or Fresh) 1:TRF←TrainedRF 2:TXGB←TrainedXGB 3:TSVM←TrainedSVM 4:for each i in Dataset do 5: RFPrediction←TRF(i) 6: XGBPrediction←TXGB(i) 7: SVMPrediction←TSVM(i) 8: HVPred[i]←argmax({RFPrediction,XGBPrediction,SVMPrediction}) 9:end for 10:Output: Drowsy | Fresh ←HVPred