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Abstract: With the escalation in the size and complexity of modern Denial of Service attacks, there is
a need for research in the context of Machine Learning (ML) used in attack execution and defense
against such attacks. This paper investigates the potential use of ML in generating behavioral
telemetry data using Long Short-Term Memory network and spoofing requests for the analyzed
traffic to look legitimate. For this research, a custom testing environment was built that listens for
mouse and keyboard events and analyzes them accordingly. While the economic feasibility of this
attack currently limits its immediate threat, advancements in technology could make it more cost-
effective for attackers in the future. Therefore, proactive development of countermeasures remains
essential to mitigate potential risks and stay ahead of evolving attack methods.
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1. Introduction

Modern Denial of Service (DoS) attacks are becoming larger and more sophisticated
every year, which imposes the need for robust defense mechanisms utilizing cutting-edge
technologies [1–4]. With ML emerging as a promising tool in not only defense, but also
attack execution, it is becoming necessary to explore its potential usage by attackers and
to stay ahead of evolving threats. This study investigates the feasibility of leveraging ML
for DoS attack detection by generating behavioral telemetry data using a Long Short-Term
Memory (LSTM) network [5] and Bezier Curves, and crafting spoofing requests to make
the analyzed traffic appear legitimate.

While previous research has explored ML-based approaches for DoS attack detection
and mitigation, few studies have examined the potential of generating realistic attack
traffic through ML itself. The authors of [6] present the machine learning techniques that
can be implemented to enhance efficiency of Intrusion-Detection Systems (IDSs). For
example, Average One Dependence Estimators (AODE) is presented as one of the recent
improvements of the Naive Bayes algorithm. It is explained that the IDS using the AODE
was proposed to detect different types of attacks with high accuracy. Among the other
analyzed methods, the Random Forest, K-means or decision tree can be indicated. The
authors conclude their review by stating that further work on reducing the false alarm
rate and increasing the detection rate are desirable. The authors of [7] propose an IDS
that can handle the entire packet information in a network with high efficiency using the
hierarchical Long Short-Term Memory. This paper proves that the use of LSTM allows one
to increase the detection rate of attacks significantly. However, there are still possibilities
to successfully evade an ML-based IDS. In reference [8], an attack-resistance analysis
of IDSs is provided. The authors show that, in existing systems, based on ML models,
attackers can evade IDSs with up to 35.7% success rates. They also propose a new solution
to counteract these weaknesses. Three defense mechanisms, model voting ensembling,
ensembling adversarial training and query detection, are presented and it is shown that
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these methods can improve intrusion-detection rates to nearly 100% when considering most
types of malicious traffic. Network intrusion-detection models are based on e.g., Multilayer
Perceptron (MLP), Convolutional Neural Network (CNN) and LSTM. Another solution
based on LSTM is presented in [9]. The authors propose an adversarial DBN-LSTM method
to detect and protect against DDoS attacks in an SDN environment. The experiments
conducted using the public dataset CICDDoS 2019 show that the proposed method allows
for efficient detection of known DDoS attacks compared to other approaches. Taking into
account the high effectiveness of solutions based on LSTM and their growing popularity,
we decided to use this method in a new solution for simulating realistic DoS attacks.

This research contributes to the field by:

• Demonstrating the potential of LSTM networks to generate realistic behavioral teleme-
try data that can be used for DoS attack simulations.

• Evaluating the effectiveness of spoofing requests in masking attack traffic and chal-
lenging current detection methods.

• Analyzing the economic feasibility of ML-based DoS attacks and highlighting the need
for proactive countermeasures despite current limitations.

Our findings aim to accelerate the development of machine learning-based DoS attack-
detection systems by providing valuable insights into attack methodologies and potential
blind spots in existing defenses. What is new is the use of solutions based on LSTM in
this area.

2. Related Work

In reference [10], the authors propose an adversarial Deep Belief Network–Long Short-
Term Memory (DBN-LSTM) method for detecting and defending against DDoS attacks. The
key point of the system is the adversarial DBN-LSTM anomaly-detection method. It can
generate several adversarial samples and build adversarial datasets using the generative
adversarial network (GAN) model. Moreover, other proposals have been presented to
improve the performance of the system:

• Implementation of DBN for data dimensionality reduction;
• Implementation of LSTM to extract sample timing features to detect IP flow records

and identify adversarial DDoS attacks.

The simulation experiments show that the proposed method can effectively detect
DDoS attacks and improve system sensitivity to adversarial attacks. In this paper, we
propose some new techniques to protect systems against the ML-based DoS attacks.

The authors of [11] presented a conditional GAN-based intrusion-detection system
against DDoS attacks on IoT networks. The core of the system is the mechanism which
generates synthetic traffic mapping known patterns and completely new network discrimi-
nator networks to detect anomalies. The obtained results confirm that the generated dataset
significantly improved the detection effectiveness. An important element of the entire
solution is the mechanism based on deep learning classifiers. In our proposal, we use
different ML-based models to detect specific DoS attacks.

In [12], an LSTM-based system was proposed to detect and prevent DDoS attacks
in public cloud networks. The system was designed based on a signature-based attack-
detection approach. The accuracy rate is on the level of 99.83% according to the CICD-
DoS2019 dataset. The simulation results confirm that the prevention part of the system
obtained a performance as good as for the previous studies conducted with different
DL algorithms on the same and different datasets. In our approach, we use the LSTM-
based system with data generated by behavioral telemetry. This is unique for currently
known studies.

The review of currently known deep learning-based approaches for detecting DDoS
attacks is presented in [13]. The review classifies the papers into five main research areas:

• Types of DDoS attack-detection deep learning approaches;
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• Methodologies, strengths, and weaknesses of existing deep learning approaches for
DDoS attack detection;

• Benchmarked datasets and classes of attacks in used datasets;
• The preprocessing strategies, hyperparameter values, experimental setups, and per-

formance metrics;
• The research gaps, and future directions.

Another review which presents different approaches to detecting DDoS attacks, using
machine learning techniques is presented in [14]. Analyzed techniques, such as K-means,
K-Nearest Neighbors, and Naive Bayes used in intrusion-detection systems and flow-based
intrusion-detection systems were considered for review. In the review, the high-speed
network accuracy-evaluation factors are highlighted. They provide a detailed DDoS attack
taxonomy, and classify detection techniques. Several types of attacks were considered, e.g.,
Zero-Day Attacks, Reflection Attacks, DNS Amplification or SYN Flood.

In [15], a novel parallel model that integrates Convolutional Neural Network and
Long Short-Term Memory was proposed. It allowed one to achieve higher accuracy than
previous studies regarding detection of DoS attacks. By utilizing the NSL_KDD dataset,
the presented model achieved an accuracy of 99.45% in detecting Denial of Service attacks.

In [16], the exploratory model of Multi-layer Perceptron (MLP) classifiers using deep
neural network algorithms was proposed to improve the attack-detection system. The
final outcome shown in the paper results in higher accuracy and precision by dealing with
a huge dataset that was gathered. It was reported that the accuracy and precision was
obtained at 98.85% and 92%, respectively.

The mechanism proposed in our paper has not been noticed in the analyzed literature
presented in both review papers presented above.

3. Testing Environment

The testing environment simulates a simple login/register website utilizing JavaScript
listeners for background data collection. Upon a user’s visit to the application, a continuous
stream of requests to “telemetry.js” is initiated. This script captures both mouse position
and keyboard key press timestamps, sending them to the server via POST requests. The
pseudocode in Algorithm 1 outlines the implemented logic. The first section of the algo-
rithm is responsible for collecting data from the keyboard, while the second part reads
coordinates of mouse position. Finally the function SendTelemetryData sends the obtained
data to two dedicated databases: Telemetry Database and Request Database.

Algorithm 1 Telemetry Data Collection

upon DOCUMENT IS FULLY LOADED do
on KEYDOWN EVENT ON WINDOW do

timestamp← Current timestamp
Call SendTelemetryData with ‘keyboard’ and timestamp

end on
on MOUSEMOVE EVENT ON WINDOW do

timestamp← Current timestamp
mouseX ←Mouse X coordinate from event
mouseY ←Mouse Y coordinate from event
Call SendTelemetryData with ‘mouse’, timestamp, mouseX, mouseY

end on
function SENDTELEMETRYDATA(eventType, timestamp, x, y)

Send POST request to ‘/track_telemetry’ with event data
on RESPONSE RECEIVED do

Log response message
end on

end function
end upon
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1. The Telemetry Database captures user interactions with the website, including:

• Event ID (unique identifier),
• IP address and source port,
• Event type (keyboard or mouse),
• Timestamp,
• Mouse X and Y coordinates (applicable only for mouse events).

2. The Request Database logs information about individual requests made to the website,
such as:

• Request ID (unique identifier);
• Telemetry data hash (linking request to interaction);
• IP address and source port;
• Timestamp (time of current request);
• HTTP headers, status code, method, hostname, path;
• Interaction start time (when was first GET request to critical endpoint sent).

To enhance security, user behavior data (telemetry) are collected only on critical pages
like login and register. This allows us to focus verification efforts on areas with heightened
risk of bot activity. Specifically, a unique telemetry hash is calculated after credentials are
submitted via a POST request.

The hash-generation process, outlined in Algorithm 2, considers two key factors:

• Mouse movement: we capture a string representing mouse position points throughout
the interaction;

• Keystroke cadence: the average time between key presses is calculated based on
timestamps collected since the page loaded successfully.

The algorithm runs the SendRequestData function which for each POST action com-
putes the hash of telemetry_str. After retrieving necessary data and initializing variables,
entry data are analyzed, concerning whether they represent mouse or keyboard. For key-
board, time between key presses is additionally analyzed. Finally, computed hash and
updated time strings are sent to the database.

Algorithm 2 Telemetry Data Hash

function SENDREQUESTDATA
timestamp← Current datetime
resp← Request headers as dictionary
telemetry_hash← ‘N/A’
Initialize database cursor conn
if Request method is ‘POST’ then

Retrieve telemetry data between interaction start and current timestamp
data← Fetched data
if data is not empty then

Initialize telemetry_str, key_timestamps, total_time_di f f , count
for each entry d in data do

if d[3] is ‘mouse’ then
Append mouse coordinates to telemetry_str

else if d[3] is ‘keyboard’ then
Add d[4] to key_timestamps

end if
end for
Calculate average time between key presses
Append average time to telemetry_str
Compute hash of telemetry_str

end if
Insert request data into the database

end if
Commit changes to the database
Close database connection

end function
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Attack Execution

The attack begins by stealthily gathering crucial information about the target login
page. This involves pinpointing the exact positions of input boxes and the submit button,
as meticulously outlined in Algorithm 3.

Algorithm 3 Get Initial Position of Element

function GETINITIALPOSITION(host, path, element_id, offset)
Initialize headless Chrome browser with fullscreen and SSL error ignore options
Navigate browser to “https://{host}{path}”
Find the element on the webpage by its ID
Get the screen dimensions using PyAutoGUI
Retrieve browser window position
Calculate the center coordinates of the element
Adjust coordinates to be within screen limits and apply offset
Quit the browser
return Screen coordinates (screen_x, screen_y)

end function

The algorithm triggers the GetInitialPosition function, which contains several elements
that are launched sequentially. The goal is to find coordinates of the elements placed on the
web page.

Armed with this knowledge, the attack commences by sending a carefully crafted
stream of POST requests. Each request bears a deceptive payload: meticulously crafted
mouse position data, designed to mimic genuine human interaction. This process, detailed
in Algorithm 4, aims to evade detection by blending seamlessly with typical user behavior.

The algorithm triggers the SendTelemetryRequest function, which constructs data as a
JSON string, which is equipped with coordinates and host, session, and browser details.
Finally the string is sent with path, data, and necessary headers.

Algorithm 4 Send Telemetry Request

function SENDTELEMETRYREQUEST(event_type, timestamp, x (optional), y (optional))
Define path as ‘/track_telemetry’
Construct data as a JSON string with event_type, timestamp, x, and y
Define headers with necessary information including host, session, and browser details
Call send_post_request with path, data, and headers

end function

Mouse positions are calculated, leveraging Bézier curves, widely used in computer
graphics, game development, and image processing, to generate realistic mouse trajectories.
These curves offer flexibility and smooth transitions, crucial for mimicking natural user
behavior. It is important to understand that those curves can be exchanged with new ML
models, such as “SapiAgent”, to generate even more human-like mouse trajectories [17].
However, for simplicity, we will operate on the Bézier curves. They are defined by Bernstein
polynomials as shown in Equation (1) [18],

BZ(t) =
n

∑
i=0

(
n
i

)
ti(1− t)n−iPi, 0 ≤ t ≤ 1 (1)

where:

• n—the degree of the Bézier Curve (number of control points minus one);
• t—the parameter of the Curve (position along the curve ranging between 0 to 1).

We strategically choose three control points for each curve:

• Start point A;
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• End point B;
• Three random points on the line connecting A and B, with a random perpendicular offset.

This point-selection process is elucidated in Algorithm 5.

Algorithm 5 Generate Random Point on Line

1: function GENERATERANDOMPOINTONLINE(point_a, point_b, randomness)
2: t← Random number between 0 and 1
3: x ← (1− t)× point_a.x + t× point_b.x
4: y← (1− t)× point_a.y + t× point_b.y
5: Calculate the directional difference dx, dy between point_b and point_a
6: Determine perpendicular direction perp_dx, perp_dy
7: Normalize the perpendicular direction
8: Calculate random_distance based on randomness
9: Adjust x, y coordinates by applying random_distance in the perpendicular direction

10: return x, y
11: end function

By leveraging Equation (1), we numerically calculate the Bézier curve points, as
outlined in Algorithm 6.

Algorithm 6 Generate Bézier Curve Points

1: function GENERATEBEZIERCURVE(control_points, num_points)
2: t← Create a list of num_points evenly spaced values between 0 and 1
3: Initialize curve as a num_points× 2 zero matrix
4: n← Number of control points minus 1
5: for i← 0 to num_points− 1 do
6: for j← 0 to n do
7: Calculate Bernstein polynomial bernstein_poly
8: curve[i]← curve[i] + bernstein_poly× control_points[j]
9: end for

10: end for
11: return curve
12: end function

To visualize the generated curves and enhance understanding, we present them in
Figure 1.

Figure 1. Bézier Curves generated (left) by ready python framework with two control points;
(right) by calculating curve points with five control points.



Sensors 2024, 24, 3735 7 of 15

Once the simulated mouse reaches its intended input field, the attack shifts its focus
to simulating keyboard activity. This attack leverages the assumption that attackers can
readily build a database of keyboard dynamics for their use. To simulate real user behavior,
a simple keylogger was implemented. The code samples 128 random passwords from
the “rockyou.txt” file [19], one at a time. For each password, it meticulously records every
keystroke, capturing both the exact moment the key is pressed (key_down) and released
(key_up). These precise timing data continue until the user presses “Enter”, signaling the
completion of the typed word. Captured data are then stored in a comma-separated value
(CSV) file. The structure of this database is outlined in Table 1.

Table 1. Generated database structure.

Field Name Field Type Key Primary

Timestamp Date-Time True

Word_ID Integer False

ASCII_Code Integer False

Down_Time_MS Float False

Up_Time_MS Float False

Each row uniquely identifies a keystroke with a timestamp (recorded in milliseconds),
and associates it with the typed word (using an internal Word_ID) and the corresponding
ASCII code.

A Long Short-Term Memory (LSTM) model serves as the backbone for predicting
the intervals between keystrokes [5]. This choice leverages the inherent sequential nature
of keystroke timing data, allowing the model to capture and learn crucial temporal de-
pendencies. While our problem was quite simple, we used one hidden layer. A dense
layer with 10 nodes per layer was implemented. The dropout value was set to 20%. This
value is widely accepted as the best compromise between preventing model overfitting
and retaining model accuracy. A uniform distribution was used to choose initial weight
values. Decay rate was set to the default value of 0.97. Figure 2 visually represents the
model’s structure. The model loss is shown on Figure 3.

Specifically, the model uses 34 input features, representing the maximum password
length from the generated database. This allows the model to understand the potential
range of keystroke sequences. The LSTM layer then processes this information efficiently,
extracting appropriate patterns and relationships from data. Finally, the output layer
utilizes these learned patterns to predict the time a key should be held for, as well as the
interval between the current and next keystroke.

Algorithm 7 precisely predicts key press and release timings, ensuring a natural
typing cadence. These meticulously timed events are then transmitted to the server, further
solidifying the illusion of a human presence.

Algorithm 7 Type In Current Input Field

function TYPEINCURRENTFIELD(word)
global timestamp
times← predict_hold_and_release_times(word)
for each time in times do

offset← create time delta from time[0]
send_telemetry_request(“keyboard”, timestamp + offset)
increment timestamp by offset and additional time from time[1]

end for
end function
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Figure 2. Model architecture.

Figure 3. Training and Validation Loss of the model.

After successfully filling each input field, the attack seamlessly resumes its simulated
mouse movements, guiding the cursor towards the submit button. Upon reaching this
critical element, the attack culminates in the final submit button click. To maximize the
likelihood of success, the attack relentlessly repeats this intricate sequence, relentlessly



Sensors 2024, 24, 3735 9 of 15

attempting passwords from the expansive “rockyou.txt” file. This unwavering persistence
ensures that no potential password combination is overlooked.

4. Results

The attack was conducted on the self-written testing website with login/register
functionality, running a JavaScript event listener in the background. It allowed us to
collect behavioral data such as mouse position and timestamp of key press. Based on
those data, a telemetry hash was calculated and stored in the server database, along
with other information on the request such as the exact headers, status code, etc. All
tests were performed on the localhost, using laptop with AMD Ryzen 5 4500U CPU and
integrated GPU Radeon Graphics 2.38 GHz. The testing environment was equipped with
16 GB RAM and used the 64-bit Windows 10 operating system. As machine learning was
involved, the chosen programming language was Python. It comes with available machine
learning frameworks like tensorflow or keras, which were used in the process of making
the keyboard dynamics model. For reading the .csv table, the Pandas framework was used.
The testing application itself was created with the Flask framework. Data were stored on a
MySQL Windows server using three separate databases. Information about registered users
was stored in dedicated databases. The attack was based on the assumption the attacker
could easily create a database for the keyboard dynamics used in the attack. For that reason,
a simple key-logger was implemented, which created a .csv file on the output. Once the
user visited the Flask application, a constant stream of requests to telemetry.js was made.
There, the information about current mouse position and keyboard key press timestamps
was collected and sent to the server via POST requests. Telemetry data were collected only
on \login and \register pages. Those pages are critical from a security standpoint and need
a special point of verification against bot activity. Code sampled 128 random passwords
from the rockyou.txt file and recorded all key presses along with the key_up/key_down
times until enter was clicked, indicating the end of the typed word. Logic was repeated for
each word until all the data were collected and written into a .csv file.

We examined the request data, focusing on the following key columns:

• ID;
• Telemetry hash;
• IP address;
• Port;
• Timestamp.

To illustrate the differences introduced by behavioral telemetry, we present excerpts of
request data from two sets of simulations:

1. Without Behavioral Telemetry: As shown in Table 2, requests lack unique telemetry
hashes. Bot traffic resulted in generating likewise hashes, making it potentially easier
to mark as fraudulent.

Table 2. Part of the request data for simulation without behavioral telemetry spoofing used.

ID Telemetry Hash IP Address Port Timestamp

291 e3b0c44298fc1c149afbf4c8996fb92427. . . 192.168.1.13 64513 2023-11-16 18:19:02

294 e3b0c44298fc1c149afbf4c8996fb92427. . . 192.168.1.13 64513 2023-11-16 18:19:07

297 e3b0c44298fc1c149afbf4c8996fb92427. . . 192.168.1.13 64513 2023-11-16 18:19:35

300 e3b0c44298fc1c149afbf4c8996fb92427. . . 192.168.1.13 64513 2023-11-16 18:19:48

310 e3b0c44298fc1c149afbf4c8996fb92427. . . 192.168.1.13 64513 2023-11-16 18:22:43

2. With Behavioral Telemetry: Table 3 demonstrates the presence of randomized teleme-
try hashes, indicating the traffic was more sophisticated in the way behavioral teleme-
try was used. These unique identifiers, generated based on user behavior simulated
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during the attack, add a layer of complexity and potentially enhance the attack’s
ability to evade detection.

Table 3. Part of the request data for simulation with behavioral telemetry spoofing used.

ID Telemetry Hash IP Address Port Timestamp

444 393e9cd505f0a7af71979ffb01e97468d. . . 192.168.1.13 53546 2023-11-16 18:56:23

446 4d373db4bafae80bddefd995a4d4a6d90. . . 192.168.1.13 53546 2023-11-16 18:56:27

448 bd970844de692ae66388c6ce161d0d41f. . . 192.168.1.13 53546 2023-11-16 18:56:30

454 25329f94ba7a792f5d4605cf94bd2240d. . . 192.168.1.13 53546 2023-11-16 18:58:53

456 a866e3a3fa5ec701b12f242dad5128f92. . . 192.168.1.13 53546 2023-11-16 18:58:56

Executing the attack yielded several clues about its impact on the server. The first
one was the frequent number of 500 Internal Server Errors being logged. These responses
suggest the server struggled to handle the influx of requests, potentially overloading
resources. Another suggestion is the “ConnectionResetError” seen at the peak of traffic
received by the server. This error indicates the server actively terminated connections,
likely as a defense mechanism.

To gauge the attack’s resource consumption, we instrumented the server with dedi-
cated threads. One thread continuously recorded Central Processing Unit (CPU) usage at a
specified interval, while the other tracked memory usage. Figure 4 reveals how the attack
affected CPU utilization. Unlike legitimate traffic, which exhibits periods of lower usage
(subfigure_b), CPU usage during the attack remained consistently high (subfigure_a). This
indicates the server struggled to process the influx of requests, likely exceeding its capacity.
Furthermore, the lack of clear data at the end of the attack period (subfigure_a) suggests
that resources were saturated, preventing complete file writing. As a result, the recorded
data had to be truncated.

While CPU usage offered clear insights, Figure 5 shows no significant differences
in memory consumption on the web application server during the attack (subfigure_a)
compared to normal use (subfigure_b). This suggests the attack primarily impacted CPU
resources. However, we expect the changes to be reflected in storage utilization on the
Windows MySQL server, which requires further investigation.

(a)
Figure 4. Cont.
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(b)
Figure 4. CPU usage trend: (a) during attack; (b) during legitimate user interaction.

(a)

(b)
Figure 5. Memory usage trend: (a) during attack; (b) during legitimate user interaction.
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Figure 6 compares the CPU usage of the attacker’s machine with the server throughout
the attack. While the server experienced sustained high usage, the attacker’s CPU usage
dropped to 0% just when the server shut down.

While the attack demonstrably impacted server resources, its efficiency from the
attacker’s perspective is questionable. Many other DoS techniques offer a better “workload–
result ratio”, meaning they achieve similar disruption with less resource investment. How-
ever, this advantage comes at the cost of easier detection. Table 4 illustrates a captured
request sent during the attack. Generally, for the application itself, headers appear legiti-
mate and do not differ from a typical request sent by a legitimate user.

Table 4. Example attack POST request headers received by the server.

Host 192.168.1.13

Accept text/html,application/xhtml+xml, application/xml;q=0.9,image/avif,
image/webp,image/apng,*/*;q=0.8, application/signed-exchange;v=b3;q=0.7

Cookie

session=.eJwlzLsKwyAARuFXkX8WU VND6guEDC0dsos0NhWsgpcuIe9eoeO
Bw3dgeUBDXCUT48QEEwMofKwu22f 1KZpSba7QB8jWx_XdKBEjuacvkVwOR
ExaKX1RZL6tOClC2ne3GRhXzYUR9G B2gq05JyiFZeN71JsIfwz2o_r8txcqTh_vp
MrnA.ZVZXxw.h1HjL5HRu_cm9I9MK _dJJnbRcqg

Origin https://192.168.1.13

Referer https://192.168.1.13/login

Sec-Ch-Ua Google Chrome;v=“119”, “Chromium”;v=“119", “Not?A_Brand";v=“24"

Connection keep-alive

User-Agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/119.0.0.0 Safari/537.36

Content-Type application/x-www-form-urlencoded

Cache-Control max-age=0

Content-Length 30

Sec-Fetch-Dest document

Sec-Fetch-Mode navigate

Sec-Fetch-Site same-origin

Sec-Fetch-User ?1

Accept-Encoding gzip, deflate, br

Accept-Language en-US,en;q=0.9

Sec-Ch-Ua-Mobile ?0

Sec-Ch-Ua-Platform Windows

Upgrade-Insecure-Requests 1

It is important not to rely on timestamps collected by JavaScript, as they can be easily
spoofed. Instead, similarly to the example presented in this paper, the timestamp is replaced
on the back-end of the server once the POST request with telemetry data is received. Some
systems may collect telemetry data for a period of time before sending the behavioral data
to the server as a calculated hash to make it more difficult to spoof than straight x and
y values. In such a scenario, it may be more difficult to review the data against spoofed
values as hashes are non-reversible. Conversely, when logging all information, we can
easily detect IP addresses, which were attempting to spoof the data, as shown in Table 5.
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Figure 6. Attacker CPU usage compared to the server CPU usage.

Table 5. Fragment of the Telemetry table.

ID IP Address Port Event Type Timestamp Mouse X Mouse Y

92 192.168.1.13 54513 keyboard 2023-11-07 22:32:48

93 192.168.1.13 54513 keyboard 2023-11-07 22:32:48

94 192.168.1.13 54513 keyboard 2023-11-07 22:32:48

95 192.168.1.13 54513 mouse 2023-11-07 22:32:49 144 66

96 192.168.1.13 54513 mouse 2023-11-07 22:32:49 154 77

97 192.168.1.13 54513 mouse 2023-11-07 22:32:49 172 86

5. Conclusions and Future Work

The presented study analyzed a DoS attack using forged telemetry data, the aim of
which was to imitate legitimate user behavior and avoid detection. Our analysis revealed:

• Deceptive Nature: The attack exploited the system’s dependence on telemetry data for
user identification and resource allocation. This highlights the inherent weaknesses of
trust-based security models in complex systems.

• Detection Challenges: The ability of the attack to blend into typical user behavior re-
quires advanced detection methods that go beyond simple anomaly-based approaches.

However, while data collection is performed through controlled simulations, it may
not fully capture the complexity of real-world attack scenarios. Additionally, the analysis
focused on a specific type of attack, and the effectiveness of the scam may vary depending
on the approach.

Our findings confirm previous research highlighting the increasing sophistication of
DoS attacks and their increasing use of deceptive techniques. Moreover, the challenges of
detecting deception attacks result in the need for advanced threat-detection methods that
combine behavior analysis with anomaly detection.

The proposed solution can certainly be useful for detecting DoS attacks, but above all
it shows the method that should be used in attack-detection systems. Today, the activities
of malicious users are very complex and sophisticated. Attack-detection systems must have
functionalities implemented to detect suspicious behavior, even though they increasingly
imitate real users. Our solution shows directly how to strengthen protection against this
type of attack. However, our results represent a first step in the development of this type
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of approach. In the future, we plan to undertake a deeper analysis of the possibilities of
using the proposed solution. We will certainly optimize the solution’s operation by using
modern machine learning models. It will be necessary to provide detailed comparative
analyses with existing solutions.
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