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Abstract BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. 
BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated 
kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. 
Whether and how oncogenic ERK signaling can be intrinsically adjusted to a ‘just-right’ level 
optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion 
kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-
Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E’s oncogenic activity and increased 
cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopar-
dizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth 
factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the 
level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 
‘just-right’ ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via 
Fak loss-mediated downregulation of ERK phosphorylation.

eLife assessment
In this important study, the authors use a genetically engineered mouse model to reveal a tumor 
suppressive role for focal adhesion kinase in right-sided colon cancer. The evidence in support of the 
authors' claims is generally solid, although the data supporting the mechanism through which FAK 
deletion promotes tumorigenesis are incomplete. This work will be of interest to cancer researchers 
and others studying the biological consequences of tuning signal transduction pathways.

Introduction
Colorectal cancer (CRC) is a heterogeneous disease arising through several discrete evolutionary 
pathways. The best-known and most-studied pathway to CRC is the canonical pathway, in which 
cancer originates from conventional adenomatous polyps bearing APC (adenomatous polyposis coli) 
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mutation (Powell et al., 1992; Cancer Genome Atlas, 2012). Recently a new ‘alternative’ pathway 
through serrated adenoma—the serrated pathway—has been uncovered. Mice studies have estab-
lished that the BRAFV600E mutation is a driver mutation in the serrated pathway (Rad et al., 2013; 
Carragher et al., 2010; Rustgi, 2013). In patients, BRAFV600E mutation is found in 50–67% of serrated 
CRC (Lannagan et al., 2019) and 10–15% of all CRCs (Davies et al., 2002).

The ‘Goldilocks principle’ applies to mutant APC-driven and mutant BRAF-driven intestinal tumor-
igenesis: a threshold of oncogenic signaling needs to be reached for dysplastic lesions to form, but 
optimum tumor development requires ‘just-right’ levels of oncogenic signaling, with too much being 
as detrimental as too little. In the canonical pathway to CRC, the primary driving force is mutant 
APC-mediated activation of Wnt/β-catenin signaling (Morin et al., 1997), and the ‘just-right’ level of 
Wnt/β-catenin signaling optimal for tumor formation is achieved mainly by the selection for specific 
APC mutant proteins based on their residual β-catenin-downregulating activity (Albuquerque et al., 
2002; Leedham et al., 2013; Christie et al., 2013; Buchert et al., 2010). The selection for APC 
mutations in the intestine is influenced by the underlying basal/physiological level of Wnt activity and 
stemcell number, and APC mutation spectra vary throughout the intestinal tract resulting in different 
APC mutation spectra in the proximal and distal CRCs (Leedham et al., 2013; Christie et al., 2013). 
In addition to the different mutation spectra, the 'optimal' thresholds for proximal and distal cancers 
are also variable (Christie et al., 2013).

BRAFV600E drives tumorigenesis through constitutive downstream ERK1/2 activation (Wellbrock 
et  al., 2004), but hyperactivation of ERK induced by oncogenic BRAFV600E is not tolerated in the 
intestine: high ERK activation, induced by transgenic expression of oncogenic BRAF (BRAFV600K) or by 
activation of two BRAF alleles in BRAFV600E/V600E mutant mice, engages tumor suppressive mechanisms, 
causing loss of stem cells and induction of differentiation and senescence (Riemer et al., 2015; Tong 
et  al., 2017). Lowering ERK activation by treatment with ERK or MEK (mitogen-activated protein 
kinase kinase) inhibitor counteracted BRAFV600E-induced organoid disintegration (Riemer et al., 2015; 
Brandt et al., 2019). It is therefore presumed that maintaining ERK activation within a narrow threshold 
range to avoid engaging tumor suppression is pivotal for mutant BRAF to exhibit the strongest trans-
forming activity. However, despite being highly anticipated (Brandt et al., 2019), the existence of 
in vivo intrinsic fine-tuning of mutant BRAF-induced ERK activation has never been experimentally 
examined. Given that over 60 mutations have now been identified in BRAF (Wellbrock et al., 2004; 
Zebisch and Troppmair, 2006), theoretically, mutation selection could be a way to achieve optimal 
ERK activation. However, because the V600E mutation accounts for about 90% of BRAF mutation seen 
in human cancer (Rajagopalan et al., 2002), mutation selection is not the primary means to achieve 
the ‘just-right’ levels of oncogenic ERK signaling. Normally, ERK activation is self-limiting by the rapid 
inactivation of upstream kinases and delayed induction of dual-specific MAKP phosphatases (MKPs/
DUSPs) Lake et al., 2016. Although feedback inhibitors of ERK signaling, including DUSPs are over-
expressed in BRAFV600E-expressing cells, the ERK signaling pathway is refractory to upstream feedback 
inhibition (Pratilas et al., 2009). EGFR is a core receptor upstream of the MAPK kinase axis. In vitro 
cell culture studies show that all activating BRAF mutants are RAS-independent (Yao et al., 2015): 
neither RAS inhibition (Yao et al., 2015) nor EGFR inhibition (Corcoran et al., 2012; Prahallad et al., 
2012) was able to inhibit mutant-BRAF-induced ERK phosphorylation in BRAF-mutant human CRC 
cell lines.

In this study, we addressed whether BRAFV600E-induced ERK activation is still tuneable during 
tumorigenesis in vivo. If yes, what are the factors involved in the regulation? Can BRAFV600E-induced 
ERK activation be fine-tuned to a ‘just-right’ level optimal for tumor initiation? Our study identified 
FAK as a key regulator of BRAFV600E-induced ERK activation in mutant BRAF-induced serrated tumor 
formation/initiation and revealed that FAK loss allows BRAFV600E-induced ERK signaling to reach the 
permissive threshold ‘just-right’ for cecal tumors to form.

Results
FAK expression is reduced in BRAFV600E-mutant serrated lesions in 
humans and mice
FAK is a cytoplasmic non-receptor tyrosine kinase involved in many aspects and types of cancer (Sulz-
maier et al., 2014). To determine the role of FAK in mutant BRAF-induced serrated CRC, we first 
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evaluated FAK protein expressions in human BRAFV600E-mutated serrated tumors (11 cases). We exam-
ined tissue sections containing BRAFV600E-mutant CRCs, sessile serrated adenoma/polyps (SSA/P)s, 
and adjacent histologically normal colon from the same tissue block. Results of immunohistochemistry 
(IHC) staining showed that FAK protein levels were lower in SSA/Ps (5/5) than in normal intestines and 
CRCs (5/5) (Figure 1A). FAK expression was more complex in CRCs. FAK levels in CRCs were either 
similar to (6/11) or lower (4/11) or higher (1/11) than that of the normal intestines (Figure 1A and B). 
FAK was mainly localized in the cytoplasm (Figure 1B). In mice, compared to the neighboring normal 
mucosa or stroma in the tumor, Fak protein levels were substantially decreased in carcinomas in the 
colon (Figure 1C) and adenomas/polyps in the small intestine (SI; Figure 1D) in Vil1-Cre;BRAF LSL-V600E/+ 
(BC) mice. The downregulation of FAK in human and mouse polyps suggests that FAK loss may play a 
role in BRAFV600E-induced tumor formation/initiation.

Fak deletion promotes BRAFV600E-induced cecal tumor formation
Previous mice studies show that Fak deletion suppresses mammary tumorigenesis (Pylayeva et al., 
2009; Luo et  al., 2009), mutant Apc-induced intestinal tumorigenesis (Ashton et  al., 2010), skin 
tumor formation (McLean et al., 2004), and hepatocarcinogenesis (Shang et al., 2015). To address 
the functional significance of FAK downregulation in BRAFV600E-induced serrated tumor formation/initi-
ation, we generated the Vil1-Cre;BRAF LSL-V600E/+;Ptk2fl/fl (FBC) mice. The Cre-mediated recombination 
efficiency was confirmed by tdTomato-reporter expression in intestinal crypts in Vil1-Cre;Rosa26LSL-

tdTomato/+ mice (Figure  2—figure supplement 1A). Deletion of Fak in the intestinal epithelium was 
further confirmed by IHC staining of the intestine in FBC mice (Figure 2—figure supplement 1B).
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Figure 1. FAK downregulation in serrated tumors. (A) Summary of FAK IHC staining in 11 human BRAFV600E-mutant CRC samples. N represents normal 
colon; P represents polyp; C represents carcinoma; NA, not applicable; ↔ represents no change; ↑ represents an increase. ↓ represents a decrease. 
(B) Representative IHC staining of BRAFV600E-mutant patient SSA/P, serrated colorectal adenoma, and adjacent normal tissues. (C) IHC staining of Fak 
in small intestine tumors in a 12-month-old BC mouse. (D) Representative IHC staining of Fak in colon tumor in 12-month-old BC mice. Scale bars in 
(B) 1 mm (upper panel) and 100 µm (lower panel). Scale bars in (C) and (D) 100 µm.
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Similar to that seen in BC mice, compared 
to the BRAF LSL-V600E/+ (B) mice, the FBC mice 
exhibited hyperplasia throughout the intestine 
(Figure 2A) and thickened small and large intes-
tines (Figure  2—figure supplement 1C). In BC 
mice, intestinal tumors were primarily developed 
in the small intestine at nine months or older 
(Figure 2B). Fak loss had minimal impact on tumor 
incidence in the small intestine and the colon; 
however, it greatly enhanced BRAFV600E-induced 
cecal tumor formation: cecal tumor incidence 
increased from 0% (0/15) in 9-month or older BC 
mice to 100% (16/16) in FBC mice (Figure  2C). 
Cecal adenoma/polyp started to develop in 
3-month FBC mice, and after 6 months, all mice 
(4/4) developed cecal tumors, and 25% of the 
tumors (1/4) were carcinomas (Figure 2C and D). 
At nine months or older, 100% of the mice devel-
oped cecal tumors with a high incidence (13/16) 
of carcinoma (Figure 2C and D, Figure 2—figure 
supplement 1D). IHC staining confirmed that 
while the stroma showed strong Fak staining, 
tumor cells were Fak negative (Figure 2E), hence 
validating that tumors were originated from Fak-
deleted epithelial cells. Of note, no tumor metas-
tasis was found in FBC mice. FBC mice were aged 
up to 434 days, and the life span of FBC mice was 
similar to that of BC mice.

Together, these results revealed that Fak dele-
tion promotes, rather than inhibits, BRAFV600E-
induced cecal tumor formation. BRAF-mutant 
CRCs are primarily located in the right colon, 
including the cecum (Clarke and Kopetz, 2015). 
The same primary tumor location suggests that 
the FBC model truthfully recapitulates human 

BRAF-mutant serrated CRCs, at least by location.

The molecular feature of the cecal tumors in FBC mice closely 
resembles human SSA/Ps
To characterize the molecular signatures of the cecal tumor in FBC mice, we performed whole-exome 
sequencing on paired tumors (n=2) and neighboring mucosa. No additional driver mutations were 
detected in the cecal tumors (Supplementary file 1), implying that cecal tumor formation in FBC 
mice does not require additional driver mutations. To evaluate the relevance of FBC cecal tumors 
to humans, we performed RNA-sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) to 
determine whether FBC cecal tumors exhibited similar gene expression signatures as human SSA/Ps 
(Kanth et al., 2016). The results showed that upregulated genes in human SSA/Ps were significantly 
enriched in cecal tumors in FBC mice (Figure 3A). Downregulated genes in human SSA/P were also 
reduced in FBC tumors (Figure 3B). Together, these results suggest that the FBC cecal tumors greatly 
resemble human serrated lesions at the molecular level.

About 50% of BRAF-mutated CRCs exhibit defective DNA mismatch repair (Rajagopalan et al., 
2002). The results of microsatellite instability (MSI) analysis indicated that most FBC cecal tumors 
were microsatellite stable (MSS; Figure 3C). It has been shown that mismatch repair deficiency accel-
erates BRAF-driven serrated tumorigenesis (Tong et al., 2021). Maximizing the oncogenic activity of 
BRAFV600E without mismatch repair gene mutation and additional driver mutations suggests that in 
FBC mice, Fak loss created a ‘just-right’ environment optimal for MSS serrated cecal tumor to form.
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Figure 2. Fak loss enhances BRAFV600E-driven cecal 
tumorigenesis in mice. (A) Representative hematoxylin 
and eosin (H&E) staining of the small intestine, 
cecum, and colon from indicated 6-week-old mice. 
(B) Summary of tumor incidence at small intestine 
and colon in indicted mice at the indicated age. 
(C) Summary of tumor incidence and tumor stage at 
cecum in indicated mice at the indicated age. (D) H&E 
staining of the cecum in BC mice and cecal serrated 
adenoma/polyp and carcinoma in FBC mice at the 
indicated age. (E) Representative IHC staining of Fak in 
cecal tumors in FBC mice. Scale bars: 100 µm.

The online version of this article includes the following 
figure supplement(s) for figure 2:

Figure supplement 1. Fak deletion promotes 
BRAFV600E-induced cecal tumorigenesis.
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Fak loss increases intestinal stemness by upregulating Lgr4 levels in 
FBC mice
We explored the molecular mechanism underlying Fak loss-enhanced cecal tumor formation. Consis-
tent with a prior report (Ashton et al., 2010), we did not detect any abnormalities in the intestine in 
Vil1-Cre; Ptk2fl/fl mice, implying that FAK loss by itself is not a driving force for intestinal tumorigenesis. 
A prior study showed that upon TGFβ (transforming growth factor β) receptor inactivation, BRAFV600E-
induced right-sided tumorigenesis is supported by microbial-driven inflammation (Leach et al., 2021). 
To test the role of inflammation in FBC tumor formation, we compared sub-cryptal proprial neutrophil 
infiltration using myeloperoxidase (MPO) as a neutrophil marker for IHC staining. The results showed 
that consistent with prior findings (Leach et al., 2021), the number of MPO-positive cells was signifi-
cantly higher in BC mice than in B mice; however, Fak loss did not further increase neutrophil infiltra-
tion in FBC mice (Figure 4—figure supplement 1A). Consistent with this, GSEA results showed that 
there was no difference in the expression of inflammatory response genes (Liberzon et al., 2015) in 
FBC mice and BC mice (Figure 4—figure supplement 1B). Together, these findings imply that Fak 
loss promotes tumor formation not by enhancing intestinal inflammation.

Next, we evaluated the roles of cellular senescence, apoptosis, cell proliferation, and Lgr5 expres-
sion in cecal tumorigenesis in FBC mice. The results indicated that BRAFV600E was insufficient to trigger 
senescence evaluated by SA-β-galactosidase staining or apoptosis evaluated by the TUNEL staining 
in BC mice (Figure 4—figure supplement 1C,D). Bromodeoxyuridine (BrdU) incorporation assays 
confirmed mutant BRAF-induced hyperproliferation. However, Fak loss did not further enhance the 
BrdU incorporation rate (Figure 4—figure supplement 1E). These results indicated that Ptk2 dele-
tion promotes tumor formation not through modulating cellular senescence, apoptosis, and cell 
proliferation.

Given that BRAFV600E drives tumorigenesis through constitutive downstream ERK1/2 activation 
(Wellbrock et al., 2004), we examined the impact of Fak loss on ERK pathway transcriptional output. 
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GSEA analysis showed that ERK pathway output was significantly increased in BC mice (Figure 4A), 
which was consistent with the earlier report (Pratilas et al., 2009), but Fak loss did not further enhance 
it (Figure 4F). Wnt pathway activation (Tong et al., 2021) and activation of transcription co-factor YAP 
have been implied in BRAFV600E-induced serrated tumorigenesis (Leach et al., 2021). In this study, our 
GSEA results also showed that the expression of intestinal Wnt signature genes (Van der Flier et al., 
2007) and YAP target genes (Wang et al., 2018) were significantly higher in BC mice than in B mice 
(Figure 2B,C). Again, Fak loss did not further enhance the activations (Figure 2G,H). Together, these 
findings excluded the possibility that Fak loss promotes cecal tumor formation by enhancing ERK 
pathway output and activation of the Wnt and YAP pathways.

BRAFV600E poorly initiates colon cancer in mice due to oncogenic BRAF-induced tissue differentiation 
and loss of intestinal stem cells (Tong et al., 2017). With this, GSEA results showed increased expres-
sions of intestinal differentiation signature genes (Chong et  al., 2009; Figure 4D) and decreased 
expressions of intestinal stem cell signature genes (Muñoz et al., 2012; Figure 4E) in BC mice. Fak 
deletion did not reverse BRAFV600E-induced tissue differentiation (Figure 4I) but significantly enhanced 
intestinal stemness (Figure 4J). These results revealed that Fak deletion promotes BRAFV600E-induced 
cecal tumor formation through increasing intestinal stemness.

The adult stem cell marker Lgr5 and its relative Lgr4 are R-spondin receptors mediating R-spondin 
signaling and are critical for intestinal stemness (Glinka et al., 2011; de Lau et al., 2011). Mutant 
BRAF reduces Lgr5 expression in the intestinal crypt (Tong et al., 2017; Leach et al., 2021). Our 
results confirmed the downregulation of Lgr5 in the cecum crypt in BC mice, and we found that Fak 
loss did not restore Lgr5 expression in FBC mice (Figure 4—figure supplement 1F). These results 
thus excluded the possibility that Lgr5 mediates Fak loss-induced intestinal stemness.

Prior studies show that the fetal type of intestinal stem cells has a strikingly different transcriptome 
than that of adult intestinal stem cells, and the receptor LGR4, but not LGR5, is essential for the cells 
(Mustata et al., 2013). In Vil1-CreER;BrafLSL-V600E/+;Tgfbr1fl/fl mice, the proximal colonic tumors exhibit 
fetal intestinal signature (Leach et al., 2021). Consistent with the notion that mutant BRAF-driven 
right-sided colonic tumors are fetal progenitor phenotypes, GSEA results confirmed enrichment of the 
fetal-type transcriptomic signatures (Mustata et al., 2013) in cecal mucosa in BC mice. The fetal signa-
ture was further enriched in FBC mice (Figure 4K). Accordingly, the immunoblotting analysis showed 
that the protein level of Lgr4 was increased in the intestine epithelium in FBC mice (Figure 4I). Consis-
tent with the fact that intestinal Lgr5 expression was low in FBC mice (Figure 4—figure supplement 
1F), FBC tumors mainly expressed Lgr4 but not Lgr5. In contrast, BC and Apcmin/+ tumors expressed 
both Lgr5 and Lgr4 (Figure 4M). These results suggest that upregulated Lgr4 mediated the intestinal 
stemness increase in FBC mice.

FAK loss downregulates EGFR-dependent ERK phosphorylation to 
increase Lgr4 mRNA expression and protein stability
We addressed how Fak loss mediates Lgr4 increase. A prior study suggested that Wnt signaling main-
tains quiescent intestinal stem cell pools through suppression of the MAPK pathway in the intestine 
(Kabiri et  al., 2018). Given the fact that Fak loss did not jeopardize ERK pathway transcriptional 
output (Figure 4F), Fak loss may increase intestinal stemness by inhibiting ERK phosphorylation. To 
test, we first compared the levels of phosphorylated ERK across the intestines in B mice, BC mice, 
and FBC mice. As anticipated, BRAFV600E increased p-ERK levels throughout the intestine (Figure 5A). 
FAK is positively involved in ERK1/2 activation (Sulzmaier et al., 2014). Consistent with this, in FBC 
mice, FAK deletion suppressed mutant BRAF-induced elevation of p-ERK (Figure 5A). The decoupling 
of ERK pathway output (no change) and the level of p-ERK (reduced) upon Fak loss is in line with a 
prior report suggesting that the level of ERK phosphorylation does not truthfully reflect ERK pathway 
activation (Pratilas et al., 2009).

We next examined how Fak loss altered BRAFV600E-induced phosphorylation of ERK. A prior study 
found that FAK promotes EGFR signaling (Sieg et al., 2000), raising the possibility that FAK regulates 
ERK phosphorylation through EGFR. We then evaluated Egfr activation (represented by phosphory-
lated EGFR at tyrosine 1068) in the mice. The results showed that the level of phosphorylated EgfrY1068 
was increased in BC mice throughout the intestine (Figure 5B). In FBC mice, Fak deletion moder-
ately reduced BRAFV600E-induced Egfr activation (Figure 5B) and suppressed Egfr downstream signal 
transduction as evidenced by the decreased levels of phosphorylated c-RafS338 and MEK1/2  S217/221 

https://doi.org/10.7554/eLife.94605
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Figure 4. BRAFV600E mutation and Ptk2 loss-mediated changes in signaling pathways. GSEA analysis showing upregulation of MAPK signature 
(A), intestinal WNT signaling (B), YAP/TAZ target gene signature (C) and intestinal differentiation signature (D), and downregulation of intestinal stem 
cell signature (E) in the cecum of BC mice vs B mice (n=4 per group). GSEA plots revealed no significant change in MAPK signature (F), intestinal WNT 
signaling (G), YAP/TAZ target gene signature (H), and intestinal differentiation signature (I) in the cecum of FBC mice vs BC mice, but enrichment of 
stem cell signature in FBC mice (J) (n=4 per group). (K) GSEA analysis showing upregulation of upregulated fetal spheroid markers in the cecum of BC 
mice vs B mice, and further enrichment in the cecum of FBC mice vs BC mice (n=4 per group). (L) Immunoblotting analysis of LGR4 in the cecum from 
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in FBC mice (Figure 5—figure supplement 1A). To validate that EGFR indeed regulates BRAFV600E-
induced ERK phosphorylation, we treated BC mice with the EGFR inhibitor erlotinib. Erlotinib treat-
ment, without significantly reducing ERK pathway output (Figure 5—figure supplement 1B), indeed 
suppressed phosphorylation of C-RAF, MEK, and ERK (Figure  5C). Of note, Fak deletion had no 
impact on the level of p-EGFR and p-ERK in control mice (Figure 5—figure supplement 1C). Inhibi-
tion of Fak kinase activity by FAK inhibitor PF-562271 did not affect the phosphorylation of Egfr and 
ERK (Figure 5D), implying that the kinase activity of Fak is not involved in the FAK/EGFR/ERK regula-
tion in BRAFV600E-induced serrated tumorigenesis.

FAK complexes with activated EGFR to promote EGFR signaling (Sieg et al., 2000). We assessed 
whether FAK interacts with EGFR in BRAFV600E-mutant cells. The results of co-immunoprecipitation 
using lysates from cecal mucosa confirmed the Fak-Egfr interaction and revealed that the Fak-Egfr 
interaction was increased in BC mice, and inhibition of Egfr appeared not to affect the Fak-Egfr 
binding (Figure 5—figure supplement 1D). ERK phosphorylation is refractory to EGFR inhibition in 
human BRAFV600E-mutant CRC cell lines (Corcoran et al., 2012; Prahallad et al., 2012); however, the 
FAK-EGFR interaction was still detected in HT29 CRC cells, and the interaction was not affected by 
either EGFR inhibition or FAK inhibition (Figure 5—figure supplement 1E). These results indicated 
that FAK/EGFR interaction alone is not sufficient for FAK to get involved in the regulation of MAPK 
signaling.

The contradictory results seen in BC mice and human BRAFV600E-mutant CRC cell lines could result 
from the differences between in vitro culture systems and in vivo. To test, we examined whether 
inhibition of Egfr leads to ERK inhibition in freshly isolated cecal crypts from BC mice and BC cecal 
organoids. The results showed that inhibition of Egfr did not reduce ERK phosphorylation, confirming 
that the contradictory findings resulted from in vitro and in vivo. We speculate that the lack of certain 
stromal factors in vitro is responsible for the EGFR’s inability to transmit its signal to activate ERK.

Finally, we examined whether and how a reduction in ERK phosphorylation increases Lgr4 expres-
sion/stemness. Our results showed that treatment with MEK inhibitor increased the mRNA expression 
of LGR4 in human BRAFV600E-mutant CRC HT29 cells (Figure 5F) and BC mice (Figure 5G), uncovering 
a negative association between the level of ERK phosphorylation and mRNA expression of Lgr4. Of 
note, inhibition of ERK activation in BC mice was confirmed by the abrogation of ERK phosphorylation 
(Figure 5G) and suppression of ERK pathway transcriptional output (Figure 5—figure supplement 
2). This negative association was further supported by our observation that the mRNA levels of Lgr4 
were higher, albeit not statistically significant, in FBC mice than in BC mice (Figure 5H). Regulation 
of Lgr4 protein stability represents an important mechanism of modulating Lgr4 function (Mancini 
et  al., 2020). Our cycloheximide chase analysis results showed that inhibition of ERK phosphory-
lation by MEK inhibitor treatment dramatically enhanced Lgr4 protein stability in BRAFV600E-mutant 
CRC cell line HT29 cells (Figure 5I). This finding revealed the inverse correlation between the level 
of ERK phosphorylation and the protein stability of Lgr4. These results suggest that Fak loss lowers 
BRAFV600E-induced ERK phosphorylation to increase Lgr4 mRNA expression and protein stability, 
thereby enhancing intestinal stemness and cecal tumor formation.

Inhibition of ERK phosphorylation downregulates the level of E3 
ubiquitin ligase NEDD4
We next investigated how the reduction of ERK phosphorylation increases Lgr4 stability. The HECT-
domain E3 ligases NEDD4 (Neuronal precursor cell developmentally downregulated protein 4) and its 
homolog NEDD4L can ubiquitinate Lgr4, leading to its degradation (Novellasdemunt et al., 2020). 
Although the RNA-seq data showed no difference in mRNA expression levels of Nedd4 and Nedd4l 

indicated 6-week-old mice. (M) Representative in situ hybridization (ISH) staining of tumor sections from ApcMin/+, BC, and FBC mice using Lgr4 and Lgr5 
probes. Scale bars: 100 µm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Uncropped and labelled gels for (Figure 4).

Source data 2. Raw unedited gels for (Figure 4).

Figure supplement 1. Fak loss has no impact on inflammation, senescence, apoptosis, proliferation, and Lgr5 expression in the cecum in FBC mice.

Figure 4 continued
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Figure 5. Fak loss inhibits ERK phosphorylation and upregulates Lgr4. (A andB) Immunoblotting analysis of intestinal mucosa lysates from indicated 
bowel subsites in indicated 6-week-old mice. (C) Immunoblotting analysis of cecum lysates from 6-week-old BC mice treated with vehicle or EGFR 
inhibitor erlotinib for 4 hr. Each lane represented a single mouse. (D) Immunoblotting analysis of cecum lysates from 6-week-old BC mice treated with 
vehicle or FAK inhibitor PF-562271 for 4 hr. Each lane represented a single mouse. (E) Immunoblotting analysis of lysates from freshly isolated cecal 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.94605


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology

Gao et al. eLife 2024;13:RP94605. DOI: https://doi.org/10.7554/eLife.94605 � 10 of 21

in C57, BC, and FBC mice, the protein level of Nedd4, but not Nedd4l, was increased in BC mice 
then decreased in FBC mice (Figure 6A). To confirm that loss of ERK phosphorylation mediates the 
Nedd4 reduction, we treated the BC mice with MEK inhibitor and measured the protein levels of 
Nedd4 and Nedd4l. As shown in Figure 6B, MEK inhibitor treatment abrogated ERK phosphorylation 
and reduced the expression of Nedd4, accompanied by increased Lgr4 level. These data suggested 

crypts and cecal organoids treated with DMSO, MEK inhibitor PD0325901, or erlotinib, respectively as described in Methods. (F) qRT-PCR of Lgr4 using 
lysates from HT-29 cells treated with the vehicle and MEKi for 4 hr. Data presented as mean ± SD (***p<0.001; Student’s t-test, two-tailed). (G) qRT-PCR 
of Lgr4 using cecum lysates from BC mice treated with vehicle or MEKi for 6 hr. Data presented as mean ± SD (**p<0.01; Student’s t-test, two-tailed). 
Abrogation of ERK phosphorylation at T202/Y204 in the cecum was confirmed by western blot. (H) qRT-PCR of Lgr4 in cecum from BC and FBC mice 
(n=3 per group). Data presented as mean ± SD (p value calculated using two-tailed Student’s t-test). (I) Immunoblotting analysis of the lysates from HT-
29 cells treated with cycloheximide (100 μg/ml) and/or MEK inhibitor PD0325901 (10 μM) as indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Uncropped and labelled gels for (Figure 5).

Source data 2. Raw unedited gels for (Figure 5).

Figure supplement 1. Fak loss downregulates BRAFV600E-induced ERK phosphorylation.

Figure supplement 1—source data 1. Uncropped and labelled gels for (Figure 5—figure supplement 1).

Figure supplement 1—source data 2. Raw unedited gels for (Figure 5—figure supplement 1).

Figure supplement 2. qRT-PCR of selected ERK transcriptional output markers in cecum from vehicle- and MEKi-treated BC mice (n=3 per group).

Figure 5 continued

NEDD4

NEDD4L

GAPDH

B BC FBC

LGR4

NEDD4

NEDD4L

GAPDH

p-ERK

ERK

Vehic
le

MEKi

BC

100
150
250

kD

MEKi
MG132

HT-29

- - +
+ + +

HA-Ub + + +
IP LGR4

IB

Ub

LGR4

In
pu

t Ub

GAPDH

LGR4

NEDD4

NEDD4L

GAPDH

p-ERK

ERK

HT-29

DMSO
MEKi

FlagA

B

C D

37
37

37

37
37

37

100

100

100

100
37

100

100

100

100

Figure 6. Inhibition of ERK phosphorylation stabilizes LGR4 through downregulating NEDD4. (A) Immunoblotting analysis of cecum lysates from 
indicated 6-week-old mice. (B) Immunoblotting analysis of cecum lysates from 6-week-old BC mice treated with vehicle or MEK inhibitor PD0325901. 
MEK inhibitor was given to the mice at a dose of 25 mg/kg three times at 12 hr intervals. Twenty-eight hours after the first treatment, the cecum 
mucosa was collected for immunoblotting. (C) Immunoblotting analysis of lysates from HT-29 cells treated with DMSO or 10 µM MEK inhibitor for 24 hr. 
(D) HT-29 cells were transfected with HA-Ubiquitin. One day later, the cells were treated with DMSO or 10 µM MEK inhibitor for 24 hr. Then all the cells 
were incubated with 10 µM MG132 for additional 4 hr. The cell lysates were collected for immunoprecipitation and immunoblotting with the indicated 
antibodies.

The online version of this article includes the following source data for figure 6:

Source data 1. Uncropped and labelled gels for (Figure 6).

Source data 2. Raw unedited gels for (Figure 6).
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that reduced ERK phosphorylation reduces E3 ligase Nedd4 to increase Lgr4 stability. The decreased 
ubiquitination of LGR4 was confirmed in HT-29 cells. While treatment with MEK inhibitor inhibited 
the expression of NEDD4 (Figure 6C), it greatly reduced the ubiquitination of LGR4 (Figure 6D). 
Together, these data implied that reduction in ERK phosphorylation reduces the expression of E3 
ubiquitin ligase Nedd4 in FBC mice to increase the Lgr4 level.

FAK’s influence on oncogenic MAPK-driven intestinal tumorigenesis 
depends on FAK’s impact on ERK phosphorylation
Fak loss reduced ERK phosphorylation in FBC mice (Figure 5A) but not in control mice with wild-type 
BRAF (Figure 5—figure supplement 1A). To determine whether FAK is involved in other oncogenic 
MAPK-driven tumors, we generated Vil1-Cre;KrasLSL-G12D/+ (KC) mice and Vil1-Cre;KrasLSL-G12D/+;Ptk2fl/fl 
(FKC) mice. In KC mice, the endogenous expression of oncogenic Kras induces serrated hyperplasia; 
however, high ERK activation-induced senescence prevents hyperplasia progression into dysplasia 
(Bennecke et al., 2010). As shown in Figure 7A, no tumor was found in KC mice (n=6, 9-months-old) 
and FKC mice (3-month-old, n=3; 6-month-old, n=3; 9-month-old, n=4). Immunoblotting results 
confirmed that Fak loss failed to influence the phosphorylation of Egfr or ERK (Figure 7B). The co-im-
munoprecipitation results showed that Fak complexed with Egfr in KC mice similarly as in BC mice 
(Figure 7C), implying that the noninvolvement of Fak was not due to the lack of Fak/Egfr interaction. 
A recent preprint (https://doi.org/10.1101/2020.07.02.185173) suggests that ‘EGFR network onco-
genesis cooperates with weak oncogenes in the MAPK pathway’, which inspired us to propose the 
notion that EGFR participates in the regulation of ERK phosphorylation only when the p-ERK level 
is relatively low. In KC mice, KRASG12D induces extremely high levels of ERK phosphorylation, high 
enough to cause intestinal senescence (Bennecke et al., 2010). Given the level of increased p-ERK 
in KC mice, one would expect that ERK phosphorylation is EGFR-independent. The EGFR indepen-
dence was confirmed by our results showing that pharmacologic abrogation of EGFR activation had 
no impact on KRASG12D-induced ERK phosphorylation in KC mice (Figure 7D). Clinical findings further 
supported our notion. Anti-EGFR therapy is excluded for patients with KRAS-mutant CRC, supporting 
that EGFR has minimum impact on downstream MAPK signaling upon KRAS mutation. However, when 
ERK activation is inhibited by KRASG12C inhibitors, EGFR signaling acts as the dominant mechanism of 
colorectal cancer resistance to KRASG12C inhibitors (Amodio et al., 2020).

To address whether FAK downregulation is specific to human BRAF-mutant CRCs, we compared 
FAK expression levels in CRCs with different driver mutations using the TCGA database. TCGA anal-
ysis revealed that PTK2 mRNA levels were significantly lower in BRAF-mutated CRCs than in APC-
mutated CRCs or KRAS-mutant CRCs (Figure 7E). This result is consistent with the result seen in mice, 
again, it suggests that FAK is not involved in the regulation of KRAS-mutant CRCs.

In mice, mutant BRAF-induced ERK activation is cancer stage-dependent with significantly higher 
levels of phosphorylated ERK in high-grade dysplasia and carcinoma (Rad et al., 2013), suggesting 
that different tumor stages may require different levels of p-ERK. If FAK is a key regulator of ERK 
phosphorylation in mutant BRAF-induced serrated tumorigenesis in patients, one would expect the 
level of FAK may increase as the tumors progress. Consistent with this notion, we observed that FAK 
levels were higher in BRAF-mutant CRCs than in BRAF-mutant polyps (Figure 1A), TCGA analysis 
(Figure 7E) further confirmed that FAK expression was restored to a level similar to normal intestines, 
albeit still significantly lower than in APC mutant or KRAS mutant CRCs (Figure 7E).

In patients, BRAF mutations are divided into two groups: Activator and amplifier mutation (Yaeger 
and Corcoran, 2019). In CRC, the majority (80%–90%) of activating mutations in BRAF are V600E 
(Rajagopalan et al., 2002). Among these mutants, based on their kinase activities, BRAFV600E belongs 
to the high-activity mutants, and the rest of the mutants except G595R (with impaired BRAF kinase 
activity in vitro but still induce constitutive ERK activation in vivo) are intermediate activity mutants 
(Wan et al., 2004). If mutant BRAF-induced ERK phosphorylation needs to reach a ‘just-right’ level via 
FAK downregulation in patients, one would expect that the degree of FAK downregulation is BRAF 
mutant activity-dependent, and there could be a correlation between the activity of BRAF mutants 
and the degree of FAK reduction. Consistent with this speculation, TCGA data analysis confirmed that 
CRCs with BRAFV600E mutation had lower FAK expression than CRCs with non-V600E mutations and 
BRAF wild-type CRCs (Figure 7F). Although the differences between V600E and non-V600E groups 
were not statistically significant due to limited sample numbers, they might be biologically relevant.

https://doi.org/10.7554/eLife.94605
https://doi.org/10.1101/2020.07.02.185173
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Figure 7. ERK activation is FAK/EGFR-independent in KC mice. (A) Representative hematoxylin and eosin (H&E) staining of the small intestine, cecum, 
and colon from indicated 9-month-old mice. (B) Immunoblotting analysis of intestinal mucosa lysates from indicated bowel subsites in indicated 6-week-
old mice. (C) The cecal mucosa lysates from 6-week-old KC and BC mice were used for immunoprecipitation and immunoblotting with the indicated 
antibodies. (D) Immunoblotting analysis of cecum lysates from 6-week-old KC mice treated with vehicle or EGFR inhibitor erlotinib for 4 hr. (E and 
F) Comparison of FAK expression levels between CRCs with indicated mutations by analysis of TCGA RNA-sequencing dataset. Data were analyzed for 
statistical significance using a Student t-test. (G) Diagram of the ‘just-right’ MAPK signaling model in the serrated pathway.

The online version of this article includes the following source data for figure 7:

Source data 1. Uncropped and labelled gels for (Figure 7).

Source data 2. Raw unedited gels for (Figure 7).
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Discussion
The current study finds that in BRAFV600E-mutant intestinal epithelium, elevating the p-ERK level to a 
minimum threshold is sufficient to maximize the pathway transcriptional output, that is, only lowering 
the p-ERK level below the threshold will significantly abrogate the ERK pathway transcriptional output. 
Due to the negative association between ERK phosphorylation and intestinal stemness, any increase 
in ERK phosphorylation will decrease intestinal stemness (Figure 6G). In BRAFV600E-mutant intestinal 
epithelium, ERK phosphorylation is EGFR/RAS/c-RAF-dependent. The involvement of EGFR provides 
an opportunity for non-MAPK pathway factors such as FAK to participate in the regulation of ERK 
phosphorylation to influence the biological outcomes of BRAF mutation. This study has established 
the first ‘just-right’ MAPK signaling model of BRAFV600E-induced tumor formation (Figure 7G). Our 
results show that by lowering BRAFV600E-induced ERK phosphorylation, Fak loss, without jeopardizing 
the ERK pathway transcriptional output, enhances mRNA expression and protein stability of Lgr4, 
thereby increasing intestinal stemness and promoting cecal tumor formation in mice.

High-level activation of oncogenes (e.g. KRAS, BRAF, and c-MYC) triggers intrinsic tumor suppres-
sion (Bennecke et al., 2010; Michaloglou et al., 2005; Dankort et al., 2007; Sarkisian et al., 2007; 
Murphy et  al., 2008). Genetic abrogation of tumor suppressors such as p53 or p16 revokes the 
tumor-suppressive barrier, thereby facilitating oncogene-induced tumorigenesis (Carragher et  al., 
2010; Bennecke et al., 2010; Dankort et al., 2007; Sarkisian et al., 2007). Cooperation with other 
oncogenic stimulation, such as co-expression of c-MYC and KRAS, ultraviolet radiation on melanocytes 
expressing BRAFV600E, can also break the suppressive barrier (Land et al., 1983; Viros et al., 2014). In 
cellular models (Kidger et al., 2017; Unni et al., 2018), overexpression of MKP/DUSPs evades high 
ERK activation-induced tumor suppression. Whether and how the suppressive barrier can be avoided 
or reduced in vivo has never been experimentally tested. The current study is the first demonstration 
that mutant BRAF-induced activation of ERK signaling is tuneable in vivo, and by tuning ERK activation 
to alter the suppressive barrier, FAK regulates BRAF transforming activity.

In BRAF-mutated melanoma, a complete shutdown of the MAPK pathway is necessary for signif-
icant tumor response (Bollag et  al., 2010). In patients with BRAFV600E-mutated CRCs, a combina-
tion of encorafenib, cetuximab, and binimetinib (MEK inhibitor) treatment increased the response 
rate to 26% (Kopetz et al., 2019), highlighting the importance of complete ERK pathway inhibition. 
However, the inverse correlation between the level of phosphorylated ERK and the level of stemness/
Lgr4 expression seen in mutant BRAF-expressing intestinal epithelial cells let us speculate that inhibi-
tion of ERK phosphorylation may cause stemness increases in BRAF-mutated CRC cells. The molec-
ular mechanisms underlying ERK phosphorylation inhibition-mediated stemness increase remain to 
be determined. Given the importance of cancer cell stemness in treatment resistance (Batlle and 
Clevers, 2017), we propose that the optimal treatment outcome can only be achieved when the inhi-
bition of ERK phosphorylation-mediated stemness increase is simultaneously suppressed.

In sum, the current study reveals the existence of a balance—between the level of phosphorylated 
ERK, the level of ERK pathway output, and the level of intestinal stemness. Our results show that the 
‘just-right’ balance optimal for BRAFV600E-induced cecal tumor formation can be achieved through 
FAK alteration. Achieving optimal treatment response in BRAF-mutated CRC patients, though, may 
require abrogation of the p-ERK-stemness regulatory link. That said, the current study could have 
profound implications for the development of new anticancer agents and new treatment approaches 
for patients with BRAF-mutated CRC.

Methods
Mice and treatment
All animal procedures were performed according to protocols approved by the Institutional Animal 
Care and Use Committee at the University of Pittsburgh. Mice were fed a standard diet (diet ID 
5P75; Purina LabDiet, St. Louis, MO). Ptk2fl/fl mice were received from the Mutant Mouse Resource & 
Research Centers (MMRRC, cat. no. 009967-UCD). Villin-Cre (cat. no. 021504), BrafLSL-V600E/+ (cat. no. 
017837), KrasLSL-G12D/+ (cat. no. 008179) and Rosa26LSL-tdTomato (cat. no. 007914) mice were obtained from 
the Jackson Laboratory. Genotyping was performed according to the protocols provided by MMRRC 
and the Jackson Laboratory. Villin-Cre and BrafLSL-V600E/+ mice were crossed to get the BC mice. The 
littermates harboring BrafLSL-V600E allele were used as controls whenever available. To get the FBC mice, 

https://doi.org/10.7554/eLife.94605
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Ptk2fl/fl mice were first crossed with Villin-Cre mice and BrafLSL-V600E/+ mice, respectively. The offspring 
Villin-Cre;Ptk2fl/+ and BrafLSL-V600E/+;Ptk2fl/+ mice were further crossed with Ptk2fl/fl mice to get the Villin-
Cre;Ptk2fl/fl (FC) and BrafLSL-V600E/+;Ptk2fl/fl (FB) mice. The FBC mice were finally obtained by crossing FC 
and FB mice. The same strategy was used to generate the FKC mice. BC, FBC, KC and FKC mice were 
euthanized at the indicated age to evaluate the tumor formation. Villin-Cre mice and Rosa26LSL-tdTomato/

LSL-tdTomato mice were crossed to get the Villin-Cre; Rosa26LSL-tdTomato/+ mice.
For Bromodeoxyuridine (BrdU) labeling, 6-week-old mice were given BrdU (MilliporeSigma) at a 

dose of 100 mg/kg by intraperitoneal injection two hours prior to harvesting. For inhibitor treatment, 
six-week-old mice were given vehicle (a mixture of 50% DMSO and 50% PEG 400), PF-562271 (60 mg/
kg in vehicle) or Erlotinib (100 mg/kg in the vehicle) by a single oral gavage 4 hr (for immunoblotting) 
or 6 hr (for qRT-PCR analysis of ERK output genes) before harvesting. MEK inhibitor PD0325901 was 
given to mice by oral gavage at a dose of 25 mg/kg in the vehicle. All experiments were performed 
in both male and female mice.

Plasmid and transient transfection
pcDNA3-HA-Ubiquitin (18712) was from Addgene. Plasmid transient transfections were performed 
using PolyJet In Vitro DNA Transfection Reagent (SignaGen) according to the manufacturer’s 
instructions.

Cell culture and treatment
HT-29 cells were obtained from the American Type Culture Collection (ATCC) and cultured in DMEM 
supplemented with 5% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin, in a 
37 °C humidified incubator containing 5% CO2. To study the interaction between FAK and EGFR in 
HT-29 cells, the cells were treated with DMSO, PF-562271 (5 µM) or erlotinib (10 µM) for 1 hr before 
harvested for immunoprecipitation. To study the ubiquitination of LGR4, HT-29 cells were treated with 
DMSO or 10 µM MEK inhibitor PD0325901 for 24 hr. Then 10 µM MG132 was added to the culture 
medium and incubated for additional 4 hr before harvesting the cells for immunoprecipitation.

Protein stability assay
HT-29 cells were seeded twenty-four hours before the experiments. The cells were treated with 
100 µg/ml cycloheximide (Selleck Chemicals), 10 µM MEK inhibitor PD0325901, or their combination 
as indicated. Then the cells were harvested, and the whole cell lysates were used for immunoblotting.

Organoid culture and treatment
Mouse organoids were isolated according to the published protocol with some modifications 
(Sugimoto and Sato, 2017). Briefly, the cecum of the BC mouse was rinsed with cold PBS, cut into 
small pieces, and washed eight times in cold PBS by gently pipetting. The fragments were incubated 
in 10 mM EDTA diluted in PBS for 8 min in a 37 °C tube rocker. Then the EDTA solution was removed 
and the tissue was pipetted 10 times in cold PBS. The supernatant was collected and centrifuged at 
300 × g for 3 min at 4 °C. The cell pellet was washed with DMEM/F-12 medium and centrifuged at 
400 × g for 3 min at 4 °C. The pellet was resuspended in Cultrex Reduced Growth Factor Basement 
Membrane Extract, Type R1 (R&D Systems), and seeded into a 24-well plate. Organoids were cultured 
using Mouse IntestiCult Organoid Growth Medium (STEMCELL Technologies) in a 37 °C humidified 
incubator containing 5% CO2. The medium was changed every other day. For inhibitor experiments, 
the freshly isolated crypts (one hour after seeding) and organoids (five days after seeding) were 
treated with 10 µM EGFR inhibitor erlotinib and 10 µM MEK inhibitor PD0325901, respectively, for 
two hours. To isolate protein for immunoblotting after treatment, the crypt cultures were scraped and 
suspended in 500 µl of TrypLE Express containing 10 µM EGFR inhibitor or 10 µM MEK inhibitor and 
incubated at a 37 °C water bath for 5 min with occasional agitation. After the addition of 500 µl of 
DMEM/F-12 medium, the crypt cultures were centrifuged at 400 × g for 3 min at 4 °C. The cell pellets 
were resuspended in cold PBS and centrifuged again. The final pellets were lysed in RIPA buffer (Alfa 
Aesar) supplemented with protease inhibitor and phosphatase inhibitor (Thermo Fisher Scientific). 
Crypt cultures treated with DMSO were used as controls. The lysates were quantified and resolved 
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted with the indi-
cated antibodies.

https://doi.org/10.7554/eLife.94605
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Immunoblotting and immunoprecipitation
After the mice were euthanized, the entire intestines were immediately removed and rinsed twice with 
ice-cold PBS. The mucosal layers of the small intestine (about 1 cm length), colon (about 1 cm length), 
and cecum (entire cecum, without appendix) were harvested by scraping with a blade and all proce-
dures were performed on ice. The freshly collected tissue was lysed in RIPA buffer supplemented with 
protease inhibitor and phosphatase inhibitor. The lysates were quantified and resolved by SDS-PAGE 
and blotted with the indicated antibodies. SuperSignal Western Blot Enhancer (Thermo Fisher Scien-
tific) was used to enhance the blotting signal when needed. To detect the interaction between FAK 
and EGFR, the tissue lysates were pre-cleared with Protein G-sepharose beads at 4 °C for 30 min. The 
cleared lysates were incubated with anti-EGFR antibody conjugated to agarose (Santa Cruz Biotech-
nology) or anti-HA affinity gel (MilloporeSigma) at 4 °C for 4 hr. The immunoprecipitates were washed 
three times with lysis buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP40, 
and 10% Glycerol, and subjected to SDS-PAGE followed by immunoblotting. The same protocol was 
used for immunoprecipitation experiments with HT-29 cell lysates. The cell lysates precipitated with 
anti-HA or anti-Flag beads were used as controls. The antibodies used for immunoblotting are shown 
in (Supplementary file 2). All experiments were independently repeated at least three times.

Immunohistochemistry, in situ hybridization, BrdU staining, TUNEL 
staining, and histopathology
The de-identified human colon tissue samples from BRAFV600E-mutated CRC patients were provided 
by the University of Pittsburgh School of Medicine, Department of Pathology tissue core. For mouse 
tissue sections, the mouse intestine was dissected out, rinsed twice with ice-cold PBS, fixed overnight 
in 10% neutral buffered formalin at 4 °C, embedded in paraffin, and finally cut into 5 μm sections. 
The sections were deparaffinized in xylenes and rehydrated in graded alcohol solutions, followed by 
washes in distilled water. Antigen retrieval was performed for 15 min in boiling pH 8 EDTA buffer 
(Abcam). The sections were allowed to cool to room temperature and then washed with PBS. The 
endogenous peroxidase was blocked with 3% hydrogen peroxide for 10 min. After washing with PBS, 
the sections were blocked with 20% goat serum diluted in PBS for 45 min. Sections were then incu-
bated overnight at 4 °C in a humidified chamber with primary antibodies diluted in 3% BSA. Primary 
antibodies used in this study are listed in (Supplementary file 2). The sections were washed with 
PBS and incubated with secondary antibodies for 1 hr at room temperature. Color visualization was 
performed with 3.3’-diaminobenzidine until the brown color fully developed. The sections were coun-
terstained with hematoxylin, dehydrated, and coverslipped with permanent mounting media. The 
slides were scanned using the Aperio digital pathology slide scanner (Leica Biosystems). The images 
were analyzed using Aperio ImageScope software.

In situ hybridization (ISH) was performed using the RNAscope 2.5 HD Reagent Kit-BROWN 
(Advanced Cell Diagnostics) according to the manufacturer’s instructions. The following probes from 
Advanced Cell Diagnostics were used: Lgr5 (cat. no. 312171) and Lgr4 (cat. no. 318321).

BrdU staining was performed on formalin-fixed paraffin-embedded (FFPE) tissue sections using 
a monoclonal anti-BrdU antibody (MilloporeSigma) as described by the manufacturer. For Terminal 
deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining, the FFPE tissue sections were 
deparaffinized, treated with proteinase K and labeled using the In Site Cell Death Death Detection Kit 
POD (MilloporeSigma) according to the manufacturer’s instructions. To quantify the results of BrdU, 
TUNEL and RFP staining, thirty crypts/villi per mouse were scored for three mice in each group.

Myeloperoxidase (MPO) was used as the marker for neutrophils. Ten random-chosen 500 µm-length 
cecum sections were evaluated for each mouse. MPO+ cells within the band of lamina propria, imme-
diately beneath and surrounding the crypts, were counted. Three mice in each group were analyzed. 
H&E-stained intestinal sections were evaluated for tumor stage by a board-certified GI pathologist 
(Dr. SF Kuan).

Quantitative reverse-transcription PCR analysis
Total RNA was extracted from the mucosal layer of the mouse intestine or HT-29 cells using the 
RNeasy Mini Kit (QIAGEN). The DNase-treated RNA was reverse-transcribed using SuperScript III 
reverse transcriptase (Invitrogen). The PCR reactions were performed on the CFX Connect Real-Time 
PCR Detection System (Bio-Rad Laboratories) using SsoAdvanced Universal SYBR Green Supermix 
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(Bio-Rad Laboratories). The PCR thermal cycle conditions were as follows: denature at 95 °C for 30 s 
and 40 cycles for 95 °C, 10 s; 60 °C, 30 s. The specificity of the PCR products was determined by the 
melting curve analysis. β-actin was selected as an internal reference gene. The sequences of PCR 
primers are shown in (Supplementary file 3).

Senescence-associated (SA) β-galactosidase staining
After the mice were euthanized, the cecum was immediately removed and rinsed with ice-cold PBS. 
The tissues were frozen in dry ice after the excess liquid was carefully removed using filter paper. 
Then the tissues were embedded in OCT compound and cut into 10 μm sections. The assays were 
performed using the Senescence β-Galactosidase Staining Kit (Cell Signaling Technology) according 
to the manufacturer’s instructions. The sections were counterstained with hematoxylin before being 
dehydrated and coverslipped with mounting media.

MSI analysis
The DNA was extracted from FFPE tissue sections using QIAamp DNA FFPE Tissue Kit (Qiagen). 
Cecal hyperplasia samples were from 6-week-old FBC mice. Cecal tumor samples were from 9- to 
14.5-month-old FBC mice. Cecal tissue of 6-week-old B mice was used as control. According to a 
prior report (Nakanishi et al., 2018), five microsatellite repeat markers, Bat24, Bat26, Bat30, Bat37, 
and Bat64, were used for MSI analysis. PCR amplification was carried out in a multiplex reaction 
using HSTaq polymerase (Takara Bio, Japan), with primer concentrations 0.5 μM. The thermal cycling 
conditions were as follows: initial denaturation at 95 °C for 5 min; followed by 35 cycles of 95 °C for 
30 s, 60 °C for 30 s, and 72 °C for 30 s; then a final extension step at 68 °C for 30 min. PCR fragments 
were analyzed by capillary electrophoresis, ABI3130XL (Life Technologies), and the GeneMapper 
ID3.2 program (Life Technologies). Tumor samples with greater or equal 40% MSI were classified as 
MSI-high (MSI-H), less than 40% as MSI-low (MSI-L), and samples without alterations were classified 
as MSS.

RNA-seq and data analysis
Total RNA was extracted from the cecal tissues of indicated mice using the RNeasy Mini Kit (QIAGEN). 
After DNase I treatment and performing quality control (QC), 200 ng of high-quality total RNA was 
proceeded to library construction. Oligo(dT) magnetic beads were used to isolate mRNA. The mRNA 
was fragmented randomly by adding fragmentation buffer, then the cDNA was synthesized using 
mRNA template and random hexamers primer. Short fragments are purified and resolved with EB 
buffer for end repair and single nucleotide A (adenine) addition. After that, the short fragments were 
connected to sequencing adapters. The double-stranded cDNA library was completed through size 
selection and PCR enrichment. Agilent 2100 Bioanaylzer and ABI StepOnePlus Real-Time PCR System 
were used in the quantification and qualification of the sample library. Finally, the qualified RNA-seq 
libraries were sequenced using Illumina NovaSeq6000 in CD Genomics (Shirley, NY) after pooling 
according to its effective concentration and expected data volume. The FastQC tool was used to 
perform basic statistics on the quality of the raw reads. Sequencing adapters and low-quality data 
were removed by Cutadapt (version 1.17). The alignment tool Salmon (version 0.13.1) was employed 
to quantify transcript expression based on mm10 reference genome. Output files from Salmon 
were imported into R (V.4.2.0) and analyzed by DESeq2 package (V1.36.0) to identify differentially 
expressed genes. All genes were ranked by log2(fold change) and used to check the gene set enrich-
ment by using clusterProfiler Carragher et al., 2010 (V.4.4.1) in R. The following gene sets were used: 
MAPK signature Pratilas et al., 2009; intestinal Wnt signature Van der Flier et al., 2007; cancer 
YAP/TAZ target gene signature Wang et al., 2018; intestinal differentiation signature Chong et al., 
2009; intestinal stem cell signature Muñoz et al., 2012; the Hallmark Inflammatory Response gene 
set (Broad Institute) Liberzon et al., 2015; upregulated fetal spheroid markers Mustata et al., 2013; 
upregulated and downregulated genes in human SSA/P Kanth et al., 2016 (only genes in human SSA/
Ps with fold increase >2 or fold decrease<-2 with FDR <0.05 were used).

Whole exome sequencing
DNA was extracted from the cecal tumor of 12-month-old FBC mice using DNeasy Blood & Tissue 
Kits (Qiagen). Sequencing libraries were generated using Agilent SureSelect mouse All Exon Kit 
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(Agilent Technologies) following the manufacturer’s instructions and index codes were added to 
attribute sequences to each sample. DNA samples were sonicated using a hydrodynamic shearing 
system (Covaris) to generate 180–280 bp fragments. The remaining DNA overhangs were converted 
into blunt ends by exonuclease/polymerase. After the adenylation of 3' ends, DNA fragments were 
ligated with adapter oligonucleotides. The fragments with adapters on both ends were selectively 
enriched using PCR. Then the library was hybridized in the liquid phase with biotin-labeled probes, 
followed by the capture of the exons using streptomycin-coated magnetic beads. Captured libraries 
were enriched by PCR to add index tags to prepare for hybridization. The resulting products were 
then purified using the AMPure XP System (Beckman Coulter) and quantified using the Agilent High 
Sensitivity DNA Assay on the Agilent Bioanalyzer 2100 System. The qualified libraries were sequenced 
using Illumina NovaSeq6000 in CD Genomics (Shirley, NY) after pooling according to its effective 
concentration and expected data volume. For the alignment step, BWA is utilized to perform refer-
ence genome alignment with the reads contained in paired FASTQ files. For the first post-alignment 
processing step, Picard tools are utilized to identify and mark duplicate reads from BAM file. The 
variant calling was performed by using GATK HaplotypeCaller.

Analysis of CRC patient data
TCGA RNA-seq data and mutation data of all cancer types were collected from Xena database 
(https://xenabrowser.net/datapages/), i.e., TCGA Pan-Cancer (PANCAN), which includes 376 CRC 
tumor samples and 51 matched normal samples. Expression data for PTK2 and mutation data for 
BRAF were extracted for analysis. The difference between the two groups was evaluated using the 
Student t-test (two-tailed, pairwise).
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