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Abstract

As long-read sequencing technologies are becoming increasingly popular, several methods have 

been developed for the discovery and analysis of structural variants (SVs) from long reads. Long 

reads enable detection of SVs that could not be previously detected from short-read sequencing, 

but computational methods must adapt to unique challenges and opportunities presented by 

long-read sequencing. Here, we summarize over 50 long-read based methods for SV detection, 

genotyping and visualization, and discuss how new telomere-to-telomere genome assemblies and 

pangenome efforts can improve the accuracy and drive the development of SV callers in the future.

Background

Structural variants (SVs) are generally defined as large genomic alterations longer than 

50bp1, 2,3, 4,5. They are prevalent in the human genome together with single-nucleotide 

variants (SNVs) and small insertions or deletions (indels) as a result of important 

biological processes such as DNA repair and replication, meiotic recombination, and 

retrotransposition6. Some SVs result in the removal or addition of genetic material from 

the genome, whereas other SVs simply cause rearrangements of the genome. Figure 1 

shows several common SV types: deletions (DEL), novel insertions (INS), inter- and intra-

chromosomal translocations (TLC), inversions (INV), tandem repeats (TR), and duplications 

(DUP) with two subtypes (tandem duplications (TAN), and inter- or intra-chromosomal 

interspersed duplications (INT)), as well as more complex loci that can now be found 

using long reads, such as nested inversion and tandem repeat expansions. Unlike SNVs 
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and indels, SVs are considered to be the largest source of genomic variation in terms 

of the number of base pairs altered2, 7–9. Thus, they can have a pronounced effect on 

phenotypic diversity. For instance, a 900kbp inversion in 17q21.31 MAPT locus is found 

in European-Mediterranean populations with 20% allele frequency but is largely absent in 

other populations10. This locus is associated with neurological disease and is subject to 

positive selection. Additionally, many SVs play critical roles in conferring susceptibility to 

inherited diseases and cancer11–13.

The substantial contribution of SVs to human diseases has stimulated the development of 

various wet-lab and computational techniques for their detection. Before next-generation 

sequencing (NGS) became widely available, two main approaches for SV detection 

existed: array-based methods14 such as oligonucleotide arrays and SNP arrays for genome 

wide scanning; and locus-specific assays such as quantitative polymerase chain reaction 

(qPCR)14, multiplex ligation-dependent probe amplification (MLPA) and NanoString15 for 

targeted regions. However, both methods have significant limitations. Array-based methods 

have limited resolution and cannot accurately detect structural variants that do not change 

DNA dosage, while most multiplex locus-specific assays have limited scalability and 

cannot be used for whole-genome study. Over the past 10 years, the deployment of high-

throughput short-read sequencing—particularly paired-end sequencing—led to a surge in the 

development of computational methods for SV identification at a genomic scale3–5, 16–18.

Several studies have analyzed the strengths and weaknesses of these computational methods. 

Kosugi et al.4 evaluated 66 short-read SV callers and found most algorithms performed well 

only for specific SV types and size ranges. Similarly, Cameron et al.3 evaluated 10 short-

read SV callers and found that assembly-based SV callers and SV callers using multiple 

sources of evidence (such as read depth, paired-end, and split reads) tended to perform 

better. They also noted the need for development of specialized algorithms for SV calling 

from low complexity regions with simple and tandem repeats. In particular, short-read based 

methods struggle with detecting longer SVs, complex SVs (such as chained fusion19 or 

chromothripsis20 or kilobase-scale repeat arrays21), SVs occurring in repetitive regions22, or 

segmental duplications, which are hotspots of chromosomal rearrangements23.

Long-read sequencing technologies, such as Oxford Nanopore Technologies (ONT)24 and 

Pacific Biosciences (PB or PacBio)25, provide new possibilities to tackle several challenges 

that cannot be resolved with short-read sequencing alone. Termed method of the year 

2022 by Nature Methods26, long-read sequencing produces reads that are tens of kbp long, 

compared to the reads produced in short-read sequencing, which are typically 150–250bp 

long. Besides ONT and PacBio, several short-read sequencing systems have been adapted 

to produce synthetic long-reads, such as Illumina’s “complete long-read technology” 

(previously known as Infinity)26, st LFR27, and TELL-seq28. Long reads can span entire 

SVs in many cases and achieve better mappability in repetitive genomic regions. They 

enable the determination of long-range haplotypes, as well as the identification of small 

indels and SVs in complex genomic regions29, variants in coding regions for genes with 

many pseudogenes, and phasing of distant alleles. Finally, they allow us to distinguish 

highly homologous regions30.
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Recent whole-genome long-read sequencing studies31–34 have made it clear that most 

SVs are missed by short-read sequencing or clinical microarrays but are detectable using 

long-read sequencing. A study published in February 2021 demonstrates that long-read 

and strand-specific sequencing techniques identified 107,590 SVs, and 68% are not 

discovered by short-read sequencing35. Thus, long-read sequencing has been successfully 

used in population-wide studies to improve characterization of SVs detected by short-read 

sequencing2. More importantly, the identification of pathogenic SVs and tandem repeat 

expansions, which cannot be sequenced via short-read sequencing, has proven essential in 

facilitating disease diagnoses and the evaluation of potential treatments30. For example, 

targeted long-read sequencing for patient diagnosis by Merker et al.36 were able to identify 

a 2184bp de novo deletion in the PRKARIA gene associated with Carney complex, a rare 

genetic disorder.

However, compared to short-read sequencing, the different error profiles of long-read 

sequencing present a different set of challenges, despite the improved sensitivity in finding 

SVs missed by short reads. PacBio suffers from high rate of random false insertions37 which 

can be partially addressed by circular consensus sequencing (CCS) to generate high-fidelity 

(HiFi) reads38, while Nanopore sequencing suffers from both random and systematic indel 

errors39, 40 which can make read alignment and SV detection more difficult (although 

different strategies, such as linear consensus41 or UMIs42, can be used to reduce errors). 

Furthermore, recent improvements of basecalling accuracy by the R10 flowcells, with two 

pinch points and longer barrel, allow the breakpoints to be accurately estimated, especially 

when the reads are assembled. Thus, considering the differences in read length, sequence 

type (paired-end versus single-end) and error profiles, short-read based computational 

methods cannot be directly used on long reads, and dozens of novel computational methods 

have been developed specifically for long-read sequencing to identify SVs over the past few 

years43–45. Nevertheless, there is a lack of a comprehensive summary of long-read based 

SV callers, as existing review studies have missed many recent methods developed over the 

last few years4, 5, 46, 47. To further improve long-read based SV analysis and detection, it is 

critical to comprehensively summarize how the state-of-the-art methods detect SVs and to 

discuss potential limitations or areas of improvements in existing methods. In addition, the 

recent release of a complete human genome, T2T-CHM13, will have important implications 

for the development of future SV callers48. In this review, we survey over 50 long-read 

based methods for SV/repeat discovery, genotyping, visualization and benchmarking, and 

their application in cancer and population-scale SV calling. We broadly classify SV callers 

into generalized SV detection methods (including assembly and alignment-based ones) 

and specialized SV detection methods. Later, we discuss the contribution of long-read 

sequencing towards the development of gap-less reference genomes and pan-genomes, and 

how these innovations will shape the future of SV calling.

Generalized SV Detection

Generalized SV detection methods from long-read datasets can call several common SV 

types in an entire genome. This contrasts with specialized SV detection methods, which 

target a specific SV type or a specific genomic region. Computational methods for 

generalized SV detection usually have two components: 1) alignment against a reference 
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genome and 2) generation of consensus calls from individual reads. Based on how these 

two components are implemented, there are two types of generalized SV detection methods: 

alignment of 1) raw reads and 2) assembled reads. Alignment of a query sequence, whether 

a long-read or a contig, can contain concrete evidence for an SV, typically referred to as 

an “SV signature”. Examples of such SV signatures are gaps within alignments, clipped 

bases, and split alignments. Alignment-based SV detection methods directly use alignment 

information and extract SV signatures from each long-read and then combine evidence 

across overlapping reads to inform a consensus SV call. Assembly-based methods, on the 

other hand, generate a consensus sequence or contig from long reads using de novo or 

reference-guided assembly, and extract SV signatures from the alignment of a contig against 

a reference genome. The general framework of SV detection using long-read sequencing is 

illustrated in Figure 2 and a short summary of each method is described in Table 1.

Alignment-based methods

Alignment-based SV callers include software tools such as cuteSV49, Duet50, NanoVar51, 

SVIM52, Picky53, SENSV54, NanoSV55, PBHoney56, SKSV57, DeBreak58, Sniffles59 and 

its improved successor Sniffles260. These tools employ a similar three-step framework: 

1) align long reads against a reference genome, 2) determine SV signatures from the 

alignment of each read and classify them into SV types, and 3) use a clustering method to 

group similar SV signatures from various reads and get their consensus to reliably identify 

SVs. Since alignment can be orders of magnitude faster than assembly for large genomes, 

alignment-based SV calling methods tend to be faster than assembly-based methods.

Alignment of long reads to reference genome.

Alignment-based SV callers usually take an alignment file (in BAM format) generated 

by an aligner as input and infer SV signatures directly from the alignments. Therefore, 

SV calling accuracy is greatly affected by the choice of alignment algorithm, as well as 

the parameter settings of the aligners. To mitigate this issue, some SV callers either use 

specialized aligners or carry out alignment themselves using a well-known aligner with 

specialized parameters. For example, Sniffles59 works best with alignments generated by 

its companion aligner NGMLR59, designed specifically to facilitate SV detection using 

a convex gap-score model which consolidates several smaller insertions/deletions into 

large gaps in alignment. On the other hand, Picky53 and SENSV54 use the LAST61 and 

minimap262 aligner respectively to carry out an initial round of alignment, and then improve 

these alignments with an additional algorithm. SENSV uses its own SV-aware and gap-

tolerant aligner, SV-DP, to refine breakpoints of large SVs, whereas Picky uses a greedy 

seed-and-extend algorithm to generate an improved alignment profile for each read. In a 

similar fashion, SKSV57 generates a pseudo-alignment profile using a custom dynamic 

programming algorithm that exploits the low error rate of HiFi reads to skip base level 

operations in alignment to achieve fast alignment and SV signature detection.

Classification and clustering of SV signatures.

SV signatures are generally identified by scanning read alignments for alignment gaps, 

clipped bases, or split alignment. However, some SV callers incorporate additional types of 
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evidence. For instance, SENSV54 compares sequencing depth of the query genome against 

a panel-of-normals (PON) reference dataset consisting of ONT reads on 24 human genomes 

that do not share SVs. In this context, genomic intervals with abnormal depth in the query 

genome are considered to contain SVs. PBHoney56, on the other hand, identifies discordant 

regions with a high rate of small variants relative to adjacent genomic regions based on the 

hypothesis that a mis-aligned SV sequence will lead to more alignment mismatches.

After identifying SV signatures, most SV callers classify them using heuristic rule-based 

methods—a series of if-else conditional statements—specific to each SV class based upon 

criteria such as the length of gaps in alignments, differences in mapping orientations of 

segments, or the presence of more than one breakpoint. However, each read supporting a 

putative SV can have a different breakpoint or signature due to the existence of repetitive 

genomic regions and relatively high error rates of long reads (except when protocols such 

as PacBio HiFi are used). Therefore, it is critical to identify which SV signatures across the 

reads arise from the same SV and combine these independent predictions of SV sequences 

and breakpoints to get a reliable SV call. This is carried out by clustering algorithms, 

typically agglomerative clustering, which also often use rule-based methods to merge SV 

signatures based on factors such as breakpoint proximity and length of SV. A more flexible 

approach is taken by DeBreak58 which uses a density-based clustering that automatically 

adjusts clustering parameters for different SV types and sizes.

There are two main challenges that alignment-based methods need to address. First, a 

robust SV classifier needs to have an exhaustive list of cases in which the same SV can be 

represented by various combinations of SV signatures. Second, it is possible to overfit these 

classification and clustering rules to certain long-read error profiles or alignment artifacts 

of certain aligners. Many SV callers have hard-coded thresholds in their classification 

and clustering rules for important metrics such as maximum distance allowed between 

breakpoints for merging SV clusters. As a result, any improvements in read length and 

sequencing accuracy, modifications in algorithms of existing aligners, or development of 

new aligners can render many such ad-hoc rules obsolete or create new types of SV 

signatures which may not be accounted for. For instance, longer read length leads to fewer 

reads being split into multiple alignments, and as a result a tandem duplication might appear 

as a simple insertion instead of a pair of overlapping split alignments. Several published SV 

callers, such as cuteSV49 and Sniffles59, are under active development and are improving 

upon the SV signature detection, classification, and clustering methods of previous SV 

callers by adapting to the changing landscape of long-read sequencing technology.

Application of deep-learning to SV detection from long reads.

Over the past several years, deep learning-based methods have been successfully applied 

to detect small variants63–66 from long reads. Recently, a few deep-learning based methods 

been developed to tackle long-read SV calling using model-based inference to classify SVs 

as opposed to rule-based inference. Compared with rule-based methods, deep learning offers 

the ability to learn complex abstractions from labeled datasets without expert guidance. For 

instance, BreakNet67 and MAMnet68 generate a feature matrix for each 200bp subregion 

of the genome by extracting various alignment features such as read depth or number of 
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deletions and apply a convolutional neural network (CNN) to this feature matrix. Then, 

a recurrent neural network analyzes CNN output of a series of contiguous subregions to 

predict the probability of an SV in each subregion. Afterwards, a clustering approach is used 

to define breakpoints more precisely from individual read alignments. A different approach 

is used by SVision69, another deep learning-based SV caller that can detect all types of 

SVs from long-read sequencing and is especially optimized for complex structural variants. 

SVision converts the alignment profiles of each read against the reference genome into 

an image that is fed to a CNN which assigns a probability score for various SV classes 

occurring in different segments of the image. After that, a graph-based approach is used 

to characterize complex SV events. A combination of both approaches has been applied 

by the SV caller Cue70 which creates a feature image with detailed alignment statistics of 

all reads in a large genomic interval and uses CNN to identify SV types and breakpoints 

directly on the image without the need of breakpoint clustering. We expect additional deep 

learning approaches that directly take alignments and genomic context features as input may 

be developed in the coming years, which can complement existing alignment-based and 

assembly-based SV callers.

Post-processing of SV calls.

Post processing of variant calls to assign confidence scores, determine complex SV types, 

and filter false positive SV calls is an important component of alignment-based SV callers. 

Several SV callers, such as SVIM52 and DeBreak58, carry out an additional step to 

combine or reclassify different SV calls, especially insertions, to identify different types 

of duplications and their sources of origin. Most tools discard any SV signature cluster with 

low read support, and an additional genotyping step using Bayesian likelihood estimation 

on the number of reads supporting different alleles can determine zygosity and genotype 

likelihood. For example, NanoVar51 and NanoSV55 use a neural network and random 

forest respectively, to assign confidence scores to SV calls using features such as: number 

of alignment mismatches near a breakpoint, number and fraction of reads supporting a 

breakpoint versus reference allele, and amount of deviation in breakpoints and SV lengths 

across supporting reads. SENSV54 takes a more thorough approach to validate an SV 

candidate. It constructs a local alternative reference sequence by inserting the SV into the 

reference sequence according to the predicted breakpoints, and a final SV call is made if 

the reads overlapping the SV have better alignment against the alternative allele than the 

reference genome. Lastly, incorporation of long-range haplotype information provided by 

long reads has become a staple of small variant detection, but most alignment-based SV 

callers ignore this crucial piece of information. Recently, Duet50—an SV calling framework 

for ONT sequencing data—extended cuteSV49 to allow for SNV-assisted SV calling and 

phasing. It filters out false SVs based on low haplotype confidence of supporting reads and 

shows improved performance in low coverage samples.

Improving SV calling by combining several tools.

Since the performance of alignment-based methods is significantly impacted by the choice 

of aligners and SV callers, better performance can be achieved by combining several 

tools46, 71. Zhou et al.46 compared performances of NanoSV55 and Sniffles59 when used 

with three different aligners: minimap262, NGMLR59 and GraphMap72. Their analysis 
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shows significant changes in recall, especially for insertions, when the same SV caller 

works with different aligners. Moreover, different combinations of SV callers and aligners 

each had many unique calls, even when an SV caller or aligner is kept the same. This 

complicates the choice of SV callers or aligners since some SVs might only be detected 

by a certain combination of aligner and SV caller. One way to overcome this problem 

is by leveraging ensemble methods such as the latest version of NextSV71, which runs 

cuteSV49 and Sniffles59 with the two aligners minimap262 and NGMLR59 and merges 

their SV calls. Similarly, SURVIVOR73 and combiSV74 can merge several user-provided 

SV call sets to generate a consensus. Whereas SURVIVOR can merge SV calls from any 

tool, combiSV works specifically with the outputs of six well-established long-read SV 

callers (cuteSV, Sniffles, SVIM, NanoSV, NanoVar and PBSV75) and merges their SV 

calls by exploiting tool-specific strengths and weaknesses. A different approach is taken 

by Vulcan76, a long-read alignment framework that combines two distinct alignment gap 

scoring models from minimap262 and NGMLR59. It uses minimap2 for fast alignment of 

reads against a reference, identifies sub-optimally aligned reads based on edit distance, and 

then realigns them using NGMLR’s more sensitive gap penalty algorithm. Their evaluation 

on the HG002 benchmark dataset shows improvement in overall F1-score compared to using 

minimap2 or NGMLR alone, with significant improvements in detecting duplications.

Assembly-based methods

Assembly-based methods for SV calling first assemble contigs from individual sequencing 

reads and then map contigs against a reference genome to discover SVs through indels and 

split alignments. There are usually two strategies to assemble contigs: de-novo assembly 

and reference-guided local assembly. In de-novo assembly methods, contigs are constructed 

from all reads in a genome sequencing dataset without any prior knowledge of a reference 

genome. It involves a computationally intensive step of calculating read overlap among 

millions of reads. In contrast, reference-guided local assembly methods map reads to a 

reference genome first, and then reads aligned to a small genomic region of interest are 

selected. Then, a multiple sequence aligner or a de-novo assembly tool can be used to create 

contigs from this much smaller group of reads. In either case, SV callers align contigs or 

consensus sequences back to the reference genome to detect SVs.

SV calling from de-novo assemblies.

De-novo assembly-based SV callers typically rely on an external assembly tool to generate 

contigs from sequencing reads. These SV callers take user generated alignments of the 

contigs and usually recommend which aligner and parameter settings work best with 

the SV caller. Since assembled contigs can be treated as a particularly long sequencing 

read (with longer read length and higher per-base accuracy), some alignment-based SV 

callers have been modified to call SVs from diploid assemblies. For instance, SVIM-asm77 

uses essentially the same SV signature detection and classification heuristic as SVIM52 

but without the complicated process of getting consensus from multiple discordant reads. 

Similarly, cuteSV49 and SVision69, both alignment-based SV callers, have added support for 

SV calling from assembled contigs by using parameter settings suitable for low depth input. 

PAV35, Assemblytics78 and SyRI79, on the other hand, are tools developed specifically for 
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detecting SVs from de-novo assemblies. Before applying the typical strategy for detecting 

SV signatures from alignment of diploid assemblies, PAV improves contig alignments 

by trimming redundant mappings, which improves breakpoint resolution of large tandem 

duplications and large repeat-mediated deletions. Similarly, both Assemblytics78 and SyRI79 

anchor assembled contigs to a reference genome by identifying uniquely mappable segments 

of contigs, which is analogous to PAV’s alignment trimming strategy. While Assemblytics 

simply discards contig alignments without a unique anchor, SyRI identifies all anchoring 

regions between the assembled genome and reference genome and regards regions between 

these anchors as SV hotspots. However, SyRI requires chromosome-level assemblies as 

input, which can be difficult to generate using long-read assembly alone; it has been 

estimated that constructing chromosome-scale assemblies requires at least 30-fold coverage 

of reads longer than 100kbp80.

A major advantage of calling SVs from de-novo assemblies is the identification of large-

scale genomic alterations and novel insertions (>100kbp) and better resolution of large 

repetitive loci. This is especially helpful for PacBio HiFi methods, where reads are 

typically shorter than 20kbp. Compared to long reads, assembled contigs have higher base 

level accuracy and better mappability in genomic regions containing large repeats, which 

improves precision of SV breakpoint inference due to error-correction of bases from read 

consensus, and contigs can be easily analyzed using SV visualization tools. Moreover, 

highly rearranged structure of some genomic regions can confound read alignment, but 

assembling reads into contigs before alignment can minimize the reference bias in such 

regions. Although long-read de-novo assembly tools81 require intensive computational 

resources compared to long-read alignment tools, the runtime has decreased significantly 

over the past few years, making them an increasingly attractive option. For instance, Shafin 

et al.80 report that Shasta, a fast assembly tool, can assemble the human genome from ONT 

reads in 5.5 hours using 128 CPUs and 1Tb of memory, whereas hifiasm82 can assemble the 

human genome in 10 hours using 48 CPUs. A recent comparison study by Lin et. al. found 

that the assembly-based approach produces higher consistency SV calls from long reads, 

reaching higher recall and precision across SVs of varying complexity83. The assembly 

approach was also able to detect 4,625 additional SVs, many of which were unresolvable via 

read alignments likely due to SV signature ambiguity in the clustering step. Nevertheless, 

while assembly-based strategies achieve higher performance with >20-fold coverage long-

read data, the alignment-based strategy can achieve 90% recall with only 5-fold coverage 

even in complex regions83, 84, which is consistent with previous findings59, 85. Thus, while 

assembly-based methods require sufficient sequencing coverage, alignment-based methods 

may be preferable for clinical applications where obtaining high-coverage long-read data is 

difficult83.

Improving SV calling using chromosome-scale and haplotype-resolved assemblies.

Several long-read assemblers, such as Canu86, collapse homologous alleles into a haploid 

assembly. Additionally, early tools for SV calling from assemblies, such as Smartie-SV87 

and Assemblytics, assumed a haploid genome, leading to low sensitivity for heterozygous 

variants. Therefore, polyploid assemblies are crucial for accurate SV detection and several 

strategies have been developed to tackle them. For diploid genomes, these methods fall into 
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two categories: 1) generating dual assemblies in which contigs consist of mixed haplotypes 

from each parent, and 2) generating fully haplotype-resolved assemblies in which each 

contig comes from one parental haplotype. Initial attempts at creating diploid assemblies 

required multiple steps including 1) generating of an initial assembly graph; 2) phasing 

heterozygous SNPs and identifying the haplotype of each read; 3) generating a haplotype-

resolved assembly88. However, the emergence of HiFi reads has led to the development 

of fast and easy-to-use assembly tools such as hifiasm89 and HiCanu59, that can compete 

with alignment tools in terms of simplicity. While a single long-read sequencing sample is 

sufficient for generating dual assemblies, such assemblies are prone to haplotype switching 

and can have limited utility in analyzing the interplay of distant alleles, genotype imputation, 

and the study of recombination or evolutionary patterns. On the other hand, generating 

haplotype-resolved assemblies requires either parental sequencing data for trio-binning82 

or orthogonal sequencing such as Hi-C82 or Strand-seq60 for scaffolding, which can be 

costly. A recent study by Cheng et al.89 has shown that haplotype-resolved assemblies 

created by hifiasm using 30-fold PacBio HiFi reads with parental HiFi reads or Hi-C 

sequencing yield higher quality assemblies than ONT. Despite the increased cost, haplotype-

resolved assembly strategies in conjunction with chromosome-scale assembly methods hold 

tremendous potential in revolutionizing SV calling.

SV calling from reference-guided local-assemblies.

Some limitations of de-novo assemblies can be addressed by using reference-guided local-

assembly based SV callers such as PhasedSV90, MsPAC91, PBSV75 and SVDSS92. These 

types of methods are much faster than de-novo assembly for a whole genome. Additionally, 

using a reference as a guide avoids some problems associated with de-novo assemblies such 

as assembly collapse around segmental duplications. PhasedSV90 and MsPAC91 use SNV 

calls from read alignment to phase the reads. Then they divide the reference genome into 

small regular intervals and use a de-novo assembly tool to locally assemble contigs from 

each haploid set of reads in each interval. However, carrying out local assembly for the 

whole genome can still be very inefficient. Therefore, some SV callers are more selective. 

For instance, PBSV75, designed for PacBio reads, extracts only reads with SV signatures and 

generates consensus sequences around potential SV breakpoints using multiple sequence 

alignment. Similarly, DeBreak58 carries out local de-novo assembly only for regions with 

large numbers of clippings to identify large insertions. Unfortunately, local assembly-based 

methods have lagged behind other SV calling methods in terms of development and ease 

of use, showing a significant need for improvement in this area, especially for ONT 

reads. SVDSS92, a recently developed tool for HiFi reads, demonstrates the strengths of 

local assembly-based SV calling approaches, especially for multi-allelic SVs. It identifies 

sequences unique to a sample with regard to the reference and extends them until they 

include anchoring sites for potential SV breakpoints92. These sample-specific sequences 

are clustered into haplotypes and then assembled by locally applying the Partial-Order 

Alignment algorithm92, 93. However, currently SVDSS supports the detection of insertions 

and deletions only.
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Specialized SV Detection

Complex SV detection in targeted regions.

While most genomic rearrangements resemble the common SV types shown in Figure 

1, some rearrangements are complex and cannot be classified into known SV categories. 

Therefore, it can be helpful to elucidate how different segments of a complex SV relate 

to each other and various parts of the reference genome. This can be challenging for 

generalized SV detection methods that are optimized for fast genome-wide variant detection 

of common SV types. However, often a gene or genomic region of interest is known a priori, 
especially in clinical or diagnostic settings, due to the presence of phenotypic evidence. 

In such cases, specialized SV callers designed for SV detection in small targeted regions, 

such as CORGi94 and TSD95, or generalized SV detection tool SVision (in graph mode) 

can employ an extensive algorithm to resolve arbitrarily complex rearrangements that would 

otherwise be computationally infeasible for whole genome SV calling. For instance, to 

generate an alignment profile or correct order of split alignments for a read, CORGi and 

TSD use dynamic programming algorithms, whereas Picky53, a generalized SV caller, uses 

a faster greedy seed-and-extend algorithm which can often lead to suboptimal solutions. 

These tools characterize a complex SV by breaking it down as a sequence of basic SVs or 

rearrangements relative to the reference genome and create a plot depicting the alterations 

for visual analysis.

SV detection for a specific SV type.

Some other SV callers are designed to detect a specific type of SV, especially novel 

insertions. For example, rCANID96 (read Clustering and Assembly-based Novel Insertion 

Detection) is designed to detect novel insertions based on the idea that large novel 

insertions can result in reads that are completely unmapped or are partially mapped with 

large clippings – such reads are usually ignored by alignment-based SV callers. rCANID 

assembles contigs from such reads and extends the contigs using fully aligned reads that 

overlap them. This allows rCANID to anchor insertion-containing contigs to reference 

genome via alignment, and inserted sequences are checked for any matches in the reference 

genome to determine novel insertions. Similarly, rMETL97 is designed to detect mobile 

element insertions or deletions. It aligns reads supporting SV breakpoints to sequences of 

known mobile elements to determine if the inserted or deleted sequence is a mobile element. 

By default, rMETL uses Alu, L1 and SVA sequences obtained from previous studies, but 

users can input their own library of mobile element sequences. Another computational tool, 

npInv98 (nanopore Inversion) is designed to detect inversions and places a special emphasis 

on differentiating between inversions mediated by non-allelic homologous recombination 

and inversions mediated by non-homologous end joining.

Repeat expansion detection

Repeat expansions are a special type of SV where inserted sequences are tandemly repeated 

DNA motifs that can be 2–6bp long (short tandem repeats, STR), or longer than 6bp 

(variable number tandem repeats, VNTR). Whereas normal STR alleles usually have a 

comparatively smaller number of repeats, pathogenic STR alleles can be expanded by 
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tens or hundreds of repeat copies, and they have been found to cause several genetic 

disorders.99 For instance, Huntington’s disease is caused by expansion of the CAG motif 

in the HTT gene from 6–35 copies in normal individuals to ≥ 36 copies in patients.100 In 

such cases, determining the exact copy number of a repeat motif can be extremely important, 

but generalized SV callers are not designed to estimate SV lengths with such precision. 

As a result, several tools dedicated to STR expansion detection using long reads have 

been developed, which fall broadly into two categories: repeat expansion detection via 1) 

nucleotide sequences in long reads or 2) ionic signals from Nanopore sequencing. These 

tools typically produce a distribution of repeat count estimates across all reads in a targeted 

region instead of a mean SV length prediction.

Repeat expansion detection from long-read nucleotide sequences.

Methods in this category can be applied to both PacBio and Oxford Nanopore sequencing. 

A common strategy is to carefully realign sequences up-stream and down-stream of the 

repeat region on a read to accurately determine its boundaries. Next, repeat count of the 

read is determined by analyzing the intervening tandem repeat sequence, and a repeat count 

distribution is generated over all reads overlapping the repeat locus. To calculate repeat 

counts, some tools use a probabilistic model, such as Hidden Markov Models used by 

RepeatHMM101, PacmonsTR102and adVNTR103, or a heuristic algorithm in the case of 

NanoRepeat104, Tandem-genotypes105 and Straglr106. For example, NanoRepeat aligns a 

read against a series of alternative reference sequences containing an increasing number of 

repeat units. Repeat count in the read is determined by the repeat count of the alternative 

reference that provides the best alignment. A Gaussian mixture model can be fit to the 

repeat count distribution to determine bi-allelic repeat counts and genotype. A different 

approach is used by RepLong107 which can detect repetitive regions in a genome without 

the use of a reference genome. It uses pairwise mapping of long reads with each other to 

identify boundaries of repeat regions and can be useful for the detection of novel repeat 

regions which are missing from prior knowledge or reference genome annotations. However, 

RepLong only detects repetitive regions and does not provide any information on copy 

number changes.

Repeat expansion detection from Oxford Nanopore ionic signals.

Ionic signals generated from the passage of nucleotides through a pore in Oxford Nanopore 

sequencing can also be used to detect repeat expansions. Basecalling, the process of 

translating signals into a nucleotide sequence, is evolving and improving at a rapid pace, but 

per-base accuracy (in the absence of consensus calling from multiple rounds of sequencing) 

is still lower than short-read sequencing, especially for repetitive sequences. Errors in 

basecalling can prevent accurate repeat counts by interrupting motifs in a tandem repeat 

region and sequence-based methods discussed earlier are unable to correct such errors. 

However, this can be circumvented by analyzing the underlying ionic signal. Several tools 

such as STRique108, NanoSatellite109 and DeepRepeat110 have been developed that process 

the raw signals directly and infer repeat counts based on the repetitive nature of the 

signals corresponding to tandem repeats. STRique108 and NanoSatellite109 both compare 

Nanopore signals of long reads containing repeats against a simulated Nanopore signal 

for the corresponding target reference sequence, whereas DeepRepeat used a deep-learning 
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model and leverages self-similarity of signals associated with repeat units in a long-read 

without aligning the signal to the reference signal.

Somatic SV calling

Somatic mutations play an important role in the initiation and progression of various 

types of cancers. Somatic SVs can activate oncogenes, disrupt tumor suppressor genes, 

create/abolish non-coding gene regulatory sequences, and generate gene fusions. Accurate 

detection of somatic SVs can aid in cancer diagnosis, the development of therapeutic drugs 

and treatment, and the detection of driver genes.111 Somatic SV calling refers to detecting 

SVs from a patient’s tumor tissue sample and determining which variants are somatic versus 

germline. This often involves calling SVs from a normal tissue sample and comparing 

them with tumor SV calls. However, tumor samples show a high degree of mosaicism, 

contain low allele frequency variants and show complex rearrangement patterns involving 

several breakpoints112, such as chromoplexy and chromothripsis, which can be difficult to 

resolve using short reads. Moreover, most SV callers are designed for germline variants and 

evaluated on cell-line samples, and they often lack sensitivity for detecting low frequency 

somatic SVs. This highlights the need to develop specialized SV calling methods for somatic 

SVs, and such methods fall into two categories depending upon whether they detect somatic 

SVs from tumor sample only, or from comparison of normal and tumor samples.

Several studies have used long-read sequencing to identify somatic SVs in cancer cells58, 

113–115 and shown that alignment-based SV callers are better suited than assembly-based 

methods for this task. A proof-of-principal study by Euskirchen et al.114 demonstrated 

that deep amplicon sequencing with Nanopore MinION can allow SV detection (using 

NanoSV55), copy number profiling, SNV detection, and methylation profiling for same-day 

diagnosis of brain tumors at very low cost. Some long-read SV callers, such as Sniffles260 

and DeBreak58, have special modes for somatic variant calling from tumor samples aimed 

at improving recall of low allele frequency variants. For instance, the non-germline mode of 

Sniffles2 decreases the minimum read support requirement for SV detection and disables 

read coverage-based filtering to improve recall, while imposing a strict filter on read 

alignment quality to remove sequencing and alignment artifacts. As a result, Sniffles2 can 

accurately detect somatic SVs with allele frequency as low as 7% on samples with 70X 

coverage by ONT.60 Another SV caller Nanomonsv115 creates a consensus sequence for 

putative somatic SVs from a tumor sample with flanking reference sequences and filters out 

any SV candidate as germline, if reads from the control sample can be aligned against the 

SV sequence accurately. In general, somatic SV calling from tumor-only sample requires 

deep coverage of high accuracy reads to distinguish somatic SVs from sequencing errors. 

This can be accomplished using PacBio HiFi sequencing or the newly developed Oxford 

Nanopore kit14 (R10.4.1) flowcells in combination with targeted amplicon sequencing or 

CRISPR-based capture to increase sequencing depth.

Methods that compare reads or SV calls from tumor and normal tissue samples can allow 

more precise differentiation of somatic SVs from germline SVs without the need for deep 

sequencing. Several long-read tools have been developed for this purpose using well-known 

SV callers. For instance, SHARC116 is a pipeline that uses NanoSV55 to call SVs from 
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the tumor sample only but implements several SV filtering steps such as random forest 

classification to filter germline SVs. It further compares filtered SV calls against a user-

provided list of germline SV calls (which could be from a database or normal tissue from 

the patient) and prioritizes remaining SVs based on likelihood of being somatic. In a similar 

manner, CAMPHOR117 separately calls SVs from both tumor and control samples and 

distinguishes between them using breakpoint proximity. However, in a clinical setting, it 

is often difficult to acquire sufficient samples for both normal and tumor tissues which 

complicates the adoption of long-read sequencing for somatic SV calling.

Population-scale SV calling

Short-read sequencing can be used to carry out whole genome sequencing with high 

coverage at relatively low cost, which makes it well suited for large-scale cohort studies. 

Long-read sequencing studies have been limited to smaller population cohorts due to the 

higher costs. However, the landscape is changing due to the continuously decreasing cost 

of Nanopore and PacBio sequencing, especially with the wider adoption of the Nanopore 

PromethION sequencer. Recent developments have shown that even low coverage long-read 

samples can reliably detect SVs using alignment-based SV calling.83, 85 However, false 

positives from the high sequencing error of long reads can be significantly amplified in 

a large cohort SV callset, thus requiring extensive variant filtering and validation. In the 

largest population-scale SV detection study to date using long-read sequencing, Beyter et 

al.118 used Nanopore PromethION sequencing datasets of 3,622 Icelanders with a median 

coverage of 17.2x to create a catalog of 133,886 SVs. Their pipeline uses Sniffles to 

detect SVs in individuals, refines breakpoints using short read data, and validates them 

by comparing raw Nanopore read signal against alternative and reference allele sequences. 

SV calls from individuals are merged using graph-based clustering to remove redundant 

but slightly different representations of the same SVs across samples. The merged SV 

set is genotyped using both long and short reads and imputed into long-range phased 

haplotypes of 166,281 Icelanders. A final high-confidence SV set is created by filtering SVs 

according to imputation accuracy. Their analysis shows that population-scale SV discovery 

and genotyping from long-read sequencing data are more reliable and accurate than from 

short-read data, especially in tandem repeat regions. A comprehensive review of population 

scale SV discovery from long-read sequencing approaches can be found here85.

SV Genotyping, Visualization and Benchmark Evaluation Tools

Tools for SV genotyping from long reads.

SV genotyping and validation refers to the task of determining whether a known SV is 

present in a query genome. Typically, these are high-confidence SVs whose breakpoints 

and sequences are known with high accuracy through population-wide studies. This is a 

much simpler task than the SV calling or discovery procedures described earlier. Therefore, 

specialized algorithms developed for genotyping can produce more accurate results. A 

common approach is to create an alternative reference sequence that contains the SV at 

known breakpoints and examine read alignments against both the normal reference and 

alternative reference sequences. Although a few SV callers (Sniffles59and cuteSV49) and 
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SV visualization tools (Samplot119 and svviz2120) allow SV genotyping, several tools have 

been developed specifically for SV genotyping from long reads (SVJedi121, VaPoR122, and 

LRCaller118) as well as for genotyping from haplotype-resolved assemblies (TT-Mars123). A 

survey and evaluation of state-of-the art long-read genotyping tools can be found here124.

Tools for SV visualization from long reads.

Several computational tools are available for visualization and manual inspection of SV 

calls in the context of long-read sequencing data. Unlike generic alignment viewers such 

as IGV125, they have additional functionalities to facilitate more detailed examination of 

SVs. For example, svviz2120 is a read viewer for validating putative structural variants 

using both short and long reads. It takes a candidate SV call and BAM files as inputs, 

searches the BAM files for reads relevant to the SV and realigns them against putative 

variant alleles as well as the reference allele. Alignments are plotted in a genome browser 

format, showing each allele and its supporting reads for visual validation of breakpoints 

and genotype. New Genome Browser (NGB)126 is a web client-server tool with an interface 

like IGV, but it has been developed with specific features for visualization of SVs and their 

supporting reads. Ribbon127 is a genome visualization tool for viewing alignments of reads 

and assembled contigs against a reference genome. It can take additional VCF or BED files 

of SVs for visual validation. Ribbon can show complex alignment profiles of reads and 

display translocations across chromosomes. Figure 3 shows a Ribbon plot for ONT and 

PacBio reads of HG002 overlapping a 36,400bp inversion at chr10:47023408 identified by 

cuteSV, Sniffles, and SVIM. Thus, SV visualization tools like Ribbon allow for convenient 

manual validation of SVs independent of SV calling tools.

SV benchmark evaluation tools.

A few computational tools have been developed to compare two different SV call sets 

and can be used to evaluate SV calling performance when a ground truth set is available. 

One such tool, SURVIVOR73, provides three functional SV modules: SV simulation, SV 

operation by merging/comparing SV calls within a sample or among population, and 

SV evaluation regardless of variant caller or sequencing technology. Another evaluation 

tool Truvari128 provides functions to annotate VCF files and compare VCF files with 

a consistency report between multiple VCFs. It can also produce performance metrics 

from comparison of predicted and benchmark SVs. One shortcoming of these popular SV 

evaluation tools is that they perform a pairwise comparison of SVs, which can result in 

the mischaracterization of complex rearrangements, especially in tandem repeat regions. As 

haplotype-resolved genome assemblies and phased SV ground truth sets become available, 

it is important to develop better evaluation tools that leverage haplotype information for 

SV comparison. One such example is hap-eval129, a haplotype-aware SV evaluation tool. 

Instead of simply comparing each pair of SVs in a putative SV call set and ground truth call 

set, hap-eval clusters nearby SV calls and assembles them into haplotypes based on available 

genotype and phasing information. The assembled haplotypes for the truth set and calls are 

then compared, and the best-matching haplotypes are evaluated.
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Long-read based reference genomes and SV call sets

Choice of reference genome is a crucial component of SV detection, since most methods 

rely on alignment against a reference genome for SV detection. The first assembled 

draft human reference genome has served as a powerful tool for variant discovery and 

has undergone decades of additional refinement, with the most recent version being 

GRCh38130–132. Nevertheless, GRCh38 has not been without its limitations. First, even with 

alternative haplotypes in the assembly, it does not capture the diversity of the worldwide 

population: it is a mixture of ethnicities derived from the genomes of approximately 20 

individuals which were predominantly European and African133. In addition, GRCh38 

represents a mosaic of haplotypes from many individuals, which leads to errors from 

SVs occurring between haplotypes134. This highlights the importance of single haplotype 

genome assemblies with sequence continuity across highly repetitive and structurally variant 

portions of the genome134. Finally, in addition to telomeres and centromeres, more than 

100 million nucleotides remain unresolved due to repetitive sequences or complex genomic 

regions which are difficult to reconstruct132. Recent advances in sequencing technology 

have produced long reads capable of spanning and closing these gaps: PacBio HiFi 

sequencing generates 10–20 kb length reads with 99.9% accuracy, while Oxford Nanopore’s 

platform can generate sequences with moderate coverage for hundreds of kilobases or 

even longer34. Recently, the Telomere-to-Telomere (T2T) Consortium leveraged both 

technologies to produce the first complete assembly of a human genome sequence for nearly 

all chromosomes48, 135. The T2T-CHM13 genome was derived from a single homozygous 

complete hydatidiform mole, and thus it represents a complete human haplotype with 

minor exceptions135. Although T2T-CHM13 is complete, in some cases long-read transcript 

sequences map better to GRCh38, suggesting that both capture different structurally variant 

haplotypes136. Thus, to detect and characterize variants across the full diversity of human 

genetic variation, ongoing efforts led by the Human Pangenome Reference Consortium are 

focused on compiling a collection of all common haplotypes in the human population into a 

database of reference genomes known as a pangenome137, 138. Moving away from reliance 

on a single reference for SV detection will thus require the development of tools—including 

alignment, haplotype representation, and variant detection tools—with the flexibility to 

leverage these different reference formats. This is an area of potential exploration for the 

future development of SV detection tools.

A major clinical application of SV detection is for genome-wide association studies 

(GWAS) to characterize SV types and their functional consequences. Thus, there are 

ongoing efforts to develop a comprehensive dataset of variants for association studies 

including gnomAD-SV with SVs resolved from a diverse cohort of 14,891 genomes139, 

and a recent study resolving SVs from 3,202 high-coverage samples, including 602 complete 

trios136, 140. An important limitation of these datasets is that variants were discovered using 

short read sequences which have decreased sensitivity in repetitive regions where SVs 

are often located139, 140. To improve sensitivity in detecting large SVs, Ebert et. al. used 

long-read sequencing data to assemble 64 highly complete and contiguous human haplotype 

genomes from a diverse population, and identified 107,590 SVs, of which 68% were not 

discovered with short-read sequencing methods35. Thus, the development of long-read SV 
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callers capable of leveraging data from large sets of diverse human genomes will improve 

the discovery and characterization of SVs for association studies.

Summary

In the current survey, we reviewed the development of over 50 long-read based methods 

for SV discovery and analysis. We describe the shared analysis strategies and unique data 

processing approaches for these methods and discuss how improvements in sequencing 

accuracy and read length in the past few years has led to a new generation of SV callers. We 

also discuss how the new telomere-to-telomere genome assemblies and pangenome efforts 

can improve accuracy and drive the development of future SV calling strategies. Box 1 

summarizes three key factors that can lead to significant improvements in the accuracy 

and robustness of SV detection from long-reads: advances in 1) long-read sequencing 

technologies, 2) long-read assembly and alignment methods, and 3) computational methods 

for SV detection from long-reads. In conclusion, long-read sequencing enables the detection 

of SVs that could not be previously detected from conventional short-read sequencing, yet 

there is still substantial room for improvement in computational methods to identify disease 

relevant SVs in the future.
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Box 1.

Directions for improvements in long-read SV calling

Advances in long-read sequencing technologies

• Improved basecalling accuracy and longer read length from new protocols for 

consensus sequencing and duplex sequencing.

• Application of PCR-free Cas9-based enrichment or adaptive sampling to 

examine targeted regions.

• Development of library preparation protocols to sequence ultra-long reads 

with high yield.

Development of low-cost synthetic long-read platforms (such as stLFR, TELL-Seq, 

Infinity).

Advances in long-read assembly and alignment methods

• Development of automated assembly tools for chromosome-scale and 

haplotype-resolved assemblies.

• Creation of additional telomere-to-telomere reference genomes.

• Creation of pangenomes to catalog common haplotypes in diverse human 

populations.

• Creation of comprehensive catalogs for specific complex regions (such as 

MHC and 22q11.2).

Development of new tools and standards for graph pangenome alignments, SV 

representation and SV calling.

Advances in computational methods for long-read SV calling

• Application of deep learning in probabilistic inference-based SV detection.

• Creation of ensemble methods to leverage the strengths of various SV callers 

and create reliable confidence measures.

• Creation of ensemble methods to combine diverse range of sequencing/

mapping platforms and sequencing approaches (such as HiC, Pore-C, 

synthetic long reads)

• Development of specialized SV callers for more complex loci (such as nested 

inversion, inverted duplication) and tandem mixed-motif repeat expansions.

• Incorporation of haplotype information, epi-haplotype information and 

phased local assemblies in SV calling.

• Development of high precision somatic SV callers for tumor samples that are 

sensitive to SVs with low variant allele fraction.

SV discovery and genotyping from long-read sequencing in population scale studies.
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Figure 1. 
An illustration of different types of SVs. “Ref” refers to reference genome, and “Sample” 

refers to a query genome.
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Figure 2. 
The general framework of SV detection using long-read sequencing. Alignment and 

assembly-based methods are described in the left and right columns respectively. Alignment 

and assembly-based methods use alignments of query sequences, which can be long reads 

or contigs respectively, to extract SV signatures that show evidence of an SV. SV Signatures 

can be extracted from alignment gaps, split alignments or clipped bases and these signatures 

are classified into various SV types. Alignment-based methods cluster SV signatures from 

multiple reads to give a consensus SV call. For assembly-based methods, contigs can be 

assembled through de-novo assembly for the whole genome or locally assembled with help 

of reference sequence. SV callers employ various post-processing steps such as assignment 

of quality scores to SV calls, genotyping and merging of simple SV calls into complex SVs.
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Figure 3. 
Ribbon plot of a HG002 ONT and PacBio reads for a 36,400bp inversion at 

chr10:4,7023,408 (GRCh37) identified by cuteSV, Sniffles and SVIM. a) and b) show ONT 

and PacBio reads of HG002 respectively. Multi-read view shows all reads overlapping the 

inversion, with split alignments of each read in a single row. Blue and red colors represent 

mapping orientation of split alignments. Single-read view shows split alignments of a single 

read in detail. Several ONT reads span the entire inversion and cover several tens kbp of 

flanking region.
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Table 1.

The list of existing computational SV detection methods using long reads. Various methods are highlighted 

according to different sub-categories below. Assembly-based: de novo assembly (blue), and local assembly 

(orange). Alignment-based: general SV detection (grey), complex SV detection in targeted regions (yellow), 

and specific SV class detection (green); SV detection with combined strategy (pink). Repeat expansion: 

detection on long-read sequences (cyan), and detection on raw Nanopore signals (grey).

Tool Platform Comments

Assembly-based SV 
detection

De-novo assembly

PAV35 PB, ONT
Generates phased SV callsets for haplotype-resolved 
assemblies from contig alignments against a reference 
genome.

Dip-call141 PB Detects large insertions and deletions from haplotype-
resolved genome assemblies.

SVIM-asm77 PB, ONT Detects SV from diploid assemblies by pairing similar 
SVs from opposite haplotypes.

SyRI79 PB, ONT Detects SVs, as well as small variants inside rearranged 
regions between two genome assemblies.

Smartie-SV87 - Aligns contigs assembled from any type of sequencing 
against a reference genome.

Assemblytics78 - Can detect SVs, repeat expansions and contractions 
from contigs.

Reference guided 
local assembly

PhasedSV90 PB Creates haplotype partitioned local assemblies and 
supports trio assembly for accurate SV detection.

MsPAC91 PB, ONT Uses HMM on multiple sequence alignment of 
haplotype partitioned local assemblies.

PBSV75 PB Uses local multiple sequence realignment to detect SVs.

SVDSS92 PB
Performs local assembly of sample-specific substrings 
into larger superstrings which are clustered and then 
used for SV detection.

Alignment-based SV 
detection Rule-based

cuteSV49 PB, ONT Uses a heuristic method to detect and genotype SVs.

NanoSV55 PB, ONT Uses a random forest to filter false positive SVs.

SVIM52 PB, ONT
Uses a custom distance metric and graphs to cluster 
SVs and detects both tandem and interspersed 
duplications.

Sniffles59 PB, ONT Can detect complex nested SVs and estimate 
parameters from data set and uses NGMLR aligner.

Sniffles260 PB, ONT Supports somatic and population level SV calling.

SENSV54 ONT
Uses a novel SV-aware aligner to refine breakpoints, 
especially for detecting long SVs (>100kbp) using low 
coverage ONT reads.

PBHoney56 PB Uses characteristics and error profile of PB sequencing.

NanoVar51 PB, ONT Optimized for SV detection from low-depth 
sequencing.

Duet50 ONT Incorporates SNP signatures to enable phased SV 
detection and genotyping.

SKSV57 PB Generates improved read alignment profiles for SV 
calling and genotyping.

DeBreak58 PB, ONT
Identifies SVs via a density-based clustering of SV 
candidates obtained from alignments and uses de novo 
assembly detect large SVs spanning multiple reads.
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Picky53 PB, ONT Uses a greedy seed-and-extend algorithm to improve 
alignment and can detect tandem duplications.

Deep learning-based

SVision69 PB, ONT a deep learning approach to resolve simple and complex 
structural variants.

BreakNet67 PB
Predicts deletions via a CNN-LSTM deep learning 
model trained with feature matrices from read 
alignments pileup.

MAMnet68 PB, ONT
Predicts insertions and deletions via a CNN-LSTM 
deep learning model trained with variant signature 
matrices constructed from read alignment pileups.

Ensemble Methods

NextSV71 PB Ensemble of cuteSV2 and Sniffles2 used with 
minimap2 and NGMLR aligners.

combiSV74 Combines results from six SV callers into a single call 
set with increased recall and precision.

Specialized SV 
detection

Complex SVs

SVision69 PB, ONT Resolves complex SVs using a CNN trained on read 
alignment features encoded in image format.

CORGi94 PB, ONT Detects and visualizes complex genomic 
rearrangements in a local region.

TSD95 PB Detects and visualizes complex SVs in targeted PB 
deep-sequencing.

Miscellaneous SV 
subtypes

rCANID96 PB, ONT Novel element insertion detection.

rMETL97 PB, ONT Mobile element insertion or deletion detection.

npInv98 PB, ONT Non-allelic homologous recombination inversion 
detection.

Repeat Expansion 
Detection

Sequence-based

RepeatHMM101 PB, ONT Repeat detection from long reads using HMM.

Tandem-
genotypes105 PB, ONT Repeat detection from long reads using copy number 

histogram analysis.

PacmonsTR102 PB Repeat detection from long reads using pairHMM.

Straglr106 PB, ONT
Scans the genome for large insertions and generates 
a list of coordinates and motifs which are used to 
genotype tandem repeats.

adVNTR103 PB
Uses trained HMMs to genotype target variable number 
tandem repeats obtained with specific sequencing 
technologies.

RepLong107 PB Repeat detection from long reads using network 
modularity optimization.

NanoRepeat104 PB, ONT Repeat detection from long reads using Gaussian 
mixture models.

Signal-based

STRique108 ONT Repeat detection using Nanopore raw signals and 
HMM.

NanoSatellite109 ONT Uses squiggle-based algorithm on Nanopore raw 
signals.

DeepRepeat110 ONT Repeat detection using deep learning on Nanopore 
signals.

SV Genotyping

Sniffles59 PB, ONT
Computes the fraction of supporting reads for each 
variant against the reference and then uses allele 
frequency to predict genotype.

cuteSV49 PB, ONT
Genotypes are predicted by computing the maximum 
likelihood of each zygosity as a function of supporting 
reads.

cuteSV2142 PB, ONT Regenotyping SVs through an accurate force-calling 
method.
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Samplot119 PB, ONT

Generates images with read depth and alignment 
information for SVs, and uses a trained ResNet-like 
model to predicts deletion genotypes based on these 
images.

svviz2120 PB, ONT Displays the number of supporting reads assigned to 
each allele, which can be used to estimate zygosity.

SVJedi121 PB, ONT
Generates representative allele sequences for each SV 
and then aligns reads to these sequences to estimate 
allele frequencies for genotyping.

VaPoR122 PB
Scores SV predictions by analyzing the k-mer 
recurrence and estimates genotype likelihood by fitting 
a Gaussian mixture model to the score distribution.

LRCaller118 ONT Alignment features are used to genotype each SV 
directly from long reads.

TT-Mars123 PB Genotypes SVs by matching their local regions to 
haplotype-resolved assemblies.

Somatic SV detection

Sniffles260 PB, ONT
Increases sensitivity for low-frequency SVs and 
additional filtering and preprocessing steps to enable 
non-germline SV calling.

DeBreak58 PB, ONT Detects non-germline SVs with clustered breakpoints in 
cancer genomes.

Nanomonsv115 PB, ONT Detects somatic SVs from paired tumor and matched 
control long-read sequencing data.

SHARC116 ONT
Uses low coverage long-read sequencing to detect SVs 
in cancer genomes. A random forest model trained on 
SV features filters false positive SV calls.

CAMPHOR117 ONT
Detects somatic SVs by comparing SVs identified from 
tumor samples against those from matched control 
samples.
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