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Introduction

On March 11, 2020, the World Health Organization (WHO) 
declared the coronavirus disease 2019 (COVID-19) out-
break as a global pandemic [1]. COVID-19 is caused by the 
highly contagious, pathogenic, and mutagenic severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), which 
has caused over 760 million confirmed cases, and nearly 
7 million deaths worldwide [2–4]. In response to the urgent 
need to stop the spread of the virus and minimize the sever-
ity of COVID-19, research on messenger ribonucleic acid 
(mRNA) vaccines gained prominence [5]. Notably, the first 
two vaccines authorized by the European Medicines Agency 
(EMA) and the US Food and Drug Administration (FDA) 
were mRNA vaccines from BioNTech/Pfizer and Moderna, 
demonstrating over 90% protective efficacy against symp-
tomatic SARS-CoV-2 infection in phase III clinical trials 
[6, 7].
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Abstract
The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop 
vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to 
this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles 
(LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messen-
ger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening 
through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and 
intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were iden-
tified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and 
cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal 
escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an 
NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a 
size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for 
ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell 
response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine 
development for combating infectious diseases.
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The success of mRNA vaccines was credited not just 
to their rapid design and development but also to their 
potent immune responses and overall safety [8]. mRNA 
constructs can be designed within a matter of days, facili-
tating fast production and scalability [9, 10]. Additionally, 
mRNA vaccines offer a safer alternative to live viruses and 
do not require access to the nucleus to depict their func-
tion, unlike deoxyribonucleic acid (DNA) vaccines [11]. 
Nanotechnology has been the solution to protect the RNA 
molecules and enable their intracellular delivery [12]. How-
ever, a challenge remains, which is the one associated to 
the necessity of intramuscular injection. The modality of 
intranasal vaccination would be an excellent alternative, as 
this method not only stimulates systemic immunity but also 
provides protection at the site of infection via the induction 
of mucosal immunity [13]. Additionally, this needle-free 
administration would be particularly relevant from a global 
perspective [14, 15]. Our lab has been among the pioneers 
on nanoparticles-based nasal vaccination and has developed 
a number of preclinical protein/peptide candidates for nasal 
protein administration [16–18]. In the area of RNA vacci-
nation using synthetic drug delivery carriers, the advances 
so far have been relatively minorFor example, lipid-coated 
poly(β-amino ester) (PBAE)-based nanoparticles have been 
shown to successfully deliver luciferase mRNA (mLuc) to 
the nasal epithelium, resulting in significantly higher bio-
luminescence signal over naked mLuc [19]. In another 
instance, a cationic cyclodextrin-polyethyleneimine 2k con-
jugate complex was used to intranasally administer mRNA 
encoding for the human immunodeficiency virus (HIV) gly-
coprotein 120, leading to enhanced mucosal and systemic 
immune responses, as well as significant cytokine produc-
tion [20]. Finally, only preliminary work has been reported 
on the use of LNPs for mRNA vaccination via intranasal 
administration against SARS-CoV-2, leading to certain lev-
els of immunogenicity and protection against viral infection 
[21].

Since the beginning of the COVID pandemic, our labo-
ratory has been part of a large consortium project oriented 
towards developing a SARS-CoV-2 vaccine. Our specific 
contribution to this project aimed at leveraging our expertise 
in nanocarriers for nucleic acid delivery and nanovaccines 
and developed a library of potential candidates for mRNA 
vaccination. Our ultimate goal was not only to protect the 
mRNA construct and to enhance overall immunogenicity 
but also to develop a formulation suitable for nasal adminis-
tration. In our attempt to find an alternative to lipid nanopar-
ticles (LNPs), we opted for a delivery platform extensively 
investigated in our lab for drug delivery consisting of nano-
emulsions (NEs) and nanocapsules (NCs) and adapted it to 
the delivery of mRNA molecules vaccination [16–18, 22–
25]. Based on our experience, NEs and NCs could be used 

as an alternative to LNPs, due to their composition based on 
regulatory acceptable biomaterials and simplicity, allowing 
them to be easily translated to a global complex.

Within this framework, we investigated various lipids, 
surfactants, oils, and polymers and produced a library of 
formulations with different compositions and physicochem-
ical properties, all of them compiling with a target prod-
uct profile (TPP), namely (A) particle size below or around 
200 nm; (B) uniform particle size distribution; (C) high 
mRNA association capacity; (D) stability or lyophilization 
potential; and (E) alignment with regulatory requirements. 
Candidates meeting these criteria underwent in vitro and 
in vivo assessments of their transfection efficiency using 
model mRNAs. In vitro cytotoxicity and transfection effi-
ciency were evaluated in HeLa cells, while initial in vivo 
studies included transfection efficiency evaluation upon 
intramuscular administration. These early studies led to the 
identification of a polymeric NC (NC-4-DX) and the opti-
mization of a new generation NE (NE-13), containing both 
a cationic and an ionizable lipid. These candidates were 
them investigated for their immune responses following 
intranasal administration.

Overall, this article shows the formulation efforts to 
develop and optimize alternatives to LNPs for the purpose 
of mRNA vaccination in the context of the COVARNA con-
sortium, including immunologists, pharmacologists, com-
puter scientists, and molecular experts. Beyond the work 
presented here, focused on the development aspect of the 
formulations, within this consortium, different mRNAs 
intended to induce responses against the receptor bind-
ing domain (RBD) of the surface spike glycoprotein of 
the SARS-CoV-2 were developed [26]. These results have 
recently been published, highlighting the considerable dif-
ferences in the SARS-CoV-2-specific neutralizing antibod-
ies production depending on the nanoformulation [27].

Materials and methods

Materials

DOTAP (1,2-dioleoyl-3-trimethylammonium-propane, 
chloride salt) and DOPE (1,2-dioleoyl-sn-glycerol-3-phos-
phoethanolamine) were purchased from Avanti Polar Lip-
ids (AL, USA). Vitamin E (Vit E) (D, L-α-tocopherol) 
was obtained from BASF (Mannheim, Germany). Tween® 
80, sucrose, and glucose (D(+)-glucose) were purchased 
from Merk KGaA (Darmstadt, Germany). Captex8000NF 
(caprylic acid triglycerides) was obtained from ABITEC 
Corporation (OH, USA). Protamine (PR) (protamine sul-
fate ED) was purchased from Yuki Gosei Kogyo (Tokio, 
Japan). Dextran sulfate (DX), sodium salt, was purchased 
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from Sigma-Aldrich SAFC® (MO, USA). Chitosan (CS) 
(poly (D-glucosamide) hydrochloride salt) was obtained 
from HMC+ (Halle, Germany). PEG (5 kDa)-b-PGA (10) 
[Na] (PEG-PGA or PP) (poly(ethylene glycol)-block-
poly(l-glutamic sodium salt) was obtained from Poly-
peptide Therapeutic Solution (Valencia, Spain). C12-200 
(1,1′-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)
(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethyl)
azanediyl)bis(dodecan-2-ol)) was purchased from Corden 
Pharma GmbH (Plankstadt, Germany).

mRNA encoding for green fluorescent protein (mGFP), 
luciferase (mLuc), and ovalbumin (mOVA) were kindly 
provided by Prof. Thieleman’s Lab, from Vrije University 
of Brussels (Brussels, Belgium). RPMI-1640 cell culture 
medium, phorbol 12-myristate 13-acetate (PMA), and iono-
mycin were purchased from Merck (Darmstadt, Germany). 
Ficoll Paque Plus, RBC lysis buffer, fetal bovine serum 
(FBS), penicillin/streptomycin (10.000 U/ml), L-glutamine 
200 Mm, were obtained from ThermoFisher (CA, USA). 
Anti-mouse CD45-BV605 and BV605 Rat IgG2b, k iso-
type control, were purchased from BD (NJ, USA). Anti-
mouse CD8-FITC and FITC Rat IgG2a, k isotype control, 
were obtained from BioLegend (CA, USA). OVA peptide 
was purchased from GenScript (NJ, USA). MHC I Dextra-
mer OVA-specific antigen (JD2164-PE) was obtained from 
Immudex, (Virum, Denmark). Murine IFN-γ ELISpot Set 
was purchased from Diaclone (Besançon, France).

Formulation of nanoemulsions

Two different approaches were used for the preparation of 
nanoemulsions (NEs): bulk mixing of cationic, blank NEs 
followed by the electrostatic complexation of mRNA onto 
the surface; or microfluidic production of NEs in the pres-
ence of mRNA, in a single step, using a microfluidic mixer 
system.

The preparation method for blank NEs consisted of a 
solvent-displacement technique [28]. An organic phase (0.3 
mL for NE-1 to NE-5 and 0.4 mL for NE-6 to NE-14) was 
prepared by dissolving the appropriate amount of different 
lipids (including DOTAP, phospholipids, oils, or surfac-
tants) in ethanol. The resulting solutions were added over 
an aqueous phase (2 mL, RNase-free water), under mag-
netic stirring (1400 rpm), and further incubated under stir-
ring for 5 min. In the particular case of NE-15, blank NEs 
were prepared by microfluidic mixing, following the same 
protocol as described below in the absence of mRNA in 
the aqueous phase. The resulting blank NE was allowed to 
stabilize for at least 10 min. Complexation of mRNA onto 
the pre-formed blank NEs was performed by bulk mixing. 
Shortly, blank NE was diluted in RNase-free water, reach-
ing the desired DOTAP concentration depending on the 

nitrogen-to-phosphate (N/P) ratio explored and the desired 
final mRNA concentration. A solution containing mRNA (at 
different concentrations, depending on the desired mRNA 
concentration and N/P ratio) was added over the previ-
ously formed blank NE solution, under magnetic stirring 
at 700 rpm for 10 s. The resulting NE-mRNA formulations 
were allowed to stabilize for 30 min. Different N/P ratios 
were explored, from 0.64:1 to 4:1. Volume-to-volume (v/v) 
between the mRNA and the blank NE was 2:1 for NE-1 to 
NE-5 and NE-13, and 4:1 for NE-6 to NE-12.

The formulation method based on microfluidic mixing 
comprises the simultaneous formation of the NE and the 
complexation of the mRNA onto a micromixer NanoAs-
semblr™ bench-top instrument, Precision NanoSystems 
Inc. (Vancouver, Canada). In summary, an organic phase 
(consisting of DOTAP, phospholipids, oils, or surfactants) 
and an aqueous phase (containing mRNA at the desired 
concentration) were simultaneously mixed into the micro-
mixer. The aqueous-to-ethanol flow rate was set as 5:1, and 
the total flow rate was 12 mL/min. The different N/P ratios 
were maintained as described in the bulk mixing method. 
The resulting NE-mRNA formulations were allowed to sta-
bilize for 30 min.

Formulation of nanocapsules

NCs were produced by the coating of NE-mRNA with dif-
ferent polymers, including protamine (PR), chitosan (CS), 
dextran sulfate (DX), and PEG-PGA. Briefly, a polymeric 
solution (at a concentration-dependent on the weight-to-
weight (w/w) ratio and the type of polymer used) was added 
over the previously formed NE-mRNA solution, under mag-
netic stirring at 700 rpm for 20 s. The resulting NC-mRNA 
carriers were stabilized for 30 min. The v/v ratio between 
the polymer and the NE-mRNA was 5:1.

Physicochemical characterization of nanoemulsions 
and nanocapsules

Hydrodynamic diameter and polydisperse index (PDI) of 
the NEs and NCs were characterized by dynamic light scat-
tering (Zetasizer® Nano ZS, Malvern Instruments, Malvern, 
UK). ζ-potential was measured in terms of mean electro-
phoretic mobility values, measured by laser Doppler elec-
trophoresis with the same equipment. Particle size and PDI 
measurements were performed after diluting the samples 
10x in RNase-free water. ζ-potential characterization was 
performed after dilution of samples 20x in RNase-free 
water.

Encapsulation efficiency (EE%) was determined by a gel 
mobility assay using agarose gel electrophoresis. Briefly, 
both NE-mRNA and NC-mRNA formulations were diluted 
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In other experiments, 60,000 HeLa cells per well were 
seeded in 24-well plate. In these experiments, mGFP con-
centrations of up to 1000 ng were used.

Animal studies

All animal procedures were performed under the approved 
animal protocols 15,012/14/001 and 15,012/2023/004 
(Consellería de Medio Rural, Xunta de Galicia), following 
National (RD 53/2013) and European (Directive 2010/63/
EU) normative. Efforts were made to minimize the suffering 
of the animals used.

In vivo transfection efficiency with mRNA 
Luc encapsulated onto nanoemulsions 
and nanocapsules following intramuscular 
administration

Swiss mice were administered two intramuscular injections 
(one in each thigh muscle), in a single administration ses-
sion, 10 µg of mLuc, encapsulated in different NE-mLuc 
and NC-mLuc. The total volume administered was 50 µg 
per leg. This led to a total volume of 100 µL with a total 
dose of 20 µg per animal. At different time points, including 
6, 24, and 48 h, animals were intraperitoneally administered 
100 µL of D-luciferin, and whole-body fluorescence was 
visualized in an in vivo imaging system (IVIS).

In vivo inoculation of mRNA OVA encapsulated 
onto nanoemulsions and nanocapsules following 
intranasal administration

Intranasal administration and sampling

C57BL/6J female mice (6–8 w/o) were purchased from Cen-
tro de Biomedicina Experimental CEBEGA (Universidade 
de Santiago de Compostela). Animals were fed ad libitum 
and housed in DVC (digital ventilated cages) with 12/12 h 
dark/light cycle. Intranasal administration was performed 
by specialized personnel in 3 mice groups: (1) free OVA 
mRNA (control, n = 6–9); (2) NE-13 formulation (n = 7–8) 
and (3) NC-4-DX formulation (n = 8). A total volume of 50 
µL (50 µg mRNA) was administered intranasally at days 
0 and 7, following the administration protocol depicted in 
Supplementary Fig. 1. To perform Dextramer staining and 
flow cytometry, peripheral blood samples (150 µL approx.) 
were obtained in lithium heparin tubes (Sarstedt™) from 
the submandibular vein on day 7 of the experiment. Blood 
samples were diluted in sterile PBS (ratio 1:2, blood: PBS) 
and PBMCs monolayer was obtained after Ficoll (ratio 4:5, 
Ficoll: diluted blood) centrifugation (400G, 25 min, room 
temperature). Mice were sacrificed at day 10 with CO2 and 

in a 1:1 (v/v) ratio with a solution of heparin (Sigma-Aldrich, 
MO, USA) or Triton X (Triton-X-100, Sigma-Aldrich, MO, 
USA), prepared at 50 mg/mL in RNase-free water, intended 
to displace the mRNA from the nanoparticles. Then, sam-
ples containing 1–3 µg of mRNA were loaded in an agarose 
gel at 1% w/v in Tris Acetate-EDTA buffer (Sigma-Aldrich, 
MO, USA) before and after incubation with heparin or Tri-
ton X solution. Samples were diluted with equal volumes of 
loading mix, containing 1x SYBR® Gold nucleic acid strain 
(Invitrogen, CA, USA). Free mRNA was included as a con-
trol. Gels were run for 30 min at 90 V in a Sub-Cell GT 
cell 96/192 (Bio-Rad Laboratories, CA, USA), and evalu-
ated with a UV transilluminator imaging system (Molecular 
Imager® Gel Doc™ XR, Bio-Rad Laboratories, CA, USA).

Freeze-drying of selected nanoemulsions and 
nanocapsules

Selected NE-mRNA and NC-mRNA formulations were fro-
zen in the presence of cryoprotectants (including sucrose, 
glucose, and trehalose) at -40 ºC for at least 1 h, and subse-
quently freeze-dried (Genesis™ 25 EL, S.P Industries, PA, 
USA). Samples were initially left freeze-dried at -65 ºC for 
1 h with a vacuum of 200 mTorr, to ensure that formulations 
were completely frozen. The first drying phase was per-
formed from − 40 ºC to 15 ºC, under a progressive vacuum 
to 20 mTorr for 20 h. The second drying phase was done for 
1 h at 20 ºC and 20 mTorr. After this process, formulations 
were stored at 4 ºC until resuspension in RNase-free water, 
and their physiochemical properties were determined.

In vitro assessment of transfection efficiency and 
cytotoxicity of nanoemulsions and nanocapsules 
containing mRNA GFP

A total of 10,000 HeLa cells were seeded per well in a flat 
bottom 96-well plate and allowed to adhere for 24 h. Cells 
were treated with NE-mGFP and NC-mGFP formulations 
for 4 h, in Opti-MEM™ (Gibco™, Themo Fisher, MA, 
USA) at mGFP concentration ranging from 200 to 25 ng per 
well. Formulations were then removed, and replaced with 
complete medium, and cells were incubated for another 
20 h. Cell viability was measured by resazuring assay, fol-
lowing manufacturer recommendations [29]. In brief, cells 
were incubated with resazuring reagent (Resazurin sodium 
salt, Sigma-Aldrich, MO, USA) supplemented with com-
plete media for 45 min. Fluorescence was measured in a 
plate reader at excitation/emission wavelength of 544/590 
nm. Cells were trypsinized, harvested, and fixed with 1% 
(w/v) formaldehyde in PBS, for flow cytometry analysis 
in terms of the percentage of GFP-positive cells and mean 
fluorescence intensity.
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instrument and analyzed with Mabtech© Apex Version 
2.0.56.186.

Results and discussion

Screening of nanoemulsions (NEs) and 
nanocapsules (NCs)

As indicated, in this work we leverage the decades of expe-
rience of our lab in the use of polymers and lipids for the 
delivery of nucleic acids [16–18, 22–25]. Hence, we devel-
oped a library of NEs and polymeric NCs for the efficient 
delivery of mRNA, as a first step to the development of 
nasal formulations. For the selection of adequate candi-
dates, we proposed a TPP a Target Product Profile with sev-
eral requirements, including (A) particle size below 200 nm, 
preferably close to 100 nm; (B) uniform particle size distri-
bution; (C) high mRNA association capacity; (D) stability 
during storage or lyophilization potential; and (E) alignment 
with regulatory requirements (e.g. low ethanol content, or 
the use of compounds already approved).

In the case of NEs, different combinations and molar 
ratios between the different components were explored, as 
depicted in Table 1. These nanocarriers were composed of 
a combination of cationic or ionizable lipids (DOTAP and 
C12-200, respectively), a helper lipid (DOPE), an oil (Vita-
min E or Captex800 NF), and a surfactant (Tween® 80). 
These different lipidic components were combined in differ-
ent proportions and the resulting prototypes were analyzed 
in terms of mRNA encapsulation, particle size, colloidal sta-
bility, or transfection efficiency.

Following mRNA entrapment, these NE-mRNA carriers 
were used as a template for the incorporation of a polymer 
shell driven by electrostatic assembling. This polymer shell 
was expected to modify the interaction of the nanocarrier 
with the nasal epithelium. Based on our previous work of 
chitosan (CS), protamine (PR), and dextran sulphate (DX) 
vaccine delivery carriers [17, 18, 22, 24, 25], we selected 
these polymers as well as the PEG-PGA (PP), extensively 
used in our laboratory for other applications. Besides our 
own work, these polymers have previously been used as 
adjuvant and antigen delivery systems, capable of activat-
ing different T and B cell responses [30–34]. As detailed in 
Table 2, the nomenclature for the resulting NC-mRNAs was 
derived from the initial NE name code, for easy identifica-
tion of the core composition.

Preparation of mRNA-loaded nanoemulsions (NEs)

NE-mRNAs were prepared using two distinct strate-
gies. In the first approach, blank NEs were prepared by 

spleens were kept in sterile PBS. Splenocytes were obtained 
by mechanical digestion by filtering them through a 40 μm 
nylon filter. After two washes with PBS, cells were centri-
fuged (300G, 5 min, room temperature) and the supernatant 
was resuspended with 2 ml RBC lysis buffer for 2 min. Cells 
were then resuspended in 15 mL of PBS, centrifuged (300G, 
5 min, room temperature), and resuspended in 10 mL RPMI.

Flow cytometry

To identify CD45+/CD8+/Dextramer+ populations, cells 
were stained with MHC Dextramer-PE for 10 min at room 
temperature. Afterward, antiCD45-BV605 and antiCD8-
FITC were incubated for 20 min at room temperature. Cor-
responding rat IgG2b-BV605 and rat IgG2a-FITC isotypes 
were used as controls. Cell acquisition was performed in 
Accuri’s flow cytometer (BD) whereas data analysis was 
carried out in FlowJo™ platform.

Murine IFNƴ ELISpot

Splenocytes (2 × 105 cells/condition) were plated in 96-well 
plates with RPMI + 10% FBS + 1% Penicillin/Streptomy-
cin. Cells were stimulated overnight with 10 µg/mL OVA 
peptide and ELISpot kit was performed following the man-
ufacturer’s instructions. Corresponding negative (unstimu-
lated) and positive (1 ng/mL PMA + 0.5 µg/mL ionomycin) 
controls were used. The plate was read with Mabtech© 

Table 1 Summary of the lipid compositions and molar ratios between 
the different components of the nanoemulsions investigated
Code Lipid composition Molar composition 

(%)
NE-1 DOTAP: DOPE: Vit E 16.8: 15.7: 67.5
NE-2 40.7: 11.2: 48.1
NE-3 DOTAP: DOPE: Vit E: 

T80
38.1: 10.5: 45.1: 6.4

NE-4 17.3: 8.1: 69.7: 4.9
NE-5 46.2: 9: 35.6: 9.3
NE-6 DOTAP: Captex8000 

NF: T80
29: 43: 28

NE-7 DOTAP: DOPE: Cap-
tex8000 NF

22.5: 10.6: 66.9

NE-8 DOTAP: DOPE: Cap-
tex8000 NF: T80

25.5: 12: 37.8: 24.7
NE-9 21.1: 9.9: 59.7: 9.4
NE-10 29.9: 8.8: 53: 8.3
NE-11 DOTAP: C12-200: 

DOPE: Captex8000 NF: 
T80

20.4: 9.6: 3.1: 57.8: 
9.1

NE-12 19.8: 6.1: 9.3: 56: 8.8
NE-13 4: 16: 10: 60: 10
Abbreviations: C12-200: 1,1’-((2-(4-(2-((2-(bis(2-hydroxydodecyl)
amino)ethyl) (2-hydroxydodecyl)amino) ethyl)piperazin-1-yl)
azanediyl)bis(dodecan-2-ol) DOPE: 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine. DOTAP: 1,2-dioleoyl-3-trimethylammonium pro-
pane. NE: nanoemulsion. T80: Tween® 80. Vit E: D, L-α-tocopherol
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PDI was noted following mRNA absorption, attributed to 
the enhanced stabilization of the nanosystem through elec-
trostatic complexation of the mRNA on the surface of the 
NEs. This contributed to the overall improvement in the 
stability and dispersity of the resulting nanocarrier. On the 
other hand, certain prototypes were prepared in a single-step 
microfluidic mixing of both aqueous and organic phases, 
leading to the simultaneous formation of the NEs and the 
complexation of mRNA. These two formulation strategies 
were performed with different mRNAs, including mGFP, 
mLuc, and mOVA, leading to different physicochemi-
cal characteristics (Table 4). Overall, the use of microflu-
idic mixing led to the formation of nanostructures with a 
smaller particle size (60–100 nm) than the bulk mixing of 
components (100–150 nm). These variations might suggest 
potential changes in the internal structure of the NEs and the 
organization of the mRNA molecules, potentially due to the 
rapid mixing enabled by the microfluidic device. In fact, this 
has been shown for certain compositions of LNPs [35–37].

Furthermore, as expected, the incorporation of nega-
tively charged mRNA onto the surface of the previously 
formed blank NEs led to a significant reduction of their pos-
itive charge. The resulting surface charges of NE-mRNAs 
were slightly negative at low N/P ratios, and highly positive 
at high N/P ratios. The N/P ratio also influenced the EE% 
values, with higher values obtained at a higher N/P ratio. 
For example, NE-1, -2, -6, -7, and − 8 were prepared at an 
N/P ratio of 0.6:1, leading to particle sizes between 115 and 
150 nm, negative surface charges (-5 to -10 mV), and low 
EE% values (below 50% in all cases). Additionally, differ-
ent types of mRNA exhibited different particle diameters 
and PDI due to their distinct interaction with the cationic 
DOTAP lipid.

Selected NE-mRNAs were subjected to a lyophilization 
process, intended to preserve the physicochemical proper-
ties of the nanosystems and the integrity of the mRNA cargo 
upon long-time storage (Supplementary Table 1). Different 
cryoprotectants, added at different percentages, were tested. 
In general, the incorporation of sucrose (10–20% w/v) 
allowed the maintenance of the physicochemical properties 
of the NE-mRNAs upon resuspension, suggesting the pos-
sibility of long-term storage for these nanocarriers.

Preparation of mRNA-loaded nanocapsules (NCs)

The resulting NE-mRNA nanocarriers were subsequently 
coated with various polymers to form a polymer shell, 
intended to modulate the surface properties of the result-
ing NC-mRNAs (Table 5). Different w/w ratios between the 
polymer and the mRNA were evaluated for each NC-mRNA 
nanosystem, based on the amount of polymer required to 
effectively modify the surface properties while preserving 

solvent-displacement technique, resulting in nanodroplets 
with a size in the range of 100 to 130 nm and a highly posi-
tive surface charge (Table 3). In a second step, mRNA was 
complexed onto the NE by electrostatic interactions between 
the positive charge of the cationic lipid and the negative 
charge of the nucleic acid, causing a rise in the particle size 
of the resultant NE-mRNAs. Furthermore, a reduction in the 

Table 2 Summary of the lipid and polymeric compositions, and the 
molar and weight-to-weight ratio between the different components of 
the nanocapsules investigated
Code Initial NE Molar composi-

tion (%)
Polymer 
coating

mRNA: 
poly-
mer 
(w/w)

NC-1-PR DOTAP: 
DOPE: Vit E

16.8: 15.7: 67.5 Protamine 1:1

NC-3-PR DOTAP: 
DOPE: Vit 
E: T80

38.1: 10.5: 45.1: 
6.4

1:1

NC-4-PR 17.3: 8.1: 69.7: 
4.9

1:1

NC-7-PR DOTAP: 
DOPE: 
Captex8000 
NF

22.5: 10.6: 66.9 1:1

NC-8-PR DOTAP: 
DOPE: 
Captex8000 
NF: T80

25.5: 12: 37.8: 
24.7

1:1

NC-9-PR 21.1: 9.9: 59.7: 
9.4

1:1

NC-3-DX DOTAP: 
DOPE: Vit 
E: T80

38.1: 10.5: 45.1: 
6.4

Dextran 
Sulphate

1:1

NC-4-DX 17.3: 8.1: 69.7: 
4.9

1:1 or 
1:2

NC-5-DX 46.2: 9: 35.6: 9.3 1:2
NC-3-CS DOTAP: 

DOPE: Vit 
E: T80

38.1: 10.5: 45.1: 
6.4

Chitosan 1:1

NC-4-CS 17.3: 8.1: 69.7: 
4.9

1:1

NC-4-PP DOTAP: 
DOPE: Vit 
E: T80

17.3: 8.1: 69.7: 
4.9

PEG-PGA 1:12

NC-5-PP 46.2: 9: 35.6: 9.3 1:12
Abbreviations: CS: chitosan. DOPE: 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine. DOTAP: 1,2-dioleoyl-3-trimethylam-
monium propane. DX: dextran sulphate. NC: nanocapsule. NE: 
nanoemulsion. PEG-PGA or PP: PEG (5 kDa)-b-PGA (10) Na. PR: 
protamine. T80: Tween® 80. Vit E: D, L-α-tocopherol. w/w ratio: 
weight-to-weight ratio between polymer and mRNA content

Table 3 Physicochemical properties of blank NEs
Code Size (nm) PDI Z-Pot (mV)
NE-3 102 ± 13 0.40 ± 0.05 + 56 ± 5
NE-4 104 ± 15 0.30 ± 0.04 + 55 ± 3
NE-9 108 ± 9 0.15 ± 0.03 + 56 ± 8
NE-11 113 ± 6 0.20 ± 0.01 + 58 ± 2
NE-12 131 ± 15 0.16 ± 0.01 + 56 ± 2
Abbreviations: NE: nanoemulsion. PDI: polydispersity index. Val-
ues represent the mean ± standard deviation (n ≥ 3, unless indicated 
otherwise)
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Selected NC-mRNAs were lyophilized as an assessment 
of their long-term preservation upon storage in these con-
ditions (Supplementary Table 1). After screening of dif-
ferent cryoprotectants, a preliminary preference by certain 
polymers was observed. For example, NC-PR-mRNAs 
were capable of maintaining their physicochemical prop-
erties when using trehalose 10%, while this behavior was 
observed in NC-DX-mRNAs when lyophilized with sucrose 
10%.

In vitro assessment of cytotoxicity and transfection 
efficiency of NE-mGFP and NC-mGFP

HeLa cells were selected as a model for easy transfec-
tion and evaluation of cellular toxicity. These cells have 
also been used in different preclinical vaccine studies [38, 
39]. Different NE-mGFP and NC-mGFP candidates were 
incubated with HeLa cells for 4 h, and toxicity and effi-
cient translation into the florescence reporter protein were 
assessed 24 h after transfection.

particle stability. The formation of the polymer shell around 
the oily nanodroplets led to significant changes in the physi-
cochemical properties. In order to facilitate the interaction 
of polymers with NE-mRNAs formulations, the net charge 
of NE-mRNAs was adjusted by the N/P ratio. Namely, NC-
PR-mRNAs and NC-CS-mRNAs were prepared at N/P 
ratios between 0.6:1 to 0.9:1, resulting in nanoparticles of 
130–190 nm, low PDI and positive surface charges (+ 25 
to + 30 mV), ensuring anionic surface charge on the NE-
mRNAs and allowing the adequate absorption of the posi-
tively charged polymers.

Overall, the particle diameters observed in the NC-mRNA 
nanosystems ranged from 70 to 240 nm, primarily depen-
dent on the method used for the initial preparation of NE-
mRNAs. Significant differences were observed for different 
mRNA molecules (e.g. overall, particle size observed when 
mLuc is encapsulated is greater than when other mRNAs 
are used). This suggests a different interaction between the 
NE, the mRNA and the polymer, mainly dependent on the 
type of mRNA used.

Table 4 Physicochemical properties of NE-mRNA nanocarriers, using different types of mRNAs and different N/P ratios
Code Type of mRNA Formulation method N/P ratio Size (nm) PDI ζ-Potential (mV) EE (%)
NE-3 mGFP Bulk mixing 2:1 108 ± 13 0.14 ± 0.03 + 39 ± 2 100
NE-4 mGFP Bulk mixing 2:1 127 ± 13 0.09 ± 0.03 + 43 ± 4 100

mLuc Bulk mixing 2:1 138 ± 18 0.14 ± 0.06 + 42 ± 2 100
mLuc Bulk mixing 4:1 89 ± 2 0.21 ± 0.02 + 48 ± 6 100
mLuc Microfluidics 4:1 84 ± 11 0.21 ± 0.02 + 54 ± 3 100
mOVA Bulk mixing 2:1 121 ± 9 0.10 ± 0.01 + 40 ± 3 100

NE-5 mGFP Microfluidics 4:1 62 ± 13 0.24 ± 0.07 + 53 ± 7 100
NE-9 mGFP Bulk mixing 4:1 97 ± 1 0.19 ± 0.02 + 51 ± 3 100

mLuc Bulk mixing 4:1 104 ± 1 0.17 ± 0.01 + 52 ± 2 100
NE-10 mGFP Microfluidics 4:1 65 ± 1 0.2 ± 0.01 + 44 ± 1 100
NE-11 mGFP Bulk mixing 4:1 107 ± 3 0.18 ± 0.02 + 53 ± 2 100
NE-12 mGFP Bulk mixing 4:1 123 ± 2 0.17 ± 0.01 + 49 ± 1 100
NE-13 mOVA Microfluidics 2:1 116 ± 1 0.17 ± 0.01 + 49 ± 1 75
Abbreviations: EE: encapsulation efficiency. mGFP: mRNA encoding for GFP. mLuc: mRNA encoding for luciferase. mOVA: mRNA encod-
ing ovalbumin protein. NE: nanoemulsion. N/P ratio: nitrogen to phosphate ratio. PDI: polydispersity index. Values represent the mean ± stan-
dard deviation (n ≥ 3, unless indicated otherwise)

Table 5 Physicochemical properties of NC-mRNA nanocarriers, using different types of mRNA, polymers and RNA to polymer ratios
Code Type of mRNA RNA: polymer ratio (w/w) Size (nm) PDI Z-Pot (mV) EE (%)
NC-3-PR mGFP 1:1 152 ± 9 0.12 ± 0.01 + 24 ± 1 100
NC-4-PR mGFP 1:1 153 ± 16 0.11 ± 0.03 + 27 ± 2 75
NC-3-DX mGFP 1:1 144 0.09 -26 100
NC-4-DX mLuc 1:1 154 ± 8 0.14 ± 0.04 -14 ± 1 100

1:2 126 ± 3 0.11 ± 0.02 -21 ± 2 100
mOVA 1:2 132 ± 3 0.07 ± 0.03 -16 ± 2 100

NC-5-DXm mGFP 1:2 93 ± 9 0.2 ± 0.01 -6 ± 7 100
NC-5-PPm mGFP 1:12 70 ± 1 0.17 ± 0.01 + 13 ± 5 -
Abbreviations: CS: chitosan. DX: dextran sulphate. EE: encapsulation efficiency. m: base NE-mRNA prepared by microfluidics. mGFP: mRNA 
encoding for GFP. mLuc: mRNA encoding for luciferase. mOVA: mRNA encoding ovalbumin protein. NC: nanocapsule. PDI: polydispersity 
index. PP: PEG-PGA or PEG (5 kDa)-b-PGA (10) (Na). PR: protamine sulphate EP. w/w ratio: weight-to-weight ratio between polymer and 
mRNA coating. Values represent the mean ± standard deviation (n ≥ 3, unless indicated otherwise)

1 3

2052



Drug Delivery and Translational Research (2024) 14:2046–2061

comparing NE-3-mGFP and NE-4-mGFP, thus suggesting 
that the entanglement of the polymeric shell may influence 
the transfection efficiency of the nanocarriers.

Selected formulations, all prepared via microfluidic mix-
ing, were tested in HeLa cells using a larger number of cells 
in 24-well plates, including NE-5-mGFP, NE-9-mGFP, NE-
10-mGFP, NE-11-mGFP, NE-12-mGFP, NC-5-DX-mGFP, 
and NC-5-PP-mGFP (refer to Supplementary Fig. 2). No 
significant cellular toxicity was observed for none of the 
concentrations tested. Regarding transfection efficiency, 
notorious differences were found between NE-9-mGFP and 
NE-10-mGFP (containing DOTAP as complexing lipid) as 
compared with NE-11-mGFP and NE-12-mGFP (contain-
ing a combination of DOTAP and C12-200 as complexing 
agents). These results highlight that the combination of 
DOTAP with an ionizable lipid (such as C12-200) could 
have positive effects on the transfection efficiency of nano-
carriers. C12-200 is a multi-tailed ionizable lipidoid known 
for its ability to adopt a cone-shaped structure, with the 
potential to enhance the disruption of endosomes upon cel-
lular uptake [44, 45].

In vivo evaluation of NE-mRNA and NC-mRNA as 
vaccine delivery systems following intramuscular 
and intranasal administration

Selected NEs-mRNAs and NC-mRNAs were evaluated in 
different in vivo studies intended to assess their potency as 
vaccine delivery systems (Table 6). Intramuscular adminis-
tration was used to deliver mRNA encoding for luciferase 
(mLuc) to assess the transfection potency of our candi-
dates in vivo. In the subsequent in vivo study, the immune 
response capacity of chosen nanocarriers was evaluated fol-
lowing intranasal administration, using mRNA encoding for 
ovalbumin (mOVA).

Intramuscular administration of nanocarriers with mLuc

The preliminary assessment of the in vivo transfection 
efficiency of selected mRNA nanocarriers, was performed 
using mLuc. Figure 3, shows the expression of the reporter 
fluorescence protein following intramuscular administra-
tion in mice. Although a strict in vitro/in vivo correlation 
was not observed for all formulations tested (Fig. 2), the in 
vivo results showed that, among the NE-mLuc formulations 
tested (NE-4-mLuc, NE-9-mLuc, and NE-12-mLuc), NE-
4-mLuc exhibited the highest capacity to produce luciferase 
In addition, when comparing formulations with the same 
polymer shell but different NE cores (e.g. NC-4-PP-mLuc 
and NC-5-PP-mLuc), some differences were observed. In 
line with the in vitro results (Fig. 2), even when using the 
most potent NE-mLuc (such as NE-4-mLuc), the choice 

The results depicted in Fig. 1 show concentration-
dependent toxicity in the range evaluated, with a maximum 
reduction in viability of approximately 25% observed at the 
highest doses investigated (200 and 100 ng of mRNA) for 
most of the tested nanosystems. No significant differences in 
cell viability were observed among the different NE-mGPF 
and NC-mGFP formulations tested. Notably, NC-mGFP 
exhibited slightly lower toxicity compared to NE-mGFP 
(for instance, NC-4-PR, NC-4-DX, and NC-4-CS resulted 
in better cell viability profiles than NE-4; and NE-9 showed 
lower viability than NC-9-PR). These findings suggest that 
the polymeric shell surrounding the NE-mGFP to form the 
NC-mRNA prototypes contributes to reducing the overall 
high surface charge of the NE-mGFP. Additionally, NC-
mGFP with more neutral surface charges has the potential 
to yield better cell viability profiles. This reduction of cellu-
lar viability, primarily driven by the positive charge, aligns 
with previously reported findings [40, 41].

To evaluate transfection efficiency, two metrics were uti-
lized: the percentage of GFP-positive cells, indicating the 
proportion of cells capable of expressing GFP (Fig. 2, bars); 
and mean fluorescence intensity (MFI), which quantifies 
the amount of fluorescence emitted by these cells (Fig. 2, 
symbols). In general, NE-mGFP formulations (depicted in 
Fig. 2, top) exhibited higher percentages of GFP-positive 
cells and MFI compared to NC-mGFP formulations, espe-
cially at the lower RNA concentrations (Fig. 2, bottom). In 
all instances, a notable dose-dependent increase in transfec-
tion efficiency was observed. Among the various NE-mGFP 
formulations, NE-3-mGFP, NE-4-mGFP, and NE-9-mGFP 
showed the highest transfection efficiency. This might be 
related to the presence of Tween® 80 in their composition 
and, also, to the appropriate combination of DOTAP and 
DOPE [42, 43].

Interestingly, NC-mGFP formulations exhibited differ-
ent behavior depending on the polymer shell, with differ-
ent significances depending on the concentration tested. For 
instance, both NC-3-PR-mGFP and NC-3-CS-mGFP exhib-
ited superior percentages of GFP-positive cells compared 
to NC-3-DX-mGFP at the highest concentration tested. 
Furthermore, significant differences were observed among 
NC-PR formulations. NC-3-PR-mGFP and NC-4-PR-
mGFP resulted in greater GFP-positive cell levels than 
NC-1-PR-mGFP, NC-7-PR-mGFP, or NC-9-PR-mGFP. 
These findings indicate that the NE-mGFP used to form 
the NC-mGFP formulations have the potential to determine 
their final cellular transfection potential, possible due to the 
lipidic composition of the oily nanodroplets, driving the 
internal cellular fate of the nanocarriers. On the other hand, 
NC-4-DX-mGFP markedly outperformed NC-3-DX-mGFP, 
despite both utilizing DX as the polymeric shell. These 
disparities between nanosystems were not evident were 
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Fig. 1 Citotoxicity of NE-mGFP (top) and NC-mGFP (bottom), at dif-
ferent mGFP concentrations, in HeLa cells at 24-hours post transfection
Abbreviations: CS: chitosan. DX: dextran sulphate. mGFP: mRNA 

encoding for GFP. NE: nanoemulsion. NC: nanocapsule. PC: positive 
control, lipofectamine. PR: protamine sulphate EP. Values represent 
the mean ± standard deviation (n ≥ 3)
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Fig. 2 GFP transfection efficiency of NE-mGFP (top) and NC-mGFP 
(bottom) nanocarriers, at different mGFP concentrations. Transfection 
efficiency is expressed in percentage of GFP positive cells (bars, left 
axis) and mean fluorescence intensity (symbols, right axis) in HeLa 
cells, 24 h post transfection
Abbreviations: CS: chitosan. DX: dextran sulphate. mGFP: mRNA 
encoding for GFP. NE: nanoemulsion. NC: nanocapsule. PC: positive 

control, lipofectamine. PR: protamine sulphate EP. A significant com-
parison was performed using two-way ANOVA followed by Turkey’s 
multiple comparison tests between the highest concentration and lower 
concentration (top) and between the highest concentration of each 
group (bottom). p-values < 0.05 were considered statistically signifi-
cant (*). Also, (**) if p-value < 0.01, and (****) if p-value < 0.0001. 
Values represent the mean ± standard deviation (n ≥ 3)
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can be fine-tuned by selecting high-performance lipids and 
more potent mRNA cargos.

IVIS images corresponding to this study can be found in 
Supplementary Fig. 3.

Immune response assessment of intranasal administration 
of NE-13 and NC-4-DX containing mOVA

Based on the synergy observed for the combination of 
DOTAP and C12-200 observed on in vitro studies, an opti-
mized version of the previous NE-11 and NE-12 formula-
tions was developed. In the earlier iterations, the quantity 
of DOTAP significantly outweighed that of C12-200. In the 
new optimized version, named NE-13, the proportion of 
C12-200 was substantially higher than that of DOTAP. This 
adjustment aimed to exploit the enhanced endosomal escape 
capabilities offered by ionizable lipids, such as C12-200. 
Upon cellular uptake, this lipid becomes protonated within 
acidic endosomes, thereby interacting with endosomal phos-
pholipids. This interaction induces a phase transition from a 
highly stable bilayer structure to an inverted hexagonal HII 
phase, capable of rupturing the endosomal membrane and 
facilitating the release of mRNA cargo into the cytosol [48].

On the other hand, based on the aforementioned in vitro 
and in vivo studies, NC-4-DX emerged as a promising 
nanocarrier without need of subsequent optimization, con-
sidering the potential immune responses elicited by dextran 
sulphate-based nanocarriers in the past [18, 24]. Its favor-
able cellular safety and transfection profile, both in vitro and 
in vivo, coupled with its slightly negative surface charge (in 
contrast to the highly positive surface charges observed in 
NE-mRNAs), position it as a promising candidate for fur-
ther exploration.

These two selected candidates were utilized to encap-
sulate mOVA [49]. To evaluate in vivo immune responses 
induced by NE-13 and NC-4-DX, animals were intranasally 
administered twice (day 0 and 7).

The adaptative immune system is designed to provide 
protection from recurring infections, and can be activated 
through humoral responses (mainly, antibodies) or cellular 
responses (T cells). Cellular response can induce special-
ized T cells, known as cytotoxic T cells (CTLs), or clusters 
of differentiation 8 (CD8+) T cells. Ideally, the nanosys-
tems developed should be able to induce robust Major 
Histocompatibility Complex I (MHC-I)-mediated CD8+ T 
cell responses [50, 51]. To evaluate this desirable immune 
response, detection of antigen-specific CD8+ T cells was 
performed by MHC I Dextramer-PE staining in PBMCs 
(collected on day 7, Fig. 4, left) and splenocytes (collected 
on day 10, Fig. 4, right).

In blood samples, both formulations, NE-13-mOVA and 
NC-4-DX-mOVA, resulted in an increase in antigen-specific 

of polymer can modulate the transfection efficiency of the 
resulting NC-mLuc nanocarrier to some extent, although 
not exceeding the performance of NE-mLuc.

The performance of our most potent nanocarriers (namely, 
NE-4-mLuc and NC-4-PP-mLuc prototypes) could be in 
relation to the appropriate combination of all ingredients 
(DOTAP, DOPE, Vitamin E, and Tween 80®, at molar ratio 
17.3: 8.1: 69.7: 4.9). These performances could be improved 
by the use of more advanced complexing lipids, such as 
ionizable lipids, resulting in significant enhancement of the 
potency of mLuc transfection upon intramuscular adminis-
tration [46, 47]. In summary, the potency of the nanocarriers 

Table 6 Summary of the NE-mRNAs and NC-mRNAs used for in vivo 
evaluation
Code Composition Polymer Intramuscu-

lar admin-
istration 
(mLuc)

Intranasal 
admin-
istration 
(mOVA)

NE-4 DOTAP: DOPE: 
Vit E: T80
(17.3: 8.1: 69.7: 
4.9)

✓

NE-9 DOTAP: DOPE: 
Captex8000 NF: 
T80
(21.1: 9.9: 59.7: 
9.4)

✓

NE-12 DOTAP: C12-
200: DOPE: 
Captex8000 NF: 
T80
(19.8: 6.1: 9.3: 
56: 8.8)

✓

NE-13 DOTAP: C12-
200: DOPE: 
Captex8000 NF: 
T80
(4: 16: 10: 60: 
10)

✓

NC-4-DX DOTAP: DOPE: 
Vit E: T80
(17.3: 8.1: 69.7: 
4.9)

Dextran 
Sulphate

✓ ✓

NC-4-PP DOTAP: DOPE: 
Vit E: T80
(17.3: 8.1: 69.7: 
4.9)

PGA-PEG ✓

NC-5-PP DOTAP: DOPE: 
Vit E: T80
(46.2: 9: 35.6: 
9.3)

PGA-PEG ✓

Abbreviations: C12-200: 1,1’-((2-(4-(2-((2-(bis(2-hydroxydodecyl)
amino)ethyl) (2-hydroxydodecyl)amino) ethyl)piperazin-1-yl)
azanediyl)bis(dodecan-2-ol) DOPE: 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine. DOTAP: 1,2-dioleoyl-3-trimethylammonium pro-
pane. DX: dextran sulphate. mLuc: mRNA encoding for luciferase. 
mOVA: mRNA encoding ovalbumin protein. NE: nanoemulsion. 
NC: nanocapsule. PP: PEG-PGA or PEG (5 kDa)-b-PGA (10) (Na). 
T80: Tween® 80. Vit E: D, L-α-tocopherol
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designed for intranasal delivery. A notable study in this 
realm is the preclinical investigation conducted by Moderna 
Inc., which employed mRNA-loaded LNPs for intranasal 
immunization against SARS-CoV-2. This study observed a 
substantial rise in antibody levels and a reduction in viral 
load within the respiratory tract. Nonetheless, cellular 
responses were not addressed in this research [21]. For anti-
tumor proposes, the intranasal delivery of mRNA-loaded 
cationic liposomes demonstrated CD8+ T cell responses 
in splenocytes at approximately 5%, akin to the response 
observed with NC-4-DX-mOVA. In another instance focus-
ing on anti-tumor immunity, mOVA nanoparticles were 
administered in both prophylactic and therapeutic rat mod-
els harboring OVA tumor cells [52]. In this study, the levels 

CD8+ T cell numbers (gated as CD45+/CD8+/Dextramer+), 
as compared with the control group (Fig. 4, left). However, 
although the percentage of antigen-specific CD8+ T cells is 
similar for both formulations, only NC-4-DX-mOVA has 
the capacity to induce a statistically significant increase. 
At day 10 post-administration, splenocytes were harvested 
and results showed a similar tendency as at day 7 (Fig. 4, 
right). Compared with the control group, both formula-
tions induced an in vivo immune response by increasing 
the percentage of OVA-specific CD8+ T cells. Further, NC-
4-DX-mOVA resulted in the formulation with the highest 
immunological effect, as previously observed for day 7.

In comparison to existing literature, there are only a 
limited number of examples of mRNA-lipid nanovaccines 

Fig. 3 Quantification of whole-body luciferase signal of NE-mLuc and 
NC-mLuc formulations, after intramuscular administration. Each ani-
mal was injected in both legs and imaged by IVIS at different time 
points (6, 24, and 48 h)
Abbreviations: DX: dextran sulphate. mLuc: mRNA encoding for 
luciferase. NE: nanoemulsion. NC: nanocapsule. PP: PGA-PEG or 

PEG (5 kDa)-b-PGA (10) (Na). A significant comparison was per-
formed using two-way ANOVA followed by Turkey’s multiple com-
parison tests between the groups, at 6 h. p-values < 0.05 were con-
sidered statistically significant (*). Also, (***) if p-value < 0.001, 
and (****) if p-value < 0.0001. Values represent the mean ± standard 
deviation (n ≥ 3)
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Conclusions

In the present study, we engineered different NEs and 
polymeric NCs as mRNA vaccine candidates for intrana-
sal administration. The results underscore the significant 
impact of multiple factors, including the components and 
molar ratios of the NEs, the identity of the polymeric shell 
of the NCs, and the combination of ionizable and cationic 
lipids, on the transfection efficiency and cytotoxicity profile 
of our nanocarriers. Notably, NC-4-DX resulted in the best-
performing nanocarrier, capable of delivering the desired 
mRNA effectively via intramuscular administration and 
eliciting robust cellular immune responses following intra-
nasal administration.

In summary, the composition, surface polymer modifi-
cation, and the use of different types of lipids for mRNA 
entrapment may influence the performance of the mRNA 
vaccine.

of OVA-specific CD8+ T cells in splenocytes were found to 
be 3%, which aligned closely with the levels seen with NE-
13-mOVA and was lower compared to those achieved with 
NC-4-DX [53].

To measure CD8+ T cell responses, the quantity of inter-
feron-gamma (IFN-γ) induced in splenocytes following 
intranasal administration of NE-13-mOVA and NC-4-DX-
mOVA (Fig. 5). In accordance with blood sample results, 
immune cells were stimulated by both NE-13-mOVA and 
NC-4-DX-mOVA formulations, with the latter having a 
higher evident stimulatory effect. Further, IFN-γ produc-
tion was higher after OVA stimulation than in unstimulated 
immune cells for both formulations.

Overall, these results indicated that both NE-13-mOVA 
and NC-4-DX-mOVA are promising delivery systems for 
mRNA vaccination, inducing robust CD8+ T cell activation. 
Furthermore, this study shows consistent cellular immune 
responses for both OVA-specific CD8+ T cell activation 
and IFN-γ release, determined by Dextramer and IFN- γ 
ELISpot assay, two powerful technologies for accurately 
assessing cellular immune responses after vaccination [54].

Fig. 4 Percentage of OVA-specific CD8+ T cells upon intranasal 
administration con NE-13-mOVA and NC-4-DX-mOVA, obtained 
by flow cytometer, in blood (collected on day 7 post-administration, 
left) and splenocytes (collected on day 10 post-administration, right). 
The percentage of antigen-specific CD8+ T cells was gated as CD45+/
CD8+/Dextramer+

Abbreviations: DX: dextran sulphate. mOVA: mRNA encoding for 
ovalbumin. NE: nanoemulsion. NC: nanocapsule. PBMCs: peripheral 

blood mononuclear cells. A significant comparison was performed 
using one-way ANOVA followed by Turkey’s multiple comparison 
tests between the groups. p-values < 0.05 were considered statistically 
significant. Values represent the mean ± standard deviation (n ≥ 3)
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