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Abstract
Cognitive or motor impairment is common among individuals with neurofibroma-
tosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many 
as 70% of children with NF1 report difficulties with spatial/working memory, at-
tention, executive function, and fine motor movements. In contrast to the utiliza-
tion of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model 
to evaluate the mechanisms and characteristics of these presentations, taking ad-
vantage of a large animal species more like human anatomy and physiology. The 
prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-
type miniswine were examined longitudinally, revealing abnormalities in mature 
oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in 
GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus 
and motor cortex, supporting the role of disruption in inhibitory neurotransmis-
sion in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del 
miniswine demonstrated slower and shorter steps, indicative of a balance-preserving 
response commonly observed in NF1 patients, and progressive memory and learn-
ing impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del 
miniswine as a valuable resource for assessing cognitive and motor impairments 
associated with NF1, investigating the involvement of specific neural circuits and 
glia in these processes, and evaluating potential therapeutic interventions.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
As many as 70% of individuals with neurofibromatosis type I (NF1) report ex-
periencing cognitive and sociopsychological comorbidities and impaired motor 
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INTRODUCTION

Neurofibromatosis type 1 (NF1) is an autosomal domi-
nant disease that affects ~1 in 3500 individuals. The NF1 
gene, which encodes the tumor-suppressive RAS GTPase 
activating protein (GAP) called neurofibromin, contains 
60 exons that are subject to over 1000 different disease-
associated mutations.1 The diversity of mutations, includ-
ing “second-hit” losses of heterozygosity in individual 
cells as well as single-nucleotide polymorphisms,2 cause 
the disease to present in a heterogeneous manner, such 
that the development and severity of symptoms vary 
widely from individual to individual. The most notable 
diagnostic features of NF1 result from unregulated pro-
liferation of neural-crest-derived cell populations: hyper-
pigmentation, café au lait macules, Lisch nodes in the iris, 
cutaneous neurofibromas (cNFs) throughout the nervous 
system, and at times, malignant peripheral nerve sheath 
tumors (MPNSTs).

Cognitive and sociopsychological comorbidities are 
also reported but are less understood, including speech 
and motor difficulties, learning disabilities, anxiety, and 
depression, among others.3 Severity of neurocognitive 
abnormalities varies greatly among children, with more 

severe learning deficits associated with NF1 loss in devel-
oping neural stem cells.4 Children with NF1 frequently 
encounter challenges related to learning and attention. 
Studies indicate that approximately 63% of children with 
NF1 struggle to sustain attention,5 while others face dif-
ficulties in spatial learning tests.6 Moreover, there is an 
increased prevalence of autism spectrum disorder (ASD) 
among NF1 individuals, with 13% exhibiting severe quan-
titative ASD traits.7 Impaired motor function is another 
common feature, characterized by a gait pattern with pro-
longed step time, reduced velocity, cadence, and stride 
length.8 Remarkably, a significant majority (81%) of in-
dividuals aged 4–15 years living with NF1 demonstrate 
below-average or well below-average motor proficiency.9 
These individuals can exhibit muscle weakness, reduced 
muscle size, and up to 50% diminished muscle strength 
compared with their healthy counterparts.10

While the role of neurofibromin inactivation in tumor 
formation has been studied in detail, the effects of NF1 
mutations on cognitive and motor abilities are less under-
stood. Recent studies have made significant advancements 
in understanding the cognitive dysfunction associated 
with NF1, including demonstrations that Nf1+/− mice 
exhibit deficits in memory and spatial learning. Notably, 

function. The mechanisms underlying the dysfunctions are demonstrated in 
Nf1+/− mice which show memory and spatial learning deficits and dysregu-
lation of neural signal transduction in a simple model that fails to replicate 
the full extent of clinical features experienced by NF1 patients. The NF1+/ex42del 
miniswine recapitulates human clinical phenotype and phenocopies of human 
disease.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study investigated the NF1 cognitive and motor dysfunctions at a cellular 
and behavioral level using the NF1+/ex42del miniswine. This study also addressed 
how the NF1 disease phenotypes are dependent on sex and cutaneous neurofi-
broma burden.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Our results show that NF1+/ex42del miniswine presents multiple cellular, cell 
signaling, and behavioral abnormalities which are highly dependent on sex and 
tumor burden. Aberrant glia responses and inhibitory signaling imbalances 
were shown in brain regions specific to memory and learning deficits in individ-
uals with NF1. Additionally, we demonstrated that motor and memory/learn-
ing abnormalities are impacted by sex and neurofibroma burden and worsen 
over time.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
This study provides compelling evidence that the NF1+/ex42del miniswine is a 
powerful, clinically relevant animal model to study NF1 disease. This valuable 
resource will be instrumental in evaluating disease detection methods and poten-
tial therapeutic interventions for NF1 patients.
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these deficits can be reversed by interventions that inhibit 
Ras function, the primary downstream target of neurofi-
bromin.11 Moreover, the increase in Ras and MAPK/ERK 
signaling in Nf1 deficient mouse models was found to pro-
mote phosphorylation of synapsin 1. This, in turn, leads to 
an excessive release of gamma-aminobutyric acid (GABA) 
from inhibitory neurons in specific brain regions, such as 
the hippocampus, medial prefrontal cortex, and striatum. 
This dysregulation can then contribute to a reduction 
in long-term potentiation, which is crucial for working 
memory.11,12 Similarly, dysfunctional inhibitory signaling 
has been suggested to contribute to motor deficits of other 
NF1 models, with increased MAPK/ERK signaling im-
plicated in neuronal migration abnormalities in the cer-
ebellum and altered NF1-cAMP pathways implicated in 
abnormal dopamine processing in the striatum.13–15

While Nf1 mouse models have provided valuable in-
sights into the mechanisms underlying cognitive and 
motor dysfunction in NF1, their simplicity as heterozygous 
models fall short in replicating the full spectrum of clinical 
features seen in NF1 patients. Notably, these models lack 
key presentations such as abnormal skin pigmentation 
and cNF/MPNST formation, limiting the translatability 
of murine models to some aspects of the human condi-
tion. To study the effects of NF1 mutation in an animal 
model that has greater similarity to human anatomy and 
physiology, including the necessary presence of a gyren-
cephalic brain, we characterized a novel miniswine model 
of NF1 bearing an orthologous mutation (deletion of exon 
42) seen in individuals with NF1. NF1+/ex42del miniswine 
effectively phenocopied the human disease and recapitu-
lated several human clinical phenotypes that are lacking 
in Nf1 mutant mouse models, including café au lait spots 
and cNF formation.16 Expanding on our initial charac-
terization, we now delve into the potential of NF1+/ex42del 
miniswine for studying cognitive and motor dysfunction 
at cellular and behavioral levels. Our findings reveal var-
ious cellular, memory/learning, and gait abnormalities in 
this miniswine model, with the phenotypes influenced by 
sex and cNF burden.

MATERIALS AND METHODS

Animals

Wild-type and NF1+/ex42del Yucatan miniswine were gener-
ated using methods described previously.16 Longitudinal 
analysis was performed with age-matched groups of 8, 
12, 15, 18, and 24 months. For behavioral testing, male 
NF1+/ex42del miniswine were grouped by either the pres-
ence or absence of cutaneous neurofibromas (cNFs) and 
as previously described, only male NF1+/ex42del miniswine 

presented with cNFs during the study period.16 A de-
scription of specific cNF presentation in each animal is 
described in Table S1. All miniswine were maintained at 
Exemplar Genetics under an approved IACUC protocol 
(# MRP2016-009).

Histological preparation and 
immunohistochemistry

Animals were euthanized with pentobarbital at 14 months 
(n = 16; 8 WT (4F, 4M); 8 NF1+/ex42del (4F, 4M)) and 
18–24 months (n = 20; 8 WT (4F, 4M); 12 NF1+/ex42del (4F, 
4M with cNFs, 4M without cNFs)). Brain hemispheres 
were fixed in 10% formalin for 3 weeks. After fixation, the 
brains were blocked, cryoprotected in 30% sucrose, and 
sectioned at 45 μm thickness on a freezing microtome. 
Floating sections were immunolabeled following previ-
ously published procedures17 using the following primary 
antibodies: ionized calcium-binding adaptor molecule 1-
Iba1 (BioCare Medical 290; 1:2000), glial fibrillary acidic 
protein-GFAP (Dako Z0334; 1:16000), myelin basic pro-
tein (MBP) (Millipore MAB386; 1:1000), Calbindin (Swant 
CB38; 1:2000), Parvalbumin (Swant PV27, 1:2500) and 
Calretinin (Swant CR7699/3H, 1:2000); and the follow-
ing secondary antibodies: biotinylated anti-rat (MBP) 
and biotinylated anti-rabbit (Iba1, GFAP, Calbindin, 
Parvalbumin, and Calretinin).

Image acquisition and analysis

Triplicate sections of the prefrontal lobe, anterior cingu-
late, and hippocampus immunolabeled with anti-MBP 
and anti-GFAP antibodies were imaged with an Aperio 
slide scanner at 20× magnification. At least three images 
were extracted from each tissue slice (observer blinded to 
group assignment),18 for at least nine images per animal/
per marker/per region. These images were condensed by 
Adobe Photoshop and split into red/green/blue channels 
by ImageJ. Images were run through ImageJ batch pro-
cessing using a rolling ball radius for background sub-
traction and analyzed by threshold analysis. Total pixel 
area data (%) was selected and analyzed using a one-way 
ANOVA with Tukey's post hoc in GraphPad Prism 6.0.

Triplicate sections of the prefrontal lobe, anterior cin-
gulate, and hippocampus immunolabeled with anti-Iba1 
antibodies were imaged with a Nikon 90i at 20× magni-
fication. Multiple images were viewed from each section, 
which varied from 3 to 9 sections per animal in the ante-
rior cingulate, 6–9 sections in the prefrontal lobe, and 6–19 
sections in the hippocampus. Using Nikon NIS element 
software, a 500 × 500 μm box was drawn on each image 
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and the number of ramified and amoeboid Iba+ microglia 
were counted for each image. The total number of rami-
fied and amoeboid microglia was tallied for each minis-
wine and normalized to the number of sections for that 
animal. Cell counts were analyzed in GraphPad Prism 6.0 
using unpaired t-tests.

Triplicate sections of the hippocampus and motor cor-
tex were labeled with anti-parvalbumin, anti-calbindin, 
and anti-calretinin antibodies. Sections were mounted 
onto slides and imaged with the Nikon Ni-E at 100× mag-
nification. Images were split into multiple channels with 
ImageJ and the blue channel was used to adjust thresh-
old and particle size settings to match the size and shape 
of individually labeled cell bodies. The particle size cor-
responded to the number of labeled cell bodies in each 
image. Cell count means were generated for each animal 
and statistical tests were run (two-way ANOVA with un-
corrected Fisher's LSD).

High-performance liquid chromatography

Aliquots from the hippocampus and motor cortex were de-
proteinized by the addition of 450 μL of Isocratic Excitatory 
AA buffer (0.1 M sodium phosphate dibasic heptahydrate 
(Fisher Scientific), 0.13 mM EDTA (Research Products 
International) in 33% methanol (Sigma-Aldrich); pH 5.88) 
and sonicated on ice using a tip sonicator. Glutamate and 
GABA neurotransmitter levels were quantified by high-
performance liquid chromatography (HPLC) in porcine 
brain homogenates following previously published pro-
cedures for the derivatization technique19 and fluorescent 
detection methods that detailed specific excitation and 
emission wavelengths for GABA and glutamate.20 Briefly, 
samples were derivatized using o-phthalaldehyde (Fisher 
Scientific) and sodium sulfite (Sigma-Aldrich) prior to 
separation on a C18 reverse phase column. Samples were 
eluted using an isocratic elution method and detected 
using a fluorescence detector (FLD) at 240 nm excitation 
wavelength and 450 nm emission wavelength. Peak area 
and external standards of individual and mixed amino 
acids were used to calculate relative amounts of each 
amino acid, and unpaired t-tests were run in GraphPad 
Prism 6.0+.

Protein sample preparation and 
Western Blotting

Aliquots from the motor cortex and hippocampus were 
lysed in a lysis buffer and sonicated on ice using a tip soni-
cator. Cell lysates (80 μg) and phosphate-buffered saline 
(Sigma-Aldrich) were heated to 100°C for 10 min. And 

50 μL of protein lysates were loaded into each well of a 
4–15% precast gel (Mini-PROTEAN® TGX™; BioI-Rad) 
for electrophoresis. Separated proteins were transferred 
onto nitrocellulose membranes using Thermo Scientific 
Power blotter station (Invitrogen™). Membranes were in-
cubated with anti-glutamic acid decarboxylase 67-GAD67 
(BD BioSciences 611,604; 1:1000) and β-actin antibodies 
– as a loading control (Cell Signaling 4967; 1:3000) over-
night at 4°C. After washing, membranes were incubated 
for 2 h with either anti-mouse or anti-rabbit HRP second-
ary antibodies at 4°C. Adult bovine serum in tris-buffered 
saline with 0.1% Tween-20 was used for blocking and 
antibody incubation steps. Bands were then visualized 
with Clarity™ Western ECL HRP substrate (BioRad) and 
imaged using ChemDoc™ MP Imaging system (BioRad). 
Using Image J, a region of interest (ROI) was selected 
around each GAD67 and β-actin band and below each 
band (for background) to measure mean gray values as 
a measure of pixel density. The background density was 
subtracted from its respective GAD67 or β-actin band den-
sity to calculate a net β-actin band value and a net GAD67 
band value. The ratio of net GAD67 over net β-actin for 
each NF1+/ex42del and wild-type miniswine (14, 18, and 
24 M) was calculated and analyzed with GraphPad Prism 
6.0 using unpaired t-tests at each timepoint.

Neurobehavior testing

Simple T-maze

We followed the methodology from our previous publi-
cation,16 except for using dry animal pellets as a reward. 
Briefly, animals were placed in a simple T-maze for two 
testing paradigms. During the acquisition phases, the 
animal learned which arm a food reward was located in. 
During the reversal phases, the reward was moved to the 
opposite arm, and the animal had to relearn the location of 
the reward. The test was video recorded, and the animals 
were tracked with the Anymaze software v4.99 (Stoelting 
Co., Wood Dale, IL). A blinded observer watched the T-
maze videos and recorded the arm chosen by each animal 
during the acquisition and reversal phases. The number of 
correct responses was analyzed with GraphPad Prism 6.0 
using a one-way ANOVA, Tukey post hoc.

Gait analysis

Motor performance was analyzed using a kinematic walk-
way as previously described.21 Briefly, a 4.87 × 0.6 m Zeno 
Electronic Walkway (ZenoMetrics Peekskill, NY) was 
used for data acquisition. Animals were trained to walk 
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by receiving food as a reward for each completed walk. 
Data were processed with PKMAS Software ver. 509C1 
(Protokinetics LLC, Havertown, PA), and 186 parameters 
were collected per footprint. Five walks per subject were 
analyzed at each timepoint, with each walk consisting 
of eight consecutive footprints of the front legs. Walks 
in which the pig stopped or stepped out of the mat were 
eliminated. The 186 parameters were analyzed utiliz-
ing a multivariate principal component analysis (PCA) 
implemented in R utilizing the FactorMineR package to 
determine which principal components (PCs) accounted 
for the most variation in the data. The most significant 
variables contributing to the most variation in the PCs in-
cluded: stride time, step time, stance [measured by % gait 
cycle (GC)], swing (%GC), stride length, step length, and 
integrated pressure.

Statistical analysis

All statistical tests were performed in GraphPad Prism ver-
sion 6.0+ or equivalent unless otherwise noted. Raw data 
and complete data tables with exact p-values are available 
from the authors upon reasonable request. Individual sta-
tistical test details are specified in figure legends. PCA was 
performed with the FactorMineR package in R version 
4.0.1+. Outliers were removed using the ROUT method, 

Q = 0. Graphs as presented as Mean ± SEM, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

RESULTS

NF1+/ex42del swine show aberrant 
myelination, altered astrocyte response, 
and increased microglia presence in 
several brain regions

Frontal lobe white matter tracts of NF1 patients have 
been shown to be volumetrically enlarged compared with 
healthy individuals when imaged through diffusion tensor 
imaging.22 We were interested in whether our NF1+/ex42del 
swine model exhibited similar myelination abnormalities. 
We chose to focus on prefrontal tracts and the anterior 
cingulate cortex due to their association with memory 
and learning defects in individuals with NF1 and mutant 
mice models.23,24 Tissue samples were split by sex and ex-
amined at two age ranges: 14 months and 18–24 months. 
Using immunohistochemistry of MBP, a marker of ma-
ture myelinating oligodendrocytes, adult NF1+/ex42del 
miniswine presented with significantly more MBP+ ex-
pression than wild-type counterparts in both the prefron-
tal tracts (Figure 1a,b, Figure S1A) and anterior cingulate 
(Figure 1c,d). Female NF1+/ex42del miniswine showed this 

F I G U R E  1   NF1+/ex42del miniswine exhibit increased MBP+ mature oligodendrocytes in prefrontal tracts and anterior cingulate. (a) 
Representative images of MBP+ oligodendrocytes in the prefrontal tracts of wild-type and NF1+/ex42del miniswine at 18 months of age. (b) 
MBP+ analysis in prefrontal tracts indicating significant differences between NF1+/ex42del miniswine and wild-type counterparts at 14 and 
18–24 months of age. (c) Representative images of MBP+ oligodendrocytes in the anterior cingulate of wild-type and NF1+/ex42del miniswine 
at 18 months of age. (d) MBP+ analysis in the anterior cingulate indicates significant differences between male NF1+/ex42del and wild-type 
counterparts at 18 months. Unpaired t-tests. n = 3–4/group, *p < 0.05, **p < 0.01. Mean ± SEM. Scale bar = 200 μm.
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increase in the prefrontal tracts at 14 and 18–24 months 
of age while male NF1+/ex42del miniswine showed this in-
crease only at the later time (Figure 1b). In contrast, an 
increase in MBP was only present in the anterior cingulate 
in 18–24 month male NF1+/ex42del miniswine (Figure 1d).

Astrogliosis, characterized by the proliferation of 
GFAP+ astrocytes, has been observed in various NF1 
models. However, the expression of GFAP in astrocytes 
shows variability depending on factors, such as age, an-
imal model, and specific brain region. For example, in 
several Nf1 mutant mice, an increased number of GFAP-
labeled astrocytes has been detected in the mediolateral 
region of the periaqueductal gray and nucleus accumbens, 
irrespective of age. In contrast, GFAP expression in the 
hippocampus varied across all age groups, and no sig-
nificant differences in GFAP expression were observed 
in the cortex or white matter tracts.25 To determine if 
NF1+/ex42del miniswine showed abnormal astrocyte pheno-
types, regions associated with planning/decision-making 
(prefrontal lobe and anterior cingulate) and memory/
learning (hippocampus) were immunolabeled for GFAP+ 
astrocytosis.11 Across several brain regions at 14 months 
of age, male and female NF1+/ex42del miniswine showed 
no consistent differences in GFAP expression, including 
in the prefrontal lobe (Figure 2a,b, Figure S1B), anterior 
cingulate (Figure 2c,d, Figure S1C), and dentate gyrus of 
the hippocampus (Figure 2g,h, Figure S1D). A significant 
increase was found in male NF1+/ex42del miniswine within 
the CA1 of the hippocampus (Figure  2e,f, Figure  S1C). 
At 18–24 months, an increase in GFAP was seen in the 
prefrontal lobe (Figure 2a,b) in female NF1+/ex42del minis-
wine, whereas a decrease was found in male NF1+/ex42del 
miniswine in the dentate gyrus (Figure 2g,h, Figure S1D). 
Therefore, no consistent astrocyte response was observed 
in NF1+/ex42del miniswine across time and within several 
brain regions.

An increase in microglia presence has been reported in 
human NF1-associated astrocytomas and the optic nerve 
of Nf1 mutant mice,26 and aberrant microglial function 
can contribute to cell death and cognitive dysfunction. To 
understand if aberrant microglia activity was evident in 
NF1+/ex42del miniswine, brain regions were examined for 
the presence and morphology of ionized calcium-binding 
adaptor molecule 1 positive (Iba1+) microglia, with ac-
tive microglia taking a more amoeboid shape.27 While 
we did not observe an increase in active, amoeboid mi-
croglia that would indicate chronic neuroinflammation, 
an increased number of ramified, non-activated microg-
lia were found in the prefrontal lobe of 18-month-old 
male NF1+/ex42del miniswine (Figure  S2A,B), and in the 
hippocampus of male NF1+/ex42del miniswine at 14 and 
18 months (Figure  S3C,D). Female animals showed no 
microglial abnormalities in either region at any timepoint, 

and the anterior cingulate showed no differences in the 
number of microglia at any timepoint between either sex 
(data not shown).

NF1+/ex42del swine show altered inhibitory 
signaling in the hippocampus and 
motor cortex

As imbalances in inhibitory signaling have been proposed 
to be one mechanism contributing to memory, learn-
ing, and motor delays in Nf1 mutant mice11,12,24 as well 
as motor deficits in NF1 patients,28 we probed into the 
balance of GABAergic and glutamatergic neurons in the 
hippocampus and motor cortex of NF1+/ex42del miniswine. 
Using HPLC, on homogenates of the hippocampus and 
motor cortex, a significantly decreased GABA: Glutamate 
ratio was detected in 18–24-month-old female NF1+/ex42del 
miniswine in both regions (Figure  3a,b), indicating an 
imbalance of excitatory to inhibitory signaling in a re-
gion important to memory/learning function and motor 
coordination. We also investigated the types of inhibi-
tory neurons by immunolabeling the motor cortex and 
hippocampal sections with the GABAergic interneuron 
markers calbindin, calretinin, and parvalbumin. In the 
hippocampus at 14 months, greater numbers of calretinin+ 
interneurons were found in female NF1+/ex42del animals, 
whereas less parvalbumin+ interneurons were found in 
male NF1+/ex42del animals (Figure  4a,b, Figure  S3A). No 
consistent differences were noted in other time ranges. In 
the motor cortex at 14 months, there were fewer calbindin+ 
interneurons in male NF1+/ex42del animals (Figure  5a,b, 
Figure  S3B). When measuring the relative protein level 
of GAD67, an enzyme that synthesizes GABA, in the hip-
pocampus and motor cortex, no changes were detected at 
either time range (Figure S4A–D).

NF1+/ex42del swine show sex and 
neurofibroma-dependent memory/
learning and motor deficits that worsen 
over time

We previously showed memory and learning deficits in an 
initial characterization of 9-month-old male NF1+/ex42del ani-
mals.16 To determine if these deficits were consistent over 
time, we measured memory and learning abilities at 8, 12, 
and 18 months of age using a simple T-maze. Of note, a sub-
set of male animals began forming cutaneous neurofibromas 
(cNFs) during the study period (male-specific – see16,29,30 
and Table S1). Therefore, to determine if behavioral abnor-
malities were specific to the presence of cNFs, NF1+/ex42del 
data were further split into animals that had cNFs (males 
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only) or did not have cNFs (mix of males and females). 
Overall, there were no differences in learned responses 
(Acquisition Day 1 and 2) or new task responses (Reversal 
Day 1 and 2) at 8 months of age (Figure 6a–d). NF1+/ex42del 
males with cNFs showed deficits in maintaining acquired 
learning (Acquisition Day 2) as well as in learning a new task 
(Reversal Day 1 and 2) beginning at 12 months of age, which 

progressively worsened by 18 months of age (Figure 6b–d). In 
fact, 18-month-old male animals with cNFs did not perform 
well enough in the 18-month acquisition trials to be tested in 
the reversal trials at that age (see reduced n, Figure 6c,d), in-
dicating the severity of the phenotype. There were no signifi-
cant differences between wild-type and NF1+/ex42del animals 
without cNFs at any timepoint (mix of males and females), 

F I G U R E  2   NF1+/ex42del miniswine exhibit inconsistent GFAP+ astrocyte expression in the prefrontal lobe, anterior cingulate, and 
hippocampus. (a) Representative images of GFAP+ astrocytes in the prefrontal tracts of 14-month-old wild-type and NF1+/ex42del miniswine. 
(b) GFAP+ analysis of prefrontal tracts indicates significant increases in female NF1+/ex42del miniswine at 18–24 months of age. (c) 
Representative images of GFAP+ astrocytes in the anterior cingulate of 14-month-old animals. (d) GFAP+ analysis of the anterior cingulate 
indicates no significant differences at either timepoint. (e) Representative images of GFAP+ astrocytes in the CA1 region of the hippocampus 
in 14-month-old animals. (f) GFAP+ analysis of hippocampus CA1 indicates an increase in astrocyte expression in 14-month-old male 
NF1+/ex42del miniswine. (g) Representative images of GFAP+ astrocytes in the dentate gyrus of the hippocampus in 14-month-old animals. (h) 
GFAP+ analysis of the dentate gyrus indicates a decrease in male NF1+/ex42del miniswine at 18 months of age. Unpaired t-tests. n = 3-4/group, 
*p < 0.05, **p < 0.01. Mean ± SEM. Scale bar = 200 μm.
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suggesting a cNF and male-specific deficit. That result is par-
tially consistent with NF1 male patients with symptoms of 
autism spectrum disorder31 and in NF1 mouse models with 
male-specific spatial learning deficits.32

To assess whether NF1+/ex42del miniswine exhibits motor 
difficulties similar to those in patients with NF1, we utilized 
a kinematic walkway and measured 186 parameters from 
the forelegs of all miniswine as they walked naturally. A 
PCA was used to reduce the 186 parameters to the 20 most 
influential parameters,33,34 which showed cNF-burdened 
NF1+/ex42del males to have significant gait abnormalities 
at 12 and 15 months of age (Figure 7a). These abnormali-
ties were lost at 18 months of age, though this is likely due 
to fewer animals being available to test at this timepoint. 
Similarly, in the hindlegs, cNF-burdened NF1+/ex42del males 
had significant gait abnormalities at 12 and 15 months of 
age (Figure S5). In the forelegs, cNF-burdened NF1+/ex42del 
males took significantly longer to complete their stride 
(Figure 7b), took significantly longer to complete their in-
dividual steps (Figure 7c), completed their steps with more 
pressure (Figure 7d), and appeared to have impaired bal-
ance/coordination as demonstrated by an increased walk 
ratio (Figure 7e). Additionally, cNF-burdened NF1+/ex42del 
males took significantly fewer steps/minute (Figure  7f), 
had a decrease in walk velocity (Figure  7g), an increase 
in time spent with their feet on the ground (Figure  7h), 
and a decrease in time spent with their feet off the ground 
(Figure 7i). These phenotypes were not present in animals 
without cNFs (a mix of males and females).

DISCUSSION

Here we demonstrate multiple cellular, cell signaling, and 
behavioral abnormalities in NF1+/ex42del miniswine, with 

many phenotypes dependent on sex and cNF burden. 
We previously reported that male NF1+/ex42del miniswine 
develop cNFs and present with poor quality of life meas-
urements that correlated with tumor burden, while their 
female counterparts do not.29,30 In our current study, we 
describe similar male-specific changes in astrocyte reactiv-
ity, increases in microglial populations, decreased numbers 
of parvalbumin+ and calbindin+ interneurons, deficits in 
memory/learning tasks, and abnormal, cautious walk-
ing strategies. This is consistent with some aspects of the 
human disease, as male individuals with NF1 have been 
reported to develop cNFs earlier than females and have 
shown higher rates of ASD.35 Nf1 mutant mice have simi-
larly shown male-specific memory/learning abnormali-
ties.36 In contrast, female individuals with NF1 and Nf1 
mutant mice have more severe optic gliomas and visual 
deficits, with female-specific retinal cell loss and thin-
ning.2,32,37 Additionally, internal tumors, that may trans-
form into MPNSTs, have been reported to develop earlier in 
female patients and increase during puberty, with several 
studies supporting a link between puberty or pregnancy 
and cNF presentation in female NF1 individuals (singular 
cNFs and pregnancy38 and mouse models).35

Interestingly, female NF1+/ex42del miniswine presented 
a less prominent disease phenotype although they still dis-
play defects consistent with NF1. Key female-specific fea-
tures observed in our mutant pig model include increased 
expression of mature oligodendrocytes, irregular inhib-
itory signaling (decreased ratio of GABA: Glutamate), 
and abnormalities in reaction to thermal stimulation.30 
It is possible that cNFs and other NF1-associated presen-
tations did not develop due to a lack of hormonal com-
ponents that are present in female individuals with NF1. 
Therefore, further research is necessary to explore the 
relationship of sex hormones on NF1 presentations in 

F I G U R E  3   Decreased GABA signaling in the hippocampus and motor cortex of NF1+/ex42del miniswine. (a) HPLC analysis of GABA: 
Glutamate indicates a decreased ratio in the hippocampus of female NF1+/ex42del miniswine at 18–24 months. (b) HPLC analysis of GABA: 
Glutamate indicates a decreased ratio in the motor cortex of female NF1+/ex42del miniswine at 18–24 months. Unpaired t-tests. n = 3–4/group, 
*p < 0.05. Mean ± SEM.
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female NF1+/ex42del miniswine to determine the full utility 
of this swine model.

Microglia are known for their reactive states in neuro-
degenerative and cognitive diseases, such as Alzheimer's,39 
Parkinson's,40 and Huntington's disease, in which sever-
ity of the disease correlates with an increase in activated 
microglia.41 Although we were surprised to find no sig-
nificant difference in the number of reactive amoeboid 
Iba+ microglia in NF1+/ex42del miniswine compared with 
wild-type control, we found an increase in the total num-
ber of Iba1+ microglia in the prefrontal cortex and hippo-
campus of male NF1+/ex42del miniswine. In injury models, 
increased numbers of microglia have been described as 
one of the first responses following injury, including optic 
nerve injury27 and sciatic nerve injury,42 and a similar 
response may be occurring in our swine model. Notably, 
these reported increases in microglial activation in the 
brain occur after a peripheral sciatic nerve injury, sug-
gesting a possible explanation for the increased microglial 
population in male animals. Indeed, as female NF1+/ex42del 
miniswine show no cNF presentation, and additionally no 
aberrant microglial presence, perhaps similar pathways 

contribute to microglial proliferation and cNF formation 
in NF1 miniswine.

Cognitive and motor abnormalities in Nf1 mouse mod-
els have also been related to an imbalance of inhibitory sig-
naling,11–13 which is similar to the inhibitory imbalances 
that we demonstrated in our miniswine via decreased 
GABA: Glutamate ratios. While other measurements of in-
hibitory imbalances (such as interneuron counts) did not 
show strong changes in our study, our results concur with 
previously described changes in both individuals with NF1 
and mouse models and should be explored with a larger 
miniswine sample size. For example, the trend toward a 
reduction in GABA: Glutamate ratio in the motor cortex 
of NF1+/ex42del miniswine mimics the decreased cortical 
GABA concentration and GABA receptors in people with 
NF143 and is suggested to contribute to cortical dysregu-
lation. Whereas in the hippocampus, an increased GABA: 
Glutamate ratio is similar to the excitatory-inhibitory im-
balance seen in ASD,44 within a Nf1 mouse model of au-
tism,24 and in the hippocampus of juvenile female Nf1 
mice.36 Altered inhibitory signaling is not unique to NF1 
cognitive dysfunction. Imbalanced excitatory to inhibitory 

F I G U R E  4   No consistent differences in GABAergic interneurons in hippocampus of NF1+/ex42del miniswine. (a) Representative 
images of calbindin+, calretinin+, and parvalbumin+ interneurons in hippocampus of NF1+/ex42del and wild-type miniswine at 18 months 
of age. (b) Significantly greater number of calretinin+ interneurons in 14-month-old female NF1+/ex42del animals, and decreased number 
of parvalbumin+ interneurons in 14-month-old male NF1+/ex42del animals. Unpaired t-tests. n = 3–4/group, *p < 0.05. Mean ± SEM. Scale 
bar = 100 μm.
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neurotransmission in the motor cortex of NF1 children has 
been linked to motor abnormalities,45 and high releases 
of GABA have been reported in Alzheimer's disease46 and 
Parkinson's disease. Specifically, the GABAergic output 
from the basal ganglia to neurons in the thalamus and cortex 
has been proposed to be overactive in Parkinson's disease, 
causing GABAergic inhibition in the cortico-basal gan-
glia loop and subsequent decreases in velocity and overall 
movement.47 Interestingly, we report that male NF1+/ex42del 
miniswine exhibit gait abnormalities resembling an early 
Parkinsonian gait characterized by longer step time and 
reduced cadence,8 suggesting the possibility that enhanced 
inhibition in the thalamocortical loop of the cortico-basal 
ganglia circuit is involved in NF1 motor abnormalities.

We found an increase in “integrated pressure” when 
cNF-burdened male NF1+/ex42del miniswine steps, which 
could reflect foot stomping as the animal walks. This may 
be indicative of peripheral neuropathy or steppage gait is-
sues, where abnormalities stem from muscle weakness. 
The specific stomping characteristics seen in our study are 
correlated to deficits of proprioception (limb and joint posi-
tioning) that are commonly seen in a sensory ataxic gait,48 
where individuals cannot determine where their feet are 

located in relationship to the ground, the stance is widened, 
the gait is unsteady, and the foot stomps down. However, 
as gait abnormalities were preferentially found in male 
NF1+/ex42del miniswine with cNFs, it is unclear whether the 
differences in gait are true motor differences or the result 
of increased pain response to a tumor. Indeed, we previ-
ously reported an enhanced sensitization to mechanical 
stimulation, poor sleep, and enhanced resting activity in 
cNF-burdened NF1+/ex42del miniswine.30 Further research is 
needed to parse out motor deficits from responses to pain.

Taken together, we report cellular, cell signaling, 
and behavioral abnormalities in NF1+/ex42del miniswine 
that are consistent with NF1 disease phenotypes seen 
in NF1 patients and mouse models. We suggest that the 
NF1+/ex42del miniswine represent a powerful, clinically 
relevant animal model to study the NF1 disease, includ-
ing the precise mechanisms contributing to cognitive 
and gait dysfunction as well as the interplay between 
sex, cognitive dysfunction, tumor growth, pain, and ner-
vous/muscular function. Ultimately, this unique plat-
form may prove instrumental in developing improved 
methods for disease detection and monitoring while 
enabling therapeutic testing, in an animal that more 

F I G U R E  5   No consistent differences in GABAergic interneurons in the motor cortex of NF1+/ex42del miniswine. (a) Representative 
images of calbindin+, calretinin+, and parvalbumin+ interneurons in the motor cortex of NF1+/ex42del and wild-type miniswine at 18 months 
of age. (b) Significantly lower number of calbindin+ interneurons in 14-month-old male NF1+/ex42del animals. Unpaired t-tests. n = 3-4/group. 
*p < 0.05. Mean ± SEM. Scale bar = 100 μm.
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closely phenocopies humans, to identify better treat-
ments for NF1 patients.

Future considerations and limitations

One of the logistical challenges in the characterization of a 
large animal model is to find applicable brain regions that 
can be sectioned, labeled, and imaged with minimal to no 
fragmentation or generation of artifacts. Unfortunately, 
the anterior cingulate was more fragile than any of the 
other brain regions we studied and resulted in the loss 
of tissue or fragmentation to an extent that analysis was 
not possible. This resulted in an n = 2 in the MBP-labeled 
tissues from 14 M female NF1+/ex42del miniswine and n = 2 
in the GFAP-labeled tissues from 14 M male wild-type 
miniswine. Future studies will need to consider using 
thicker tissue sections or increasing the number of sec-
tions per experiment to prevent loss and fragmentation, 
therefore increasing the overall animal numbers per 
experiment.

Large animal models of disease are complicated by 
the lack of species-specific tools, such as antibodies, 

protocols, and behavior equipment. We have tried to opti-
mize markers for oligodendrocyte precursor cells (Olig2), 
in the brains of our swine models. Though we were able to 
validate that these markers did label the oligodendrocytes, 
we also had nonspecific labeling of neurons and in many 
of the brain tissues, there was background.49 A huge chal-
lenge in developing more translatable large animal mod-
els of diseases will persist if appropriate reagents are not 
readily available.

Though all behavior assays have their limitations, 
rescue experiments would need to be designed with the 
specific social behavior of swine in mind, which is con-
siderably different than that of rodent models. For exam-
ple, we have tried to assay social anxiety in our previous 
NF1+/ex42del miniswine studies and found no significant 
differences.16 Our team has utilized the simple T-maze 
and gait walkway in multiple miniswine studies and has 
optimized these methods to produce repeatable and con-
sistent results. However, we have had mixed results with 
the FitBark activity monitor, which may be due to the 
short time that the device was worn by each animal, dif-
ferences between genotypes, or differences in other fac-
tors such as environment.16,30,33,50 Utilizing the Fitbark 

F I G U R E  6   Simple T-maze indicates delayed and sustained memory and learning deficits in male NF1+/ex42del miniswine with cNFs. 
(a) T-maze results for acquisition day 1, indicating no significant differences between wild-type and NF1+/ex42del miniswine at any age group. 
(b) T-maze results for acquisition day 2, indicating learning delays in 18-month-old male NF1+/ex42del miniswine with cNFs. (c) T-maze 
results for reversal day 1, indicating learning delays between wild-type and male NF1+/ex42del miniswine with cNFs at 12 and 18 months of 
age. (d) T-maze results for reversal day 2, indicating continued learning delays in 12- and 18-month-old male NF1+/ex42del miniswine with 
cNFs. Mixed model ANOVA, Tukey post hoc. n = 3–9/group, *p < 0.05, **p < 0.01, ****p < 0.0001. Mean ± SEM.
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for longer periods of time (2 weeks or greater) in future 
longitudinal miniswine studies might improve data qual-
ity, reduce variability, and add an important component to 
these behavior studies.
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