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Abstract

Background: Reports suggest that lipid profiles may be linked to the likelihood of

developing skin cancer, yet the exact causal relationship is still unknown.

Objective: This study aimed to examine the connection between lipidome and skin

cancers, as well as investigate any possible mediators.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted on

179 lipidomes and each skin cancer based on a genome-wide association study

(GWAS), includingmelanoma, basal cell carcinoma (BCC), and squamous cell carcinoma

(SCC). Then, Bayesian weighted MR was performed to verify the analysis results of

two-sample MR. Moreover, a two-step MR was employed to investigate the impact of

TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates.

Results:MR analysis identified higher genetically predicted phosphatidylcholine (PC)

(17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95%

CI: 0.8667–0.9658), SCC (OR = 0.9343, 95% CI: 0.9087–0.9606) and melanoma

(OR = 0.9982, 95% CI: 0.9966–0.9997). The proportion of PC (17:0_18:2) predicted

by TWEAK-mediated genetic predictionwas 6.6% in BCC and 7.6% in SCC. The causal

relationship between PC (17:0_18:2) andmelanomawas not mediated by TWEAK.

Conclusion: This study identified a negative causal relationship between PC

(17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by

TWEAK, andmost of the remainingmediating factors are still unclear. Further research

on other risk factors is needed in the future.

KEYWORDS

genome-wide association study, lipidome, Mendelian randomization, single nucleotide polymor-
phisms, skin cancer

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2024 The Author(s). Skin Research and Technology published by JohnWiley & Sons Ltd.

Skin Res Technol. 2024;30:e13781. wileyonlinelibrary.com/journal/srt 1 of 7

https://doi.org/10.1111/srt.13781

https://orcid.org/0000-0003-1287-5499
https://orcid.org/0000-0002-1691-7521
https://orcid.org/0009-0004-5079-2461
https://orcid.org/0009-0001-7174-1530
mailto:zenyan66@126.com
mailto:13227701303@qq.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/srt
https://doi.org/10.1111/srt.13781


2 of 7 LEI ET AL.

1 INTRODUCTION

Skin cancers, such as melanoma, basal cell carcinoma (BCC) and squa-

mous cell carcinoma (SCC), are seen as some of the most harmful

cancers in recent years.1 Itwas estimated that about one-fifth ofAmer-

icans will develop skin cancer, which causes nearly 15 000 deaths per

year and more than 3 billion dollars in medical costs.2 More than 80 %

of melanomas relapse within the first 3 years after the appearance of

the primary tumor.3 The frequency of keratinocyte carcinoma recur-

rence after surgery varies.4Therefore, recognizing risk factors for skin

cancer would help in understanding the development of the disease

and suggesting strategies for prevention and treatment.5

Recently, the role of lipid metabolism has gained extensive atten-

tion in skin cancer, in addition to external factors such as ultraviolet

radiation, immunosuppression, old age, chronic scarring and so on.6

A study revealed that individuals with disrupted cholesterol pro-

duction pathways are at a higher risk for developing skin cancer.7

Lipidomic analysis of melanoma-resistant cells revealed dysregula-

tion of fatty acid and cholesterol metabolism, as well as changes in

lipid composition.8 Mass spectrometry analysis revealed elevated lev-

els of 12-hydroxyeicosatetraenoic acid in actinic keratoses and SCC.9

Abnormal membrane sterol metabolism increases the risk of BBC.10

Lipidperoxidationmarkermalondialdehydewas significantly increased

in melanoma tissues and cutaneous SCC.11 Refined lipidomes show

improved accuracy in predicting diseases compared to standard lipid

components.12 Research has shown that specific lipid species can bet-

ter predict the risk of cardiovascular disease compared to traditional

lipids.13 Another study showed that long-term wearing of N95 res-

pirators may impair facial skin function and alter lipid composition,

which indicated that lipidomic analysis is starting to be appreciated

in dermatology.14 Yet, the connection between lipid species and skin

cancer is still not fully understood.

Additionally, there has been no exploration of potential pathways

between lipidome and skin cancers. Prior research has shown that

the TNF-like weak inducer of apoptosis (TWEAK) was upregulated in

SCC and contributed to tumor advancement.15 Moreover, the TWEAK

pathwaywas upregulated in thick non-metastasizingmelanoma, which

could be a discriminant between metastasizing and non-metastasizing

thick melanoma.16 It has been found that soluble TWEAK could sig-

nificantly increase the expression of lipogenesis, lipolysis, and lipid

transport.17 Consequently, TWEAK might be a potential mediator

between lipidome and skin cancers.

The use of Mendelian randomization (MR) analysis, a develop-

ing epidemiological method, involves utilizing genetic variations as

instrumental variables (IVs) to investigate causal connections between

exposure factors and outcomes.18 The advantage of MR is to reduce

the influence of non-measurement errors or confounding factors and

to avoid reverse causality.19 This strategy can be used to study the

biological effect of liposomes on skin cancer.

Given the mechanism of liposome in skin cancer has not been fully

explored, and the role of TWEAK in it is unclear. This study hypoth-

esized that liposomes could affect the occurrence of skin cancers at

the genetic level. A two-sample, two-step MR study was conducted to

investigate the causal relationship between lipidome and skin cancers,

as well as to evaluate the role of TWEAK in mediating the effects of

lipidome on skin cancer.

2 METHODS

2.1 Study design

The study initially conducted a two-sample MR analysis to explore the

potential causal link between individual lipidome components and dif-

ferent types of skin cancer. Then, the intersection of lipid species with

significant differences in the three types was used to conduct further

analysis (Figure 1A). The definitions of total, indirect, and direct effects

are shown in (Figure 1B).

2.2 Genome-wide Association Study (GWAS)
summary data sources

All the data utilized in this research was accessible to the public,

and the individuals involved in the GWAS belonged to the Euro-

pean population. The summary data of lipidome was derived from

the GWAS catalog uploaded by Linda Ottensmann, which included

179 lipid species and 7174 Finnish individuals. The lipid species are

identified using the notation class name (sum of carbon atoms):(sum

of double bonds);(sum of hydroxyl groups).12 Summary data for BCC

and SCC were collected from a GWAS meta-analysis, which involved

272 754 BCC cases and 2 558 560 controls, and 142 102 SCC cases

and 2 681 591 controls of European descent from Europe, the United

States, and Australia.20 The summary data of Melanomawas retrieved

from the UK Biobank, consisting of 4602 cases and 356 592 controls.

The summary data of TWEAK level in blood was detected by Jing Hua

Zhao, with a sample size of 14 824.21 More details of data sources are

shown in (Table S1).

2.3 Selection of IVs

The study used the following criteria to screen the IVs: (1) Single

nucleotide polymorphisms (SNPs) were closely linked to exposure; (2)

SNPs were not linked to confounders of exposure and outcome; (3)

SNPs could only impact outcome through exposure, with no direct link

between SNPs and exposure.22 SNPs associated with exposure were

extracted by p < 1×10-5. In order to maintain the independence of

IVs, SNPs that were in linkage disequilibrium (r2 < 0.001; clumping

window = 10 000kb) were removed. Next, we isolated the IVs men-

tioned above within the SNPs related to exposure and aligned the

exposure data with the outcome data to confirm that the SNPs’ impact

on exposure and outcome matched the same alleles. Palindromic and

incompatible allele SNPs were removed. The F-statistic was also com-

puted to address any bias resulting from weak IVs in the findings. It

was calculated as F = R2(n-k-1)/[k (1-R2)], and F-statistic of < 10 is

removed.
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F IGURE 1 The design of this study. (A) The workflow of this study. (B) Step 1: The total effect between lipidome and skin cancers. c is the total
effect using genetically predicted lipidome as exposure and each skin cancer as an outcome. d is the total effect using genetically predicted skin
cancer as exposure and each lipidome as an outcome. Step 2: The total effect was decomposed into (1) indirect effect (a × b) using a two-step
approach (where a is the total effect of each lipid on TWEAK, and b is the effect of TWEAK on each skin cancer (2) direct effect (c′= c–a× b).
TWEAK, TNF-like weak inducer of apoptosis.

2.4 MR analysis

The causality of lipidome on three types of skin cancers was analyzed

using the R package “TwoSampleMR”.Five regression models were

selected to determine the causation, such as Inverse varianceweighted

(IVW), MR-Egger, weighted median, simple mode, and weighted mode.

The IVW test was the primary approach used due to its reliabil-

ity among the methods employed, with significance defined as a

p-value < 0.05. Then, Bayesian weighted MR (BWMR) was performed

toverify theanalysis results of the two-sampleMRabove.23 Pleiotropic

effectswere tested usingMR-Egger regression tests. If p>0.05, even if

the intercept term is not 0, the data does not exist pleiotropic. Next,

Cochran’s Q test was employed to examine the diversity between

exposure and outcome. In order to further verify the results’ stabil-

ity, sensitivity analysis was conducted by the leave-one-out method.

The calculation method of indirect effect is shown in (Figure 1B). In

reverse MR analysis, each skin cancer was treated as exposure and

the exact lipid species was the outcome, which is to determine the

unidirectionality of causality.

3 RESULTS

3.1 Association of lipidome with skin cancers

It performed a two-sample MR analysis between each lipid species

and each skin cancer. In 179 lipid species, 22 lipid species were sig-

nificant between lipidome and BCC,38 lipid species in SCC, and 11

lipid species in melanoma by IVW test. When verified by BWMR, it

changed into 14 lipid species in BCC, 24 lipid species in SCC, and 9 lipid

species inmelanoma (Table S2). As a result of taking the intersection, It

determined that phosphatidylcholine (PC) (17:0_18:2) is the common

lipidome (GCST90277297), which is the focus of subsequent analysis.

In BCC and SCC, 16 SNPs were included as IVs, while in melanoma, 12

SNPs were included as IVs (Table S3). The IVW test indicated strong

evidence for the negative association of PC (17:0_18:2) on skin cancers

(BCC-OR = 0.9149, 95% CI: 0.8667–0.9658; SCC-OR = 0.9343, 95%

CI: 0.9087–0.9606; melanoma -OR= 0.9982, 95%CI: 0.9966–0.9997)

(Figure 2). Cochran’s Q test did not reveal any heterogeneity, and the

pleiotropywas not detected using theMR-Egger regression test (Table

S4). The leave-one-out showed that the results were sensitive (Figures

S1–S3). The inverseMRanalysis confirmed that the causal relationship

between PC (17:0_18:2) and skin cancers was unidirectional (Figure 2

and Table S5).

3.2 Association of lipidome with TWEAK

25 genome-wide significant SNPs were extracted as IVs (Table S3). It

is shown that there was a negative association of lipidome on TWEAK

level in blood by IVW test (OR = 0.9427, 95% CI: 0.8976–0.9900;

p = 0.0181) (Figure 2). Cochran’s Q test indicated the absence of het-

erogeneity (Q = 24.3910, p = 0.3824), and no evidence of pleiotropy

was observed with the MR-Egger regression test (p = 0.5180) (Table

S6). The leave-one-out analysis demonstrated that the MR results

remained consistent for the remaining SNPs after each SNP was

removed, indicating the sensitivity of the findings (Figure S4).

3.3 Association of TWEAK with skin cancers

A total of 28 genome-wide significant SNPswere extracted as IVswhen

examining the connection betweenTWAEKandBCCor SCC (Table S3).

The results showed that TWEAK was positively correlated with the

occurrence of BCC (OR=1.1051, 95%CI: 1.0401–1.1742; p=0.0012),

as well as SCC (OR = 1.0917, 95% CI: 1.0431–1.1425; p = 0.0002)
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F IGURE 2 Association of TWEAKwith lipidome and skin cancers. IVW test of melanoma on Phosphatidylcholine (17:0_18:2) is difficult to
visualize (OR= 7.3078, 95%CI: 0.0286–1866.0478). IVW, Inverse variance weighted; TWEAK, TNF-like weak inducer of apoptosis.

F IGURE 3 Schematic diagram of the TWEAKmediation effect. TWEAK, TNF-like weak inducer of apoptosis.

(Figure 2). Cochran’s Q test did not detect any heterogeneity, and

pleiotropy was not observed with the MR-Egger regression test (Table

S6). The leave-one-out showed that the results were sensitive (Figures

S5,S6). In contrast, it appears that TWEAK was not causally related to

melanoma (OR = 1.0010, 95% CI: 0.9992–1.0028; p = 0.2658) (Table

S6).

3.4 Indirect effect of TWEAK between lipidome
and skin cancers

TWEAK was analyzed as a mediator of the causality from PC

(17:0_18:2) to each skin cancer. Elevated PC (17:0_18:2) levels were

found to be linked to lower TWEAK levels in blood, which in turn

were linked to a reduced likelihood of developing BCC or SCC. In total,

the indirect effect of TWEAK between PC (17:0_18:2) and BCC was

negative (−0.0059, proportion:6.6%), as well as SCC (−0.0052, propor-
tion:7.6%) (Figure 3). The causal relationship between PC (17:0_18:2)

andmelanomawas not mediated by TWEAK.

4 DISCUSSION

This study found that PC (17:0_18:2) was negatively associated with

BCC, SCC, and melanoma. Furthermore, TWEAK can mediate the

causal relationship between PC (17:0_18:2) and keratinocyte carci-

nomas, including BCC and SCC. This study is believed to be the first

to explore the causal relationship between PC (17:0_18:2) and skin

cancers byMR analysis, while also highlighting TWEAK as amediator.

PC, a crucial component of the cell membrane, is produced from

scratch through the Kennedy pathway, and disruptions in this pro-

cess have been linked to numerous illnesses, such as cancer.24 The

findings are consistent with previous research. Maciel E et al. showed

that long-term exposure to UVA can affect the phospholipid profile of

melanoma cells and decrease PC levels.25 In another study, systemic

treatment with PC liposomes inhibited tumor growth in mice carrying

skin tumors.26 Deletion of p73 exon 12 leads to decreased PC levels

and p73α1 isoform conversion, resulting in strong tumor suppressor

activity.27 It has also been observed that PC levels are negatively asso-

ciated with tumorigenesis in many non-skin tumors. PC could trigger

cell death in liver cancer cells in a way that depends on the dosage, and

comparable outcomes have been seen in liver cancer animal models as

well.28 Patients with endometrial cancer had lower levels of three sin-

glePCsbasedonelectrospray ionization-tandemmass spectrometry.29

Compared with breast epithelial cells, PC levels in breast cancer cells

were significantly decreased.30 In a prospective cohort study, Yin MZ

et al. identified low levels of PC and high levels of Lys PC as novel

biomarkers for cervical SCC.31 In recent years, lipidomic has gained

popularity, which is helpful in understanding the relationship between

PC and cancer. Research has demonstrated that there are nine types
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of polyunsaturated PC that vary between patients with oral SCC and

the control group. Among these, four decreases as cancer progresses,

specifically PC (32:2), PC (34:4), and PC (36:7).32 In some cases, this

correlation is positive. Ishikawa S et.al. found that the levels of PC

(16:0/18:1) and (16:0/18:2) were markedly elevated in thyroid papil-

lary cancer than in normal thyroid tissue, as revealed by tandem mass

spectrometry analysis.33

TWEAK was found to be a mediator between PC (17:0_18:2) and

keratinocyte carcinomas. On the one hand, PC (17:0 _ 18:2) was nega-

tively correlated with TWEAK. Few studies have examined their rela-

tionship before. Therefore, we will focus on the relationship between

TWEAK and serum lipids. Results from a case–control study show that

lower levels of soluble TWEAK concentrations are linked to NAFLD

independently, aligning with the fact that TWEAK helps decrease lipid

buildup in liver cells.34 Findings from the population-based Study of

Health in Pomerania indicated a negative correlation between TWEAK

and HDL2 Apo-A1, HDL3 Apo-A1, or HDL2 Apo-A2.35 TWEAK was

found to prevent lipid accumulation in a dose-dependentmanner with-

out any harmful effects on cells.36 TWEAK and Fn14 were expressed

within atherosclerotic plaques in regions abundant with macrophages

and foam cells, facilitating lipid uptake bymacrophages.37 It was found

in animal models that TWEAK exacerbated the inflammatory response

associated with a high-fat diet.38 On the other hand, TWEAK was

positively correlated with keratinocyte carcinomas. A lower level of

TWEAK expression was found in normal tissues, while a high level was

found in many tumors and metastases, such as colorectal, esophageal,

and bladder cancers.39–41 Studies have shown that TWEAK/Fn14

interaction promoted the proliferation of SCC cells by activating

cIAP1 signaling.42 Also, Animal and cell models have shown that

TWEAK/Fn14 signaling contributed to the progression of SCC.15

Of course, there are some discrepant findings. The down-regulation

of TWEAK in the skin might be an early indicator of keratinocyte

differentiation disorder associated with inflammatory and neoplas-

tic skin diseases.43 In their study, Zou H et.al. found that lowering

TWEAK levels could enhance the advancement and infiltration of

cervical cancer, potentially offering novel targets for treating the

disease.44

This study has a significant benefit in providing ample evidence

to establish the causal relationship between lipidomes and skin

cancers. Simultaneously, based on the findings of the lipidomic anal-

ysis, a direct link has been established between refined lipids and

keratinocyte carcinomas. This connection enhances our comprehen-

sion of the correlation between various lipid elements and illnesses,

aiding in the identification of more precise treatment targets. In

addition, this study found the mediator of PC (17:0_18:2) and ker-

atinocyte cancers, which provides more options for us to intervene in

carcinomas.

However, this study has several limitations. The study primarily was

based on European populations, which restricted the generalization

of the findings. People in other regions need corresponding GWAS

datasets. Second, theGWASdata originated from the publicly available

database. The details of the patient’s age, gender, and severity of the

disease remain unclear, and only a relativelymacro analysis can be per-

formed. Third, when choosing IVs, addressing linkage disequilibrium

and identifying pleiotropy may decrease the impact of internal factors,

but cannot completely eradicate them. Fourth, the causal relationship

is based on a public database, and more prospective cohort studies

are needed to verify the reliability of the causality. Finally, this study

showed that the gene prediction rate of TWEAK-mediated PC (17:0 _

18:2) is about 7 %, which is relatively low. More research is needed to

quantify other mediating factors.

5 CONCLUSION

In conclusion, this study identified a negative causal relationship

between PC (17:0_18:2) and keratinocyte carcinomas, a small part of

which was mediated by TWEAK, and most of the remaining mediating

factors are still unclear. Further researchonother risk factors is needed

in the future.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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