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AI-based histopathology image analysis
reveals a distinct subset of endometrial
cancers

Amirali Darbandsari1,9, Hossein Farahani 2,3,9, Maryam Asadi2,9,
Matthew Wiens2, Dawn Cochrane4, Ali Khajegili Mirabadi 2, Amy Jamieson5,
David Farnell3,6, Pouya Ahmadvand2, Maxwell Douglas4, Samuel Leung4,
Purang Abolmaesumi1, Steven J. M. Jones 7, Aline Talhouk5, Stefan Kommoss8,
C. Blake Gilks3,6, David G. Huntsman3,4,10, Naveena Singh3,6,10,11,
Jessica N. McAlpine 5,10 & Ali Bashashati 2,3,10

Endometrial cancer (EC) has four molecular subtypes with strong prognostic
value and therapeutic implications. The most common subtype (NSMP; No
Specific Molecular Profile) is assigned after exclusion of the defining features
of the other three molecular subtypes and includes patients with hetero-
geneous clinical outcomes. In this study, we employ artificial intelligence (AI)-
powered histopathology image analysis to differentiate between p53abn and
NSMPEC subtypes and consequently identify a sub-groupofNSMPECpatients
that has markedly inferior progression-free and disease-specific survival
(termed ‘p53abn-like NSMP’), in a discovery cohort of 368 patients and two
independent validation cohorts of 290 and 614 from other centers. Shallow
whole genome sequencing reveals a higher burden of copy number abnorm-
alities in the ‘p53abn-like NSMP’ group compared to NSMP, suggesting that
this group is biologically distinct compared to other NSMP ECs. Our work
demonstrates the power of AI to detect prognostically different and otherwise
unrecognizable subsets of EC where conventional and standard molecular or
pathologic criteria fall short, refining image-based tumor classification. This
study’s findings are applicable exclusively to females.

The clinicopathological parameters used for decades to classify
endometrial cancers (EC) and guide management have been sub-
optimally reproducible, particularly in high-grade tumors1,2. Specifi-
cally, inconsistency in grade and histotype assignment has yielded an
inaccurate assessment of the risk of disease recurrence and death. As a

result, many women affected by EC may be over-treated or are not
directed to treatment thatmight have reduced their risk of recurrence.
In 2013, the Cancer Genome Atlas (TCGA) project demonstrated that
endometrial cancers could be stratified into four distinct prognostic
groups using a combination of whole genome and exome sequencing,
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microsatellite instability (MSI) assays, and copy number analysis3.
These subtypes were labeled according to dominant genomic
abnormalities and included ‘ultra-mutated’ ECs harboring POLE
mutations, ‘hypermutated’ identified to have microsatellite instability,
copy-number low, and copy-number high endometrial cancers.

Inspired by this initial discovery, our team and a group from the
Netherlands independently and concurrently developed a pragmatic,
clinically applicable molecular classification system that classifies ECs
into: (i) POLE mutant (POLEmut) with pathogenic mutations in the
exonuclease domain of POLE (DNA polymerase epsilon, involved in
DNA proofreading repair), (ii) mismatch repair deficient (MMRd)
diagnosed based on the absence of key mismatch repair proteins on
immunohistochemistry (IHC), (iii) p53 abnormal (p53abn) as assessed
by IHC, and (iv) NSMP (No Specific Molecular Profile), lacking any of
the defining features of the other three subtypes4,5. Categorization of
ECs into these subtypes recapitulates the survival curves/prognostic
value of the four TCGA molecular subgroups and enhances histo-
pathological evaluation, offering an objective and reproducible clas-
sification system with strong prognostic value and therapeutic
implications. In 2020, the World Health Organization (WHO) recom-
mended integrating these key molecular features into standard
pathological reporting of ECs when available6.

POLEmut endometrial cancers have highly favorable outcomes
with almost no deaths due to disease. While the three other molecular
subtypes are associated with more variable outcomes (MMRd and
NSMP are considered ‘intermediate risk’ and p53abn ECs have the
worst prognosis), within each subtype there are clinical andprognostic
outliers7–10. This is particularly true within the largest subtype, NSMP
(representing ~ 50% of ECs). The majority of NSMP tumors are early-
stage, low-grade, estrogen-driven tumors likely cured by surgery
alone. However, a subset of patients with NSMP EC experience a very
aggressive disease course, comparable to what is observed in patients
with p53abn ECs. At present, limited tools exist to identify these
aggressive outliers and current clinical guidelines do not stratify or
direct treatment within NSMP EC beyond using pathologic features11,12.
Thus, for half of diagnosed endometrial cancers, i.e., NSMP EC, the
assumption of indolence is inappropriate and clinicians need tools for
accurate risk stratification of individual patients when making treat-
ment decisions.

With the rise of artificial intelligence (AI) in the past decade, deep
learning methods (e.g., deep convolutional neural networks and their
extensions) have shown impressive results in processing text and
image data13. The paradigm-shifting ability of these models to learn
predictive features from raw data presents exciting opportunities with

medical images, including digitized histopathology slides14–17. In recent
years, these models have been deployed to reproduce or improve
pathology diagnosis in various disease conditions (e.g.,18–20), explore
the potential link between histopathologic features and molecular
markers in different cancers including EC17,21–24, and directly link his-
topathology to clinical outcomes25–28. More specifically, three recent
studies have reported promising results in the application of deep
learning-based models to identify the four molecular subtypes of EC
from histopathology images22,23,29.

In this work, building on a recent study reporting morphological
heterogeneity in NSMP ECs and nuclear features typical of p53abn ECs
in some tumors of this subtype30, we built a deep learning-based image
classifier to differentiate between the NSMP and p53abn ECs. We then
hypothesized that within the NSMPmolecular subtype of endometrial
cancer, there is a subset of patients with aggressive disease whose
tumors have histological features similar to p53abn EC and that these
tumors can be identified by deep learning models applied to hema-
toxylin & eosin (H&E)-stained slides. Our results show that these cases
(referred to asp53abn-like NSMP) have inferior outcomes compared to
the other NSMPECs, similar to that of p53abn EC, in three independent
cohorts. Furthermore, shallow whole genome sequencing studies
suggested that the genomic architecture of the p53abn-like NSMP dif-
fers from other NSMP ECs, showing increased copy number abnorm-
alities, a characteristic of p53abn EC.

Results
Patient cohort selection and description
2318H&E-stained hysterectomy tissue sections from 1272patientswith
histologically confirmed endometrial carcinoma of NSMP or p53abn
subtypes were included in this study3–5. Our discovery cohort included
155 whole-section slides (WSI) from 146 patients from TCGA3 and 431
WSIs (222 patients) from Tubingen University5. Two separate valida-
tion Canadian cohorts were included in this study: (1) the British
Columbia (BC) cohort, a tissue microarray (TMA) dataset corre-
sponding to 290 patients from our own center4, and (2) Cross Canada
(CC) cohort, 640 WSIs (614 patients) collected from 26 hospitals
across Canada31. Tables 1–3 show the clinicopathological features of
the discovery and validation cohorts. Overview of the cohorts, out-
come information, treatment information, and distribution of samples
in the CC cohort across different centers can be found in Supple-
mentary Tables 1–4.

Table 1 | Clinicopathologic features of the discovery set

Variable Total NSMP p53abn

Total 363 268 (73.83%) 95 (26.17%)

Age at diagnosis

< 60 yrs 121 (33.33%) 110 (41.04%) 11 (11.58%)

≥60 yrs 242 (66.67%) 158 (58.96%) 84 (88.42%)

Histotype

Endometrioid 288 (79.34%) 262 (97.76%) 26 (27.37%)

Non-endometrioid 75 (20.66%) 6 (2.24%) 69 (72.63%)

Tumor grade

Low grade (G1–2) 258 (71.07%) 246 (91.79%) 12 (12.63%)

High grade (G3) 105 (28.93%) 22 (8.21%) 83 (87.37%)

FIGO stage

I-II 291 (80.17%) 239 (89.18%) 52 (54.74%)

III-IV 71 (19.56%) 28 (10.45%) 43 (45.26%)

Unknown 1 (0.28%) 1 (0.37%) 0

Table 2 | Clinicopathologic features of the BC validation set

Variable Total NSMP p53abn

Total 288 193 (67.01%) 95 (32.99%)

Age at diagnosis

< 60 yrs 81 (28.13%) 72 (37.70%) 9 (9.47%)

≥60 yrs 205 (71.18%) 119 (62.30%) 86 (90.53%)

Unknown 2 (0.69%) 2 (1.04%) 0

Histotype

Endometrioid 195 (67.71%) 172 (89.12%) 23 (24.21%)

Non-endometrioid 91 (31.60%) 19 (9.84%) 72 (75.79%)

Unknown 2 (0.69%) 2 (1.04%) 0

Tumor grade

Low grade (G1–2) 151 (52.43%) 146 (75.65%) 5 (5.26%)

High grade (G3) 137 (47.57%) 47 (24.35%) 90 (94.74%)

FIGO stage

I-II 216 (75.00%) 166 (86.01%) 50 (52.63%)

III-IV 69 (23.96%) 24 (12.44%) 45 (47.37%)

Unknown 3 (1.04%) 3 (1.55%) 0
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Histopathology-based machine learning classifier to differ-
entiate NSMP and p53abn ECs
Fig. 1 depicts our AI-based histopathology image analysis pipeline. A
subset of 27 whole-section H&E slides from the TCGA cohort were
annotated by a board-certified pathologist (DF) using a custom in-
house histopathology slide viewer (cPathPortal) to identify areas
containing tumor and non-tumor cells (myometrium, endometrial
stroma, and benign endometrial epithelium). A deep convolutional
neural network (CNN)-based classifier was then trained to acquire
pseudo-tumor and benign annotations for the remaining slides in the
discovery cohort. The identified tumor regions were then divided into
512 × 512 pixel patches at 20x objective magnification. The number of
extracted patches from each subtype and performance measure for
the tumor stroma classifier can be found in Supplementary
Tables 1 and 5, respectively. To address variability in slide staining due
to differences in staining protocols across different centers, and inter-
patient variability, we utilized the Vahadane color normalization
technique32. We then trained a VarMIL model33 based on multiple
instance learning (MIL) to differentiate H&E image patches associated
with p53abn and NSMP ECs.

In a “group 10-fold” cross-validation strategy, the patients in our
discovery cohort were divided into 10 groups, and in various combi-
nations, 60% were used for training, 20% for validation, and 20% for
testing; resulting in 10 different binary p53abn vs. NSMP classifiers.
These 10 classifiers were then used to label the cases as p53abn or

NSMPand their consensuswas used to comeupwith a label for a given
case. For patientswithmultiple slides, to prevent data leakagebetween
training, validation, and test sets, we assigned slides from each patient
to only one of these sets.

Fig. 2A and Supplementary Table 6 show the receiver operating
characteristics (ROC) and precision/recall curves as well as perfor-
mance metrics of the resulting classifiers for the discovery and BC
validation cohorts, respectively. These results suggest that our p53abn
vs. NSMP classifier achieves 89.4% and 79.8% mean balanced accuracy
(across the 10 classifiers) and area under the curve (AUC) of 0.95 and
0.88 in both the discovery and BC validation sets, respectively (for
details see Supplementary Tables 7 and 8 and Supplementary Fig. 1).

Identification of a subset of NSMP ECs with inferior survival
Our proposedML-basedmodels classified 17.65% and 20%of NSMPs as
p53abn for the discovery and validation cohorts, respectively (Sup-
plementary Table 6). These cases (referred to as p53abn-like NSMP
group) presumably show p53abn histological features in the assess-
ment ofH&E images even though immunohistochemistry did not show
mutant-pattern p53 expression and these were therefore classified as
NSMP by the molecular classifier. We hypothesized that such cases
may in fact exhibit similar clinical behavior as p53abn ECs.

Fig. 2B, C show the progression free survival (PFS) and disease-
specific survival (DSS)of thediscovery andBCvalidation sets.Compared
to the rest of the NSMP cases, p53abn-like NSMPs had markedly inferior
PFS (10-year PFS 55.7% vs. 89.6% (p=2.7e-7)) andDSS (10-yearDSS62.6%
vs. 93.7% (p= 1.8e-7)) in our discovery cohort. These findings were
confirmed in the BC cohort, with 20% of the 195 patients categorized as
p53abn-like tumors, showing 10-year PFS of 65.4% vs. 91.2% (p= 1.1e-4)
and DSS of 58.3% vs. 84.3% (p= 5.3e-5). In addition, a comparison of the
PFS and DSS between p53abn-like NSMP and p53abn ECs revealed a
trend, though not statistically significant, in which p53abn-like NSMPs
hadbetter outcomes compared top53abnECs in both thediscovery and
BC validation cohorts (Supplementary Fig. 2A, B).

Of note, our model also identified a subset of p53abn ECs
(representing 20%; referred to as NSMP-like p53abn) with a resem-
blance to NSMP as assessed by H&E staining. While we observed
marginally superior disease-specific survival in the identified cases
compared to the rest of the p53abngroupboth in the discovery andBC
validation cohorts, progression free survival was not significantly dif-
ferent between the groups (Supplementary Fig. 3A, B).

Robustness of p53abn-like NSMP subtype
Our proposed deep learning-based model was built to differentiate
between NSMP and p53abn EC subtypes. Given that these subtypes are
determined based on molecular assays, their accurate identification
from routine H&E-stained slides would have removed the need to
perform molecular testing that might only be available in specialized
centers. However, our observation of imperfect results and

Table 3 | Clinicopathologic features of the CC validation set

Variable Total NSMP p53abn

Total 614 416 (67.75%) 198 (32.25%)

Age at diagnosis

< 60 yrs 199 (32.41%) 168 (40.38%) 31 (15.66%)

≥60 yrs 415 (67.59%) 248 (59.62%) 167 (84.34%)

Unknown

Histotype

Endometrioid 419 (68.24%) 380 (91.35%) 39 (19.7%)

Non-endometrioid 195 (31.76%) 36 (8.65%) 159 (80.3%)

Unknown

Tumor grade

Low grade (G1–2) 390 (63.52%) 376 (90.38%) 14 (7.07%)

High grade (G3) 199 (32.41%) 38 (9.13%) 161 (81.31%)

Unknown 25 (4.07%) 2 (0.48%) 23 (11.62%)

FIGO stage

I-II 487 (79.32%) 369 (88.7%) 118 (59.6%)

III-IV 127 (20.68%) 47 (11.3%) 80 (40.4%)

Unknown 0 0 0
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Fig. 1 | Workflow of the AI-based histopathology image analysis. First, the
quality control framework, HistoQC81, generates a mask that comprises tissue
regions exclusively and removes artifacts. Then, an AI model to identify tumor
regions within histopathology slides is trained. Next, images are tessellated into

small patches and normalized to remove color variations. The normalized patches
are fed to a deep-learning model to derive patch-level representations. Finally, a
model based on multiple instance learning (VarMIL) was utilized to predict the
patient subtype.
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characterization of discordant cases as p53abn-like NSMP required
further investigation to rule out the possibility of a superior deep
learning model that could result in a better performance in differ-
entiating p53abn and NSPMP molecular subtypes. Therefore, we
implemented seven other deep learning-based image analysis strate-
gies including more recent state-of-the-art models to test the stability
of the identified classes (see Methods section for further details). Our
results showed that these models also achieve balanced accuracies
ranging from 83.5–95% and 77.3–80.2% and AUCs ranging from
0.88–0.98 and 0.8–0.88 in both the discovery and validation sets,
respectively (Supplementary Fig. 4 and Supplementary Tables 9, 10).
Furthermore, Kaplan-Meier survival analysis of the so-called p53abn-
like NSMP group identified by thesemodels also corroboratedwith our
initial findings in which this subgroup had statistically significant
inferior survival compared to the rest of the patients (Supplementary
Fig. 5). These results suggest that the choice of the algorithm did not
substantially affect the findings and outcome of our study. To further
investigate the robustness of our results, we utilized an unsupervised
approach in which we extracted histopathological features from the
slides in our validation cohort utilizing KimiaNet34 feature representa-
tion. Our results suggested that p53abn-like NSMP and the rest of the
NSMP cases constitute two separate clusters with no overlap (Fig. 3A)
suggesting that our findings could also be achieved with unsupervised
approaches. It is noteworthy to mention that we utilized the original
KimiaNet weights for feature extraction without any finetuning the
model on our datasets. To assess the sensitivity of the unsupervised
approach to the choice of dimensionality reduction technique, we
experimented with DenseNet12135, Swin36, and ResNet50. The analysis
revealed that identified clusters remain consistent (i.e., two clusters)
across these techniques (Supplementary Fig. 6).

Comparison of NSMP and p53abn-like NSMP
We compared various clinical, pathological, andmolecular variables to
investigate further the differences between NSMP and p53abn-like

NSMP cases (Supplementary Tables 11–13). Our analysis showed an
enrichment of p53abn-like NSMP cases with higher grade and higher
stage tumors (p = 1.4e-25; p = 2.4e-4, respectively). In a multivariate
Cox regression analysis, the association between p53abn-like NSMP
and progression free survival remained significant in the presence of
grade, stage, and histology (p =0.01 and Hazard Ratio = 2.5; Supple-
mentary Table 14). Furthermore, Fig. 3B shows enrichment for estro-
gen receptor (ER) and progesterone receptor (PR) positive cases in the
p53abn-like NSMPs (compared to NSMP cases that were classified as
NSMPbyAI) in the subset of the cohort that the status of thesemarkers
were available (p = 5.2e-3 and p = 2.3e-4, respectively).

Independent pathology review of selected NSMP cases
Two expert gynepathologists (NS, CBG) independently reviewed
whole section slides of a subset of NSMP cases including the p53abn-
like NSMP subtype. They specifically assessed whether tumors showed
nuclear features that have been previously described as being asso-
ciated with TP53 mutation/mutant pattern p53 expression in endo-
metrial carcinoma30. The p53abn-like NSMP cases were enriched with
tumors showing increased nuclear atypia, as assessed by altered
chromatin pattern, nucleolar features, pleomorphism, atypical mito-
ses, or giant tumor cells (p = 0.00005 for both reviewers).

Genomic characterization of p53abn-like NSMP cases
We next sought to investigate the molecular profiles of p53abn-like
NSMP cases in our BC validation set for which we had access to tissue
material. Targeted sequencing of exonic regions in a number of genes
(more details in the Targeted point mutation profiling section of the
Methods) revealed enrichment of p53abn-like NSMP cases with TP53
mutations (Fisher’s exact test p-values = 3.14e-4; Fig. 3B). More speci-
fically, we identified eight (out of 39) p53abn-like NSMP tumors that
had normal p53 IHC results (hence classified as NSMP by ProMisE
classifier) but in fact harbored TP53 mutations by sequencing. These
cases are examples of the well-known phenomenon of normal p53
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Fig. 2 | Performance statistics and Kaplan Meier (KM) survival curves for AI-
identified EC subtypes. A AUROC and precision-recall plots of average of 10 splits
for p53abn vs. NSMP classifier for discovery and validation sets, (B) KM curves
associated with PFS and DSS (where available) for the discovery set, using a two-

sided log-rank statistical test, (C) KM curves associated with PFS and DSS (where
available) in the BC validation set, using a two-sided log-rank statistical test (Source
data are provided as a Source Data file).
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protein levels despite therebeing apathogenicmutation,whichoccurs
in <5%of cases. However, even after removing these eight TP53mutant
cases, the worse prognosis of p53abn-like NSMP tumors persisted
(Fig. 3C). Our ML model, therefore, identifies tumors with false nega-
tive immunostaining for p53, i.e., they lack mutant pattern protein
expression despite having a TP53mutation, but also identifies a subset
ofNSMPcaseswith features ofp53abnmorphologybyH&Ebut neither
mutation pattern immunostaining nor a mutation in sequencing TP53,
and these have inferior survival compared to the rest of the
NSMP cases.

We next selected representative samples of NSMP, p53abn, and
p53abn-like NSMP cases in our validation cohort and performed shallow
whole genome sequencing (sWGS). Overall, copy number profile ana-
lysis of these cases revealed that p53abn-like NSMP cases harbor a
higher fraction of altered genome compared to NSMP cases but still
lower than what we observe in p53abn cases (Fig. 4A; p =0.035). These
findingswere further validated in theTCGAcohort (Fig. 4B;p = 5.46e-5).

We next investigated the gene expression profiles associated with
the p53abn-like NSMP, NSMP, and p53abn tumors within the TCGA
cohort. Whilemajority of the p53abn andNSMP groups were clustered
separately, unsupervised analysis of the gene expression profiles did
not reveal any differences between p53abn-like NSMP group and other
subtypes, i.e., they did not have a unique gene expression profile but
instead clustered with one of the knownmolecular subtypes (Fig. 4C).
We then performed pairwise differential expression analysis and
pathway analysis, separately comparing p53abn-like NSMP and p53abn
groups against NSMP cases. These results suggested the upregulation
of PI3k-Akt, Wnt, and Cadherin signaling pathways both in p53abn-like
NSMP and p53abn groups (compared to NSMP). Interestingly, while
thesepathwayswere up-regulated in both groups, we found little to no
overlap between the specific down- and up-regulated genes in the
p53abn-like NSMP and p53abn groups (compared to NSMP) suggesting
that the molecular mechanisms associated with p53abn and p53abn-
like tumors might be different even though p53abn and p53abn-like
NSMP groups had similar histopathological profiles as assessed based
on H&E slides.

Validation of p53abn-like NSMP subtype in a multi-center
dataset
Variability in tissue processing and data collection across different
centers and hospitals is known to introduce inconsistencies in the
appearance of histopathology slides. While expert human pathol-
ogists can adapt to visual color variability between stained slides,
AI-based diagnostic models trained on digitized pathology slides
from one center may face challenges in generalizing to data col-
lected from other centers37. We next evaluated the generalizability
of our proposed AI-based p53abn vs. NSMP classifier on a dataset
collected from 26 hospitals across Canada (CC cohort). Our pro-
posedmodels achieved a balanced accuracy and AUC of 66.3–88.5%
and 0.88–0.95, respectively (Supplementary Tables 6, 7 and Sup-
plementary Fig. 4) and classified 6.25% of NSMP cases as p53abn-like
NSMPs. Similar to the discovery and BC validation cohorts, the
p53abn-like NSMP subtype in the CC cohort had inferior PFS andDSS
(Fig. 4D, 5-year PFS 62.52% vs. 88.92% (p = 5.41e-6)) and DSS (5-year
DSS 66.60% vs. 99.39% (p = 8.20e-13)), suggesting that the proposed
AI-based classifier is generalizable to datasets collected from other
centers.

Impact of p53abn-like NSMP on risk group assignment
Wenext sought to determine whether the finding of p53abn-like status
by AI, in an NSMP endometrial carcinoma, would potentially change
the risk group category i.e., if the tumor was classified as if it were
p53abnmolecular subtype rather thanNSMP,would that impacton the
final risk group assignment. The ESGO/ESTRO/ECP 202138 risk group
classification is based on molecular subtype, stage, histotype, grade,
lymphovascular invasion, and the presenceof residual disease; this risk
group (Low, Intermediate, High-intermediate, High, Advanced meta-
static) guides adjuvant treatment. In 19 of 39 p53abn-like NSMP cases,
the risk groupwould change (2 from Low to High, 7 from Intermediate
to High, and 10 from High-intermediate to High). The remaining 20
cases (2 Intermediate risk and 18 High risk) would not have changed
the risk group. Thus p53abn-like NSMP classification is potentially
highly impactful on patient management, independent of other

Fig. 3 | KimiaNet features, clinicopathological features, point mutations, and
KM curves of the validation cohort. A Histopathological features from the slides
in the validation cohort utilizing KimiaNet feature representation from the slides in
the validation cohort demonstrate that p53abn-like NSMP and the rest of the NSMP

cases constitute two separate clusters, (B) Clinicopathological features and point
mutation data for the BC validation cohort, (C) KM curves associated with PFS and
DSS for the BC validation cohort after removing TP53 mutant cases, using a two-
sided log-rank statistical test (Source data are provided as a Source Data file).
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clinical and pathological parameters such as stage, histotype, grade,
and lymphovascular invasion.

Discussion
Althoughmany patients with endometrial carcinoma may be cured by
surgery alone, about 1 in 5 patients have more aggressive disease and/
or have the disease spread beyond the uterus at the time of diagnosis.
Identifying these at-risk individuals remains a challenge, with current
tools lacking precision.Molecular classification offers an objective and
reproducible classification system that has strong prognostic value;

improving the ability to discriminate outcomes compared to conven-
tional pathology-based risk stratification criteria. However, it has
becomeapparent thatwithinmolecular subtypes andmost profoundly
within NSMP ECs, there are clinical outcome outliers. The current
study addresses this diversity by employing AI-powered histopathol-
ogy image analysis, in an attempt to identify clinical outcome outliers
within the most common molecular subtype of endometrial cancer
(Fig. 5). Our results have several clinical and biological implications.

To be clear, for some molecular subtypes, such as POLEmut
endometrial cancers with almost uniformly favorable outcomes, no
further stratification, at least within Stage I-II disease (encompassing
> 90% of POLEmut ECs), is needed. Multiple studies, as well as meta-
analyses39, have shown that in patients with POLEmut endometrial
cancers, additional pathological or molecular features are not asso-
ciated with outcomes, i.e., are not prognostic, as POLE is the overriding
feature that determines survival. However, for NSMP endometrial can-
cers, additional stratification tools are greatly needed. Designation of
NSMP is the last step in molecular classification, only defined by what
molecular features it does not have; that is without pathogenic POLE
mutations, without mismatch repair deficiency or p53 abnormalities as
assessed by IHC. This leaves a large group of pathologically and mole-
cularly diverse tumors with markedly varied clinical outcomes.

Our AI-based histomorphological image analysis model identified
a subset of NSMP endometrial cancers with inferior survival. This
subset of patients encompassed approximately 20% of NSMP tumors
which are the most common molecular subtype, representing half of
endometrial cancers diagnosed in the general population, and thus
account for 10%of all ECs. Our results suggest that clinicopathological,
IHC, gene expression profiles, or NGS molecular markers (except for
copy number burden to someextent)maynot be able to identify these
p53abn-like outliers. The AI classifier was able to identify those tumors
with TP53 mutations (but normal p53 immunostaining), a result we
view as encouraging, in that these are “false negative” cases using the
IHC classification and more appropriately assigned as p53abn, but
even when these were removed from consideration AI imaging dis-
cerned other patients with NSMP EC where no molecular or patholo-
gical features would have identified them as having inferior outcomes.

Fig. 4 | Molecular profiling of p53abn-like NSMP cases. Boxplots of copy number
burden (i.e., fraction genome altered) in NSMP, p53abn-like NSMP, and p53abn
cases in the (A) BC validation cohort (6 NSMP, 7 p53abn-like NSMP, 5 p53abn) and
(B) TCGA (69 NSMP, 21 p53abn-like NSMP, 56 p53abn) cohorts. In box plots in A and
B, the central line represents the median, while the bottom and top edges of the
box correspond to the 25th and 75th percentiles, respectively. Thewhiskers extend

to the most extreme data points that are not identified as outliers. Any data points
beyond the lower and upper whiskers are considered outliers. C Gene expression
profiles associated with the p53abn-like NSMP (n = 21), NSMP (n = 69), and p53abn
(n = 56) tumors in the TCGA cohort. D KM curves associated with PFS and DSS
(where available) in the CC validation set (Source data are provided as a Source
Data file).

EC sample

POLEmut

MMRd

p53abnNSMP

NSMP indolent 
subset

More aggressive 
‘p53abn like’NSMP

AI Screen

Fig. 5 | AI-enhanced NSMP stratification. AI-enhanced NSMP stratification. The
refined classification scheme that leverages AI screening as a supplementary stra-
tification mechanism within the NSMP molecular subtype.
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Of note, our results corroborated with a recent report that identified a
similar subset of NSMP cases with higher nuclear atypia in 3% of NSMP
cases (n = 4 out of 120) with poor outcomes, although this difference
was not statistically significant likely due to small sample size and
differences in the image analysismodels (p =0.13)23. Taken together,AI
applied to histomorphological images of routinely generated H&E
slides appears to enable a more encompassing and easily implemen-
table stratification of NSMP tumors and provides greater value than
any single or combined pathological/molecular profile could achieve.

Molecular characterization of the identified subtype using sWGS
suggests that these cases harbor an unstable genome with a higher
fraction of altered genome, similar to the p53abn group but with a
lesser degree of instability. These results suggest that the identified
subgroup based on histopathology images is biologically distinct.
Furthermore, our gene expression analysis revealed the upregulation
of PI3k-Akt, Wnt, and Cadherin signaling pathways both in p53abn-like
NSMP and p53abn groups (compared to NSMP). All these results sug-
gest genomic and transcriptomic similarities between the p53abn-like
NSMP and p53abn cases and potential defects in the DNA damage
repair process as a possible biologicalmechanism. However, in spite of
the fact that similar gene expression pathways were implicated in both
groups and H&E images of both groups as assessed by AI had resem-
blances, expression data analysis revealed minimal overlap between
the differentially expressed genes in both p53abn and p53abn-like
NSMP ECs compared to other NSMP cases. This observation suggests
that theymay have different etiologies and warrants further biological
interrogation of these groups in future studies.

Certainly, others have attempted to refine stratification within
early-stage endometrial cancers, including within the molecularly
defined NSMP subset. PORTEC4a used a combination of pathologic
and molecular features (MMRd, L1CAM overexpression, POLE,
CTNNB1 status) to identify low, intermediate, and high-risk indivi-
duals assigned to favorable, intermediate, and unfavorable risk
groups which then determined observations vs. treatment40. TAPER/
EN.10 also stratifies early-stage NSMP tumors by pathological (e.g.,
histotype, grade, LVI status) and molecular features (TP53, ER status)
to identify those individuals appropriate for de-escalated therapy41.
In a retrospective series, key parameters of ER and grade have been
suggested to discern outcomes within NSMP. ER status was also
demonstrated to stratify outcomes in patients with NSMP ECs
enrolled in clinical trials42. However, even in-depth profiling of
apparent low-risk ECs has failed to find pathogenic features that
would discern individuals who develop recurrence from other
apparent indolent tumors43. Stasenko et al.43. assessed a series of 486
cases of ‘ultra-low risk’ endometrial cancers defined as stage 1 A with
no myoinvasion, no LVI, grade 1 of which 2.9% developed recurrence
with no identifiable associated clinical, pathological, or molecular
features43. Current treatment guidelines, even where molecular fea-
tures are incorporated, offer little in terms of directing management
within NSMP endometrial cancers beyond consideration of patho-
logical features, leaving clinicians to struggle with optimal
management12. A more comprehensive stratification tool within
NSMP endometrial cancers would be of tremendous value, and AI
discernment from histopathological images as a tool that can be
readily applied to H&E slides that are routinely generated as part of
the practice is appealing.

Our proposedAImodel also identified a subset of p53abnECswith
marginally superior DSS and resemblance toNSMP (NSMP-like p53abn)
as assessed by H&E staining. Further investigation of the identified
groups and deep molecular and omics characterization of this subset
of p53abnECsmay in fact aid us in refining this subtype and identifying
a subset of p53abn cases with statistically superior outcomes.

This study utilizes AI for refining endometrial cancer molecular
subtypes. In general, such studies to generate new knowledge using AI
in histopathology are extremely sparse as a majority of the effort has

focused on recapitulating the existing body of knowledge (e.g., to
diagnose cancer, to identify histological subtypes, to identify known
molecular subtypes). This study moves beyond the mainstream AI
applications within the current context of standard histopathology
and molecular classification. This enables us to direct efforts to
understand the biological mechanisms of this subset. This could pre-
sent an exciting opportunity to utilize the power of AI to informclinical
trials and deep biological interrogation by adding more precision in
patient stratification and selection.

AI histopathologic imaging-based application within NSMP
enables discernment of outcomes within the largest endometrial
cancer molecular subtype. It can be easily added to clinical algorithms
after performing hysterectomy, identifying some patients (p53abn-like
NSMP) as candidates for treatment analogous to what is given in
p53abn tumors. Furthermore, the proposed AI model can be easier to
implement in practice (for example, in a cloud-based environment
where scanned routine H&E images could be uploaded to a platform
for AI assessment), leading to a greater impact on patient manage-
ment. Furthermore, weenvision that anAI algorithm, after appropriate
validation, could be utilized on diagnostic biopsy specimens, along
with molecular subtype markers (p53, MMR, POLE). This would allow
diagnosis of molecular subtype and further classify NSMP into lower
risk and higher risk (p53abn-like), with the former patients being
candidates for de-escalation of treatment (e.g., simple hysterectomy in
the community) and the latter group potentially directed to cancer
centers for lymph node assessment, omental sampling and directed
biopsies given a higher likelihood of upstaging. It is possible that with
further refinement and validation of the algorithm,which can be run in
minutes on the diagnostic slide image, that it could take the place of
molecular subtype markers, saving time and money.

Methods
Ethics statement
TheDeclaration of Helsinki and the International Ethical Guidelines for
Biomedical Research Involving Human Subjects were strictly adhered
to throughout this study. All protocols for this study, including the
waiver of consent, have been approved by the University of British
Columbia/BC Cancer Research Ethics Board. Participants did not
receive compensation.

Histopathology slide digitization
Histopathology slide images associated with the TCGA cohort were
acquired from the TCGA GDC portal (https://portal.gdc.cancer.gov).
Histopathology slides associated with the Canadian cohorts as well as
the Tübingen University Women’s Hospital were scanned using an
Aperio AT2 scanner.

AI tumor-normal classifier and automatic annotation
The downstream tumor subtype classifier relies on the tumor areas of
the tissues. Given that the manual annotation of all slides by patholo-
gists is tedious and time-consuming, we first trained a deep learning
model to identify the tumor areas of the slides automatically (Sup-
plementary Fig. 7). To train the model, we utilized 27 slides that were
annotated by a board-certified pathologist. First, we split the slides
into training (51.8%), validation (22.2%), and testing (26%) sets. To
identify the tumor regions of WSIs, we divided them into smaller tiles
referred to as patches and extracted 5091 (2167 tumor, 2924 stroma)
non-overlapping patches. A maximum of 200 patches with a size of
512 × 512 pixels at 20x objectivemagnificationwere extracted from the
annotated regions of each slide. As the baseline architecture for our
classifier, we exploited ResNet1844, a simple and effective residual
network, with the pre-trained ImageNet45 weights. We trained the
model with the learning rate and weight decay of 1e-4 for five epochs
using the Adam optimizer46. As the amount of tumor and stroma
patches were not equal, we used a balanced sampler with a batch size
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of 150 whichmeant that in each batch, the model was trained using 75
tumor patches and 75 stromapatches. The resulting classifier achieved
99.76% balanced accuracy on the testing set, indicating the out-
standing performance of this tumor/non-tumor model (Supplemen-
tary Table 5). The trained model was then applied to detect tumor
regions on the rest of theWSIs. To that end, we extracted patches with
identical size and magnification to the training phase. To achieve
smoother boundaries for the predicted tumor areaswe enforced a60%
overlap between neighboring patches. In addition, to reduce false
positives we used a minimum threshold probability of 90% for tumor
patches. Finally, for consistency, we applied the trained model on the
discovery set, including the cases that were manually annotated by a
pathologist.

Deep learning models for tumor subtype classification
Due to the lack of pixel-wise annotations, we employed variability-
aware multiple instance learning (VarMIL)33 that utilizes the multiple
instance learning technique in which an image is modeled as an
instance containing a bag of unlabeled patches or tiles. The algorithm
in Box 1 elaborates on the prediction mechanism of FFC in detail.
zj 2 Rd consists of three sections: a feature extractor network (d),
attention layers, and classification layers (aj 2R). First, the feature
extractor network computes feature embeddings (z 2 R2d) for the
extracted patches of an instance (i.e., image), where zσ 2 Rd is the
dimension of the embeddings. Second, given that patches of a given
image are not necessarily equally important in subtype prediction, an
attention mechanism calculates the contribution of each patch
(�z 2 Rd) based on its embedding. Subsequently, VarMIL computes the
image’s representation (z 2 R2d)) into account alongside their
weighted average (zσ 2 Rd)). Finally, the model feeds the derived
representation as the input of the classification section to predict the
subtype. To avoid over-fitting, we employed a variety of augmentation
methods including horizontal and vertical flipping, color jitter, size
jitter, random rotation, and Cutout47. Furthermore, we utilized early
stopping48 as an additional formof regularization in training, and if the
validation loss did not decrease after five epochs, we decreased the
learning rate. Furthermore, we stopped the training if the validation
loss did not decrease after 10 consecutive epochs. We devised a two-
step training procedure for theproposednetwork, inwhich the feature
extractor network was trained independently from the attention and
classification layers. First, we trained the feature extractor, ResNet3444

(d = 512). For the attention and classification layers, we selected a

multilayer perceptron (MLP) with a single hidden layer with 128 nodes
(q = 128). We trained these layers with the same number of epochs and
weight decay as before but with a learning rate of 1e-5. Models were
trainedusing a single dgxV100GPUwith 32GBRAM. Theprogramming
language was PyTorch49 (version 1.8.0), and we selected the hyper-
parameters experimentally.

We further assessed the robustness of our findings with five other
models formulated on distinct concepts: (1) Vanilla37,50, (2) Histogram-
Based51, (3) Iterative Draw and Rank Sampling (IDaRS)52, (4) Attention-
based53,54, and (5) Vector of Locally Aggregated Descriptor (VLAD)55,56,
CLAM-MB, CLAM-SB, and TransMIL.

(1) Vanilla is a simple and frequently used concept in digital
pathology37,57. In this setting, we train a DL model on the extracted
patches fromahistopathology slide in a fully supervisedmanner.Here,
each patch’s label corresponds to the subtype of its corresponding
histopathology slide. The process involves passing patches through
convolutional layers and feeding the generated featuremaps into fully
connected layers. The model is trained using the cross-entropy loss
function58, similar to standard classification tasks.

(2) IDaRS shares similar assumptions with Vanilla, involving
training a model on image patches in a fully supervised manner and
assigning the image’s label to its patches52. However, unlike Vanilla,
where all extracted patches are used in training, IDaRS employs a
selection procedure. Only informative patches that contribute to the
image’s subtype are included during training. The selection algorithm
utilizes the Monte-Carlo59 sampling approach.

(3) The Histogram-Based concept51 addresses the task of identify-
ing a slide’s subtype, similar to IDaRS and Vanilla, by transforming a
weakly supervised problem into a fully supervised one. A key distinc-
tion of this concept is the integration of a histogram and a classifica-
tion module, instead of relying on majority voting. This modification
improves the model’s interpretability without significantly increasing
the parameter count.

(4) DeepMIL60 combines the concepts of MIL and attention. It
leverages MIL techniques, treating an image as a collection(bag) of
unlabeled patches, while the attention-based approach maintains the
nature of the weakly supervised task, in contrast to the previously
mentioned concepts. This perspective removes the need to assign
labels to individual patches within an image. Moreover, it recognizes
that patches within an image have varying degrees of importance to its
subtype, and their contributions are calculated using an attention
mechanism.

BOX 1

Subtype prediction algorithm

Input: Pi = pi1,::,piki

n o
: a set of extracted patches from the ith image, i.e., Ii

1: for j ← 1 to ki do
2: zj  FConv2DðpijÞ
3: end for

4: Let W 2 Rq and V 2 Rq×d be the attention parameters
5: for j ← 1 to ki do

6: aj  expðW> tanhðVzjÞÞ/
PKi

t= 1 exp W> tanh Vzt
� �� �

7: end for

8: �z Pki
j= 1ajzj

9: zσ  ki
ki�1

Pki
j= 1aj zj � �z

� �2

10: z �z� zσ
11: Yi  FFC zð Þ

Output: Yi: the predicted subtype of Ii
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(5) VLAD55, a family of algorithms, considers histopathology ima-
ges as Bag of Words (BoWs), where extracted patches serve as the
words. Due to its favorable performance in large-scale databases,
surpassing other BoWs methods, we adopt VLAD as a technique to
construct slide representation55.

(6) CLAM61 adopts an attention-based pooling function to aggre-
gate patch-level features to form slide-level representations for clas-
sification. By ranking all patches within a slide, the model assigns
attention scores to each patch, revealing their unique contributions
and significance to the overall slide-level representation for a specific
class. In addition, CLAM utilizes instance-level clustering over identi-
fied representative regions to constrain and refine the feature space.
Distinguishingly, CLAM-SB utilizes a single attention branch for
aggregating patch information, while CLAM-MB employs multiple
attention branches, corresponding to the number of classes used for
classification.

(7) TransMIL62 represents a transformer-based methodology
devised for the classification of whole slide histopathology images.
This framework incorporates both morphological and spatial infor-
mation through a comprehensive consideration of contextual details
surrounding a singular area and the inter-correlation between distinct
areas. Furthermore, the approach employs a Pyramid Position
Encoding Generator (PPEG) module for transforming local features
and encoding positional information.

Identification of p53abn-like NSMPs
The initial hypothesis was that NSMP cases with a poor prognosis
resemblep53abnmorphologically. Assuming thehypothesis is correct,
subtype classifiers should label cases in this group asp53abn.Using the
same rationale, we partitioned the NSMP subtype into two subgroups:
p53abn-like NSMP and the remaining NSMP cases. To this end, we
devised a voting system based on the classifiers’ consensus. If the
fraction of classifiers predicting an NSMP case as p53abn exceeded a
specified confidence threshold, the image was labeled as p53abn-like
NSMP; otherwise, the image was labeled as NSMP. In this work, we
labeled a sample asp53abn-like NSMPwhen anNSMP sample, based on
ProMisE, was classified as p53abn in more than seven out of the 10
cross-validation classifiers.

Unsupervised clustering of NSMP patch representations
To investigate the robustness of our results in identifying p53abn-like
NSMPs and visualize the distribution of the patch representations, we
employed a two-step approach. In the first step, we applied KimiaNet34

to the patches that were extracted from the histopathology slides
associated with the NSMP EC cases. KimiaNet is a deep model trained
on a large set of histopathology data, to encode each patch with
dimensions of 512 × 512 pixels into a compact 1024 × 1 vector. By
leveraging the embeddings from KimiaNet’s last pooling layer, we
condensed the essential features of each patch into a representative
vector. In the second step, we applied Uniform Manifold Approxima-
tion andProjection (UMAP)63, a dimensionality reduction technique, to
project the encoded vectors of all the patches within the NSMP and
p53abn-like NSMP onto a two-dimensional space. UMAP excels at
preserving both local and global structures of high-dimensional data,
enabling us to visualize the relationships and patterns within the
encoded patches in a more interpretable manner.

Targeted point mutation profiling
Targeted mutation profiling was performed as part of our team’s
previous efforts4,5,64,65. Briefly, the exon capture libraries were
sequenced using the Illumina Genome Analyzer (GAIIx), MiSeq, or
Sanger sequencing. The reads were aligned to the human genome
using the BWA aligner version v0.5.9. and SNVs were called by a
combination of binomial exact test and MutationSeq as previously
described66,67. To remove the germline mutations, the predicted SNVs

were filtered through dbSNP, 1000 Genome (http://www.
1000genomes.org/), and the control normals. All SNVs were profiled
by MutationAssessor68 for the functional impact of the missense
mutations. snpEff (http://snpeff.sourceforge.net/) was used to find
splice site mutations. All silent mutations were removed. The indels
were filtered by the control normals and then profiled by Oncotator
(http://www.broadinstitute.org/oncotator/).

Survival analysis
We assessed the significance of subgroups using the Kaplan-Meier
(KM) estimator on two survival endpoints: Disease Specific Survival
(DSS) and Progression Free Survival (PFS). Survival outcomes were not
accessible for four (1.47%; three NSMP and one p53abn-like NSMP) and
two (1.03%; one NSMP and one p53abn-like NSMP) patients in the dis-
covery and validation sets, respectively. In some individuals, clinical
data were partially available (for example, survival data of a patient
only contained DSS while PFS was unknown), explaining why the
number of cases varies among KM curves for the same set. In addition,
given that the TCGA survival data lacked DSS, the German cohort
served as the discovery set for the DSS KM curves.

Shallow whole genome sequencing (cohort and experiments)
DNAwas extracted (GeneRead FFPE DNA kit fromQiagen) from FFPE
core tumor samples andwas sheared to 200 bp using a Covaris S220.
Libraries were constructed using the ThruPlex DNA-seq kit (Takara)
with seven cycles of amplification (library prep strategy from Bren-
ton Lab similar to the one published in 2018)69. Library quality was
assessed using the Agilent High Sensitivity DNA kit (Agilent Tech-
nologies), and pooled libraries were run on the Illumina NovaSeq at
the Michael Smith Genome Sciences Center targeting 600M reads
per pooled batch. The sWGS data was run through basic processing
which includes trimming with Trimmomatic70, alignment with bwa-
mem271, duplicate removal with Picard72, and sorting with
samtools73. Sequencing coverage and quality were evaluated using
fastQC74 and samtools. If acceptable, the data was passed along to
the next step of determining genomic copy numbers
(QDNAseq75 + rascal76) and signature calls. The signature calling step
uses techniques including mixture modeling and non-negative
matrix factorization and is composed mostly of software from the
CN-Signatures69 package with a few in-house modifications and
additions. Interim data munging and ETL (extract, transform, load)
are done primarily in bash and R (tidyverse), while visualization and
plotting is performed mostly just in R using ggplot2 and pheatmap.

Gene expression analysis
For expression profiling, we used RNA-seq profiles obtained from the
TCGA-UCEC cohort3. Specifically, we used the GDC data portal77 to
download primary tumors sequenced on the Illumina Genome Ana-
lyzer platformwith patient IDsmatching those used inour study. Raw,
un-normalized counts were used. DeSeq278 was used to process the
raw count matrix and perform differential expression analysis (DEA)
and hierarchical clustering. Samples were categorized as NSMP,
p53abn-like NSMP, and p53abn. Genes with a total count of five or less
were removed. Counts were normalized using DeSeq2’s variance-
stabilizing transform tool. The 500 most variable genes based on
DEA were kept for hierarchical clustering. Per-gene Z-scaling was
applied to normalize the clustering features. Finally, the complete-
linkage method was used for both gene-clustering and sample-
clustering. Subsequent pathway analysis on the list of differentially
expressed genes was performed using the Reactome79 FI plugin in
Cytoscape80.

Statistical assessment
A two-sided log-rank test was utilized to assess the significance of the
difference between KM curves for the identified patient groups. In
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addition, the significance of groups for the enrichment of specific
genomic or molecular features was assessed using the Fisher’s exact
test and the Mann-Whitney U rank test for discrete and continuous
data, respectively. Throughout all experiments, p < 0.05 was regarded
as the significance level.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All histopathology slide images in this study can be obtained by direct
email to the corresponding author. All data access is subject to insti-
tutional permission and compliance with ethics from the corre-
sponding institutions. Data can only be shared for non-commercial
academic purposes and will require a data user agreement. The whole-
genome sequencing data for this study have been deposited in the
European Nucleotide Archive (ENA) at EMBL-EBI under accession
number PRJEB60600. Endometrial (uterine) carcinoma samples from
The Cancer Genome Atlas (TCGA), used in this study, can be freely
downloaded from [https://portal.gdc.cancer.gov/analysis_page?app=
Projects]. The exome-wide and targetedpointmutationdata discussed
in this manuscript were previously published in earlier studies4,5,64,65.
The aggregated mutation calls including the genomic coordinates of
the mutations and reference and tumor alleles were extracted directly
from those studies4,5,64,65 and can be found in the Source Data of
Fig. 3B. Source data are provided with this paper.

Code availability
The code used in this manuscript is available on https://github.com/
AIMLab-UBC/EC-p53abnlike-AIclassifier
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