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Selection and horizontal gene transfer
underlie microdiversity-level heterogeneity
in resistance gene fate during wastewater
treatment

Connor L. Brown1, Ayella Maile-Moskowitz1, Allison J. Lopatkin2, Kang Xia3,
Latania K. Logan4, Benjamin C. Davis5, Liqing Zhang6, Peter J. Vikesland 1,7 &
Amy Pruden 1,7

Activated sludge is the centerpiece of biological wastewater treatment, as it
facilitates removal of sewage-associated pollutants, fecal bacteria, and
pathogens fromwastewater through semi-controlledmicrobial ecology. It has
been hypothesized that horizontal gene transfer facilitates the spread of
antibiotic resistance genes within the wastewater treatment plant, in part
because of the presence of residual antibiotics in sewage. However, there has
been surprisingly little evidence to suggest that sewage-associated antibiotics
select for resistance at wastewater treatment plants via horizontal gene
transfer or otherwise. We addressed the role of sewage-associated antibiotics
in promoting antibiotic resistance using lab-scale sequencing batch reactors
fed field-collected wastewater, metagenomic sequencing, and our recently
developed bioinformatic tool Kairos. Here, we found confirmatory evidence
that fluctuating levels of antibiotics in sewage are associated with horizontal
gene transfer of antibiotic resistance genes, microbial ecology, and
microdiversity-level differences in resistance gene fate in activated sludge.

Wastewater treatment plants (WWTPs) have been referred to as “hot-
spots” for the proliferation and dissemination of antibiotic resistance1.
However, this is a broad generalization, and there is a need to identify
more precise circumstances and boundary conditions under which
such proliferation occurs. In fact, the activated sludge (AS) process
that serves as the core of conventional wastewater treatment can be
quite effective at reducing antibiotic resistance gene (ARG) numbers
at-large2 and has been noted to be generally effective at attenuating
certainmobile ARGs, especially those carried by fecal pathogens in the
influent sewage3,4. Still, there are a number of ARGs that have been
observed to sometimes increase during wastewater treatment, thus

calling for a closer examination of specific vulnerabilities of the AS
process to ARG proliferation5. Horizontal gene transfer (HGT) is of
particular concern because it can result in the acquisition of ARGs
across taxonomic groups, resulting in the emergence of new resistant
bacterial strains.WWTPshavebeen found tobe susceptible to invasion
by exogenous mobile genetic elements (MGEs)6 and also to harbor
diverse mobile resistance genes3,7,8, including both putative novel
ARGs as well as MGEs and bacterial hosts associated with ARG emer-
gence. Despite this, concrete examples of selection for resistance via
HGT in situ, i.e., within a fixed- and measured period of time in AS, are
surprisingly sparse9,10.
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HGT is a stochastic process and can co-occur via complex ecolo-
gical interactions in microbiomes, making it difficult to study under
controlled conditions. In vitro, various pharmaceuticals11 and sterile-
filtered hospital effluent12, have been shown to elevate conjugation
rates, a keymechanism by which ARGs are hypothesized to proliferate
during wastewater treatment. Similarly, whole genome sequencing of
WWTP isolates has served to demonstrate linkages between WWTP
microbes and human/animal bacteria13 despite no selection for multi-
drug resistance overall due to biologicalwastewater treatment14. Other
efforts using shotgun metagenomics have provided high-level surveys
of putative gene sharing and the potential for ARG mobility as a
function of co-occurrence with MGEs15 or correlation between ARG
andMGE abundances16,17. The correlation of ARG andMGE abundances
through short-readmapping is particularly problematic, as changes to
gene abundance are driven largely by changes in the abundance of the
host bacteria. By contrast, HGT occurs between individual cells, sug-
gesting that amuch greater degree of biological granularity is required
to reveal HGT and corresponding drivers in WWTPs. Likewise, the
degree to which in vitro studies are representative of the complex and
dynamic microbiomes that typify WWTPs, particularly AS, is ques-
tionable. Studies leveraging model organisms or single modes of HGT
(e.g., conjugation or transformation) under controlled conditions are
also unlikely to capture dynamics among environmental and mostly
unculturable18 AS taxa. We recently proposed a framework of “in situ”
HGT that assesses whether the chronological occurrence of potential
donors, recipients, and putatively transferred regions could plausibly
have arisen due to HGT in the sampled period. To develop this fra-
mework as a publicly accessible tool, we recently developedKairos19 as
a next-flowsoftware package that enables analysis ofmetagenomes for
evidence of microbiome-level HGT.

Studies of controlled situations where resistant bacteria, ARG-
bearing MGEs, and selective agents are elevated in the influent to the
WWTP could help to shed light on the microbial ecology surrounding
ARG proliferation in AS20. In particular, relative to municipal waste-
water, hospital sewage tends to be enrichedwithmicrobial pathogens,
ARGs, and selective agents, such as antibiotics and other pharmaceu-
ticals, which could enhance both HGT and selective pressure on
resistant strains21–23. Such studies could help to assess the utility of
mitigation measures, such as segregating hospital sewage or subject-
ing it to special treatment prior to discharge. Typically, hospital sew-
age constitutes only a small proportion (0.01%−15%24–28) of the total
influent reaching municipal WWTPs, but the potency of this “small”
proportion in terms of antibiotic resistance propagation remains a
concern.

Here, we employed sequencing batch reactors (SBRs) for a semi-
controlled simulation of AS wastewater treatment and allowed a
comparison of the effects of varying influent conditions on the HGT of
ARGs occurring during AS treatment. The SBR feeds varied as a func-
tion of contrasting levels of influent hospital sewage composition (0%
and 10%) and also natural variation in the selective agents present in
the municipal sewage source applied as influent with time. SBRs
simulatingAS treatmentwere ideally suited for the in situ studyofHGT
of ARGs because they are representative of the complexity of micro-
biomes encountered in full-scale WWTPs but can be operated in par-
allel and in triplicate to account for the influence of biological
variability. To profile key networks between/within phylum HGT, we
applied Kairos as a means to leverage microdiversity-aware sequence
analysis for sensitive detection of microdiversity in gene contexts
associated with HGT19. This approach served to identify evidence of
HGT that was linked to shifting antibiotic levels. The framework used
herein can serve as a template for profiling HGT in longitudinal
metagenomic datasets and highlights that the ASmicrobiome remains
an important focal point for efforts tomonitor andmitigate the spread
of antibiotic resistance.

Results
Overview of experimental design
Six replicate SBRs were operated with local municipal sewage as feed
until they reached a steady state (defined in this study as stable
removal of organic carbon) ( ~ 3 months) (Fig. 1A). Subsequently,
hospital sewage was blended into the influent to one set of biological
triplicate SBRs at a proportion of 10% hospital effluent to municipal
sewage. Given that concentrations as high as 15% of hospital sewage
have been reported28, 10% was selected as the test condition to max-
imize the chance of observing the impact of hospital sewage on AS.
Sampling was carried out for short- and long-read metagenomics and
suspect screening of pharmaceuticals and personal care products
(PPCPs) over a period of about three weeks. AS and influent samples
were sequenced to an average depth of 5 Gbp/sample (nonpareil29

coverage 0.5 ± 0.1) and effluent was sequenced to an average depth of
3 Gbp/sample (nonpareil coverage 0.5 ± 0.1). A subset (n = 6) of sam-
ples were sequenced deeply (average of 36Gbp, nonpareil coverage
0.8 ± 0.10). A subset of DNA extracts frombiological replicate reactors
was also pooled by sampling date and sequenced across three nano-
poreminION flowcells to a target depth of 1.2 Gbp/sample and 9.4Gbp
total after basecalling (sequencing read N50 = 1.3 kbp) (Supplementary
Data 1). The low N50 values of the nanopore data reflect the use of a
bead-beating lysis DNA extraction kit.

Limited impact of hospital sewage on activated sludge reactors
Consistent with the results of a companion study focused on relating
SBR operational conditions to the higher-level annotation of ARGs and
taxonomy30, hospital sewagewas found tohaveonly aminor impact on
the organic carbon and nitrogen removal and the composition of the
corresponding microbiomes and resistomes (Fig. 1A–D). Short read-
derived taxonomic profiles were analyzed at the genus level because
pairwise Bray-Curtis distances suggested that conditions (10%/0%) and
fractions (i.e., influent, AS, and final effluent (FE)) differed most sub-
stantially at this level of taxonomic resolution, even when removing
sporadic or low abundance taxa that were potential false positives
( < 0.1% abundance inmore than half of samples; Supplementary Figs. 1
and 2). However, genus-level taxonomic profiles differed only slightly
among treatments when controlling for sampling day, reactor, and
fraction (PERMANOVA, R2 = 0.015, p = 0.001), influent samples
grouped by 0% vs. 10% when controlling for experimental stage
(before, initial, and after introduction of hospital sewage) and with no
other grouping variables (R2 = 0.17, p =0.01).

Post hoc Wilcox Rank-Sum tests were performed to identify taxa
with statistically significant differences between the 0% or 10% condi-
tions (Fig. 1D, Supplementary Fig. 3). Despite a difference in taxonomic
profiles, no specific genera with statistically significant differences
between the influent sewagewith or without hospital effluent could be
detected (controlling for sampling period, p-value adjusted for multi-
ple comparisons using the Holm method)31. The resistome was
strongly linked to genus-level taxonomic profiles (Procrustes:
m2 =0.90, p =0.001; excluding undiluted hospital effluent, 0.80,
p =0.001), (Fig. 1D, E), suggesting a strong partitioning of ARGs into
separate genera.

Comparing against a custom AS reference genome, ARG, and
MGE catalog
We hypothesized that hospital sewage would introduce substantial
ARG and MGE microdiversity into the SBRs. To assess this, we devel-
oped two genomic catalogs comprising (1) metagenome-assembled
genomes (MAGs)/whole genome sequences of isolates recovered from
the SBRs or influent and (2) metagenomic scaffolds bearing ARGs or
mobileOGs (i.e., MGE hallmark genes) recovered usingmultiple hybrid
assembly, coassembly, and binning strategies. The combined meta-
genomic assembly yielded over 300Gbp of hybrid assembly data and

Article https://doi.org/10.1038/s41467-024-49742-8

Nature Communications |         (2024) 15:5412 2



after binning produced 876 species-level dereplicated medium- or
high-quality MAGs (Supplementary Data 2, Supplementary Fig. 4).

For subsequent analysis of microdiversity and HGT, we relied on
the ARG andMGE context catalog derived from the 300Gbp of hybrid
assembly data and subsequently related those findings back to
potential hosts via analysis of the MAGs. The final resistance gene and
mobileOG catalog consisted of 1,354,363 contigs (total assembly size
1,124,994,800bp;N50 = 1,587 bp). From these assemblies, a total of 910
unique reference resistance genes were detected (535 ARGs and 375
metal resistance/biocide resistance genes), which is comparable to
previous studies3.

A diverse array of mobile resistance genes was detected in the
MGE and ARG catalogs. Mobile resistance genes were classified
according to their co-occurring mobileOGs. The classification scheme
was such that individual resistance genes could belong to one or
multiple categories of integrative element (IGE), transposable element

(TE), plasmid, phage, or conjugative element (CE). A total of 408
unique mobile resistance genes were detected across 1,544 contigs
(Supplementary Fig. 5). Of these, 9 (2%) were co-localized with phage
hallmarks, 54 (13%) with TEs; 97 (24%) with IGEs; 108 (26%) with CEs,
and 175 (42%) with plasmids. In addition, 79 (19%) were co-localized on
contigs with markers for TEs, IGEs, CEs, and plasmids. This latter
category of highlymobile resistance genes includedOXA-205,mer and
qac genes, mphE, mphA, and aadA, among others (Supplemen-
tary Fig. 5).

Whereas short read profiles suggested a modest difference
between hospital- and municipal-sewage, analysis of metagenomic
microdiversity via the Kairos assessment workflow revealed 12,675
contigs unique to the hospital sewage-blended feed (Figs. 2, 3). The
Kairos assess branch of the next flow pipeline leverages a metage-
nomic assembly catalog such as the one created here for resistance
genes and mobileOGs that spans multiple gene contexts. This
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Fig. 1 | Hospital effluent had modest impacts on the performance, taxonomic,
and resistome composition of the sequencing batch reactors (SBRs).
A Experimental design and reactor schematics. A total of six biological replicate
SBRs were seeded with a local AS inoculum and upon reaching steady-state were
fed three different concentrations of hospital sewage in triplicate. Over three
weeks, samples were collected for pharmaceutical and personal care product
(PPCP) screening and metagenomics (short and long read). B Influent and reactor
effluent soluble chemical oxygen demand (sCOD) was not substantially different
between 0% and 10% reactors. Lines are a loess curve with standard error bands (C)
SBRs demonstrated robust nitrification. Data are from three different sampling

days. The time displayed is relative to the beginning of the 11 hr aeration period.
Boxplot summary statistics are center line: median; upper/lower hinges: 75th and
25th percentiles, respectively; upper and lower whiskers represent the data points
extending from the hinge to at most 1.5 times the interquartile range. D NMDS of
genus-level taxonomy Bray-Curtis distances between samples of different fractions
and treatment conditions (stress = 0.058). E NMDS of resistome Bray-Curtis dis-
tances between samples of different fractions and treatment conditions (stress =
0.073). Abbreviations: INF: influent; ML: activated sludge; FE: final effluent. Source
data are provided as a Source Data file.
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workflow was applied to identify distinguishing regions between gene
contexts, extract these regions, and query metagenomic reads against
them to determine whether a given contig can be found in a sample.
Only 260 contigs were exclusively detected in the background

municipal sewage, a strong contrast to the hospital effluent (Supple-
mentary Fig. 6). Of the 12,675 contigs unique to the hospital sewage-
blended feed, 232 encoded resistance genes (183 unique), including 31
ARGs and 52 biocide or metal resistance genes that were not detected
in 0% hospital sewage influent. For example, the unique contribution
of the hospital sewage included 14 contigs encoding macrolide resis-
tance genes msrE, mphE, and tet(39) in a transposon-like setting
(Fig. 3C, D); 39 sul1-bearing contigs (Supplementary Fig. 7); 38 mphA-
bearing contigs amongothers (SupplementaryData 3). The patterns of
abundances predicted by short read to contig alignment concurred
with the trends observed using Kairos assess (Supplementary Fig. 8).
The overall structure of the mobile resistance gene graphs (Fig. 3A, B)
for hospital and native sewage were similar (Supplementary Fig. 9A
and B), except that the hospital-associated graphs spanned fewer
distinct taxa relative to the background municipal sewage (Supple-
mentary Fig. 9C).

Microdiversity-level differences in resistance gene fate
The use of the Kairos assess workflow further enabled the partitioning
of ARG-bearing contigs into hospital sewage-associated and back-
ground municipal sewage-associated fractions (Fig. 4, Supplementary
Fig. 11). This partitioning allowed us to trace the fate of specific resis-
tance gene contexts by assessing which hospital or native sewage-
associated contigs remained detectable in AS after several days of
operation. Both the municipal and hospital sewage-associated resis-
tomes were largely attenuated (Fig. 4) when evaluated using either
Kairos (Fig. 4A, B) or readsmapping to the contigs directly (Fig. 4C–E).
However, different drug classes, as well as individual ARGs within the
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drug classes, had correspondingly different fates in AS (Fig. 4G). Spe-
cifically, there wasmicrodiversity-level variability in the persistence of
mphA, msrE, tet(39), tet(G), tet(O), and sul1/sul2 and mer family resis-
tance genes, among others (Supplementary Fig. 12).

Interestingly, the heterogeneity in gene fate observed here coin-
cided with changes in levels of several antibiotics (Fig. 4H–L, Supple-
mentary Data 4). Antibiotics that increased over the course of the
experiment included erythromycin (Fig. 4H–K) (Kruskal-Wallis:
p =0.001; Wilcox: median peak area 0 vs. 7.5 × 104, p =0.005),
erythromycin-anhydrous (Kruskal-Wallis: p =0.009; Wilcox: peak area
2 × 104 vs. 3.5 × 104 p =0.013), and sulfamethoxazole (Kruskal-Wallis:
ns; Wilcox: 2 × 104 vs. 0.9 × 104, p =0.04). Increases in erythromycin
were concomitant with a nearly 40-fold reduction in median levels of
clarithromycin, another macrolide antibiotic, although this was not
statistically significant (Fig. 4H). We note that these antibiotic levels
were not elevated as a result of the addition of hospital effluent, as the

observed changes occurred in all reactors. Instead, the increases
reflect changes in the local sewage used as the background feed.
Macrolide prescription rates inoutpatient settings have been shown to
have winter/early spring peaks32 suggesting this may have been a
byproduct of community antibiotic usage. Therefore, we next
addressed the potential consequences of changing antibiotic levels on
(1) shifts in the abundance of bacteria harboring the resistance genes,
and (2), the potential for HGT of contaminant-associated resis-
tance genes.

Hosts of resistance genes display widely varied trajectories
If the fate of specific resistance gene contexts were chiefly driven by
the persistence of their respective hosts, it would be expected that the
relative abundance of the hosts would follow those of the resistance
gene contigs.While examination of bin abundances revealed a pattern
of change over the duration of the experiment that mirrored
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fluctuating antibiotic contaminant levels (Fig. 5A, B), there was no
evidence of bulk selection by erythromycin or sulfamethoxazole for
hosts of these resistance genes specifically (Fig. 5C, D). However, dif-
ferent putative hosts displayed disparate trajectories (Fig. 5C–G). For
example, Nannocystis genomospecies (gs.) (bin39) (phylum Myx-
ococcota) displayed changes in relative abundance consistent with an
enriching effect (Wilcox: median 500RPKM vs. 1000RPKM, p < 0.001)
(Fig. 5E) and Thauera gs. (bin96) (phylum Proteobacteria) displayed a
moderate reduction (Wilcox: median 75 RPKM vs. median 45 RPKM,
p <0.001) followed by an increase in relative abundance (Wilcox:
median 45 RPKM vs. 75 RPKM, p < 0.001) (Fig. 5E–G). By contrast,
Chitinophagaceae gs. (bin115), Acinetobacter sp003987695 (bin107),
and Escherichia coli (bin86) decreased or remained unchanged over
the duration of the experiment (Fig. 5G). Whereas multiple bins bear-
ing macrolide resistance genes were found, only one bin, Dokdonella
gs. 82 (phylum Proteobacteria) bearing a sulfonamide resistance gene
(sul2) was found. The sole MAG with sul2 displayed decreased relative
abundance over time (Wilcox: median 450RPKM vs. 200RPKM,
p <0.001). Further, relative abundance profiles of persisting or atte-
nuated contigs (as predicted by Kairos) followed expectations in that

attenuated contigs corresponded tohosts thatdecreased inAS relative
to influent and persisting contigs corresponded to hosts with abun-
dances that remained the same or increased (Supplementary
Figs. 12, 13).

Postulated pathways of resistance gene in situ HGT
It was observed that resistance genes were found across diverse gen-
era, classes, and phyla (Fig. 3A–C), suggesting the potential for HGT.
Because of the changes in profiles of antibiotics, we assessed the
potential for in situ HGT possibly linked to the antibiotics using the
general framework proposed previously19, with formal and case-
specific hypotheses crafted for this experimental design (Fig. 6A, B).
In this case, in situ HGT strictly refers to any occurrence of cross-taxa
gene sharing with a pattern of presence/absence in samples consistent
with anHGT event, or an enrichment of a pre-existing genome bearing
the gene, in the sampled period of time.

For this analysis, we applied the Kairos derep-detect workflow to
identify contigs for which identical resistance gene ormobileOGswere
found, but where different taxonomic assignments were predicted
(i.e., gene sharing or potential instances of HGTs). Kairos imposes
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strict similarity criteria for identifying putative HGT events (minimum
99% amino acid identity and 60% coverage). These were selected to
optimize detection of very recent HGT events, particularly those
associated with resistance genes. This suggested the potential for
extensive HGT across multiple taxonomic levels including phylum
(n = 4919), (Fig. 6C, Supplementary Fig. 14, Supplementary Data 5),
class (n = 1884) (Supplementary Data 6), order (n = 3488) (Supple-
mentary Data 7), family (n = 983) (Supplementary Data 8), and genus
(n = 1400) (Supplementary Data 9). Genes shared between phyla
included resistance genes (n = 143) APH(6)-Id, APH(3”)-Ib, OXA-205,
qacH, ermG, ermB, mel, mphE, msrE, mphA, mphF, sul2, tet(C), and
tet(39) (Fig. 6C, D). The majority (n = 3413) corresponded to mobi-
leOGs of diverse categories (Fig. 6C). Gene sharing network analysis
revealed dense linkages connecting Proteobacteria toBacteroidota and
Actinobacteriota, but not Actinobacteriota to Bacteroidota (Fig. 6D),
These connections were negatively correlated with GC content dis-
similarity (Spearman’s rank rho = −0.24, p <0.001). Of the 12,685
potential HGTs across all taxonomic levels, 1608 met in situ criteria,
including transfers of mphA, sul1, and sul2 (Fig. 6D) and 14 other
resistance genes (OXA-2, qacH, sul1, OXA-205,merF,merP,merT, qacF,
merA,merD, merE,merR2, andmerT). We focused subsequent analysis
on putative transfers of mphA and sul1/sul2 as these genes were

disproportionately persistent (Fig. 4G, Supplementary Fig. 12) and
were most likely to inform the potential impact of erythromycin and
sulfamethoxazole.

Analysis of predicted recipients and donors suggested a discrete
set of potential transfer pathways (Fig. 6E, F). For mphA, a single
recipient in the class Polyangia (phylum Myxococcota) was predicted
for two potential donors of the orders Xanthomonadales (phylum
Proteobacteria) andMyxococcia (Myxococcota) (Fig. 6E, Supplementary
Fig. 15). By contrast, the pathway for sul2 included multiple potential
recipients anddonors and couldvariablybedescribedbyHGT through
some route spanning Gammaproteobacteria, Alphaproteobacteria and
Bacteroidia. The use of the in situ criteria did rule out transfer from
Alphaproteobacteria to Bacteroidia, but not from Gammaproteo-
bacteria to Bacteroidia (Fig. 6F, Supplementary Fig. 16). A single
pathway of sul1 transfer was detected that suggested a transfer from
Sphingomonadaceae of Alphaproteobacteria toGammaproteobacteria,
however theputative donor and recipients aligned againstone another
at their respective edges (Supplementary Fig. 17).

Multi-level transfer of mphA linked to a novel myxophage
Further scrutiny of the Myxococcota genetic contexts of mphA
revealed that they likely were derived from a phage (Fig. 7). This
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finding is notable, as the role of phages in the evolution of antibiotic
resistance remains unclear, especially in environmental matrices.
Further inspection revealed that closely-related phage genomes were
detected in many samples, but the assemblies were fragmented into
two approximately 20,000 base pair segments (Fig. 7A), essentially
dividing the genome into halves, with only a few of the fragments
encoding mphA (Fig. 7B). Draft genomes were constructed by scaf-
folding contigs based on their alignment to a similar prophage region
in NCBI (Supplementary Methods S1, Supplementary Fig. 18) (Fig. 7D).
The assemblies produced by HybridSPAdes and OPERA-MS predicting
the encoding of mphA in the phage genome were validated by the
identification of nanopore reads that aligned to both Myxococcota
genomes and Enterobacterales in NCBI. The alignments corresponded
to the prophage and mphA coding region, respectively (Supplemen-
tary Data 10, Supplementary Figs. 19, 20). Similar putative prophage
regions were detected in numerous publicly available genomes
(Fig. 7C, Supplementary Table 1), but lacked any known resistance
genes. However, one putative prophage detected in Danish AS-derived
MAG CP064980.1 (Fig. 7D) was integrated near genes encoding mac-
rolide ATP-binding transporter/permease, MacA/MacB (Supplemen-
tary Fig. 19). Relative abundances of putative donors and recipients,
and the taxonomic assignment of contigs, suggested that the Proteo-
bacteria context was possibly associated with bin82, a Dokdonella sp.

The contig had remarkably similar abundance profiles and concordant
taxonomic assignments (Fig. 7F, G). The potential donor of the pre-
dicted class-level HGT of mphA, taxonomic assignment Myxococcia,
was represented bymultiple contigs (Supplementary Fig. 15). Only two
MAGs of class Myxococcia were found, which displayed opposite
trends in abundanceover time (Fig. 7H, I). Potential recipients ofmphA
encoded by the myxophage (according to class-level taxonomic
assignment ascribed to the phage contig) included 43 Polyangia
dereplicated bins (Supplementary Data 11) spanning all four CAGs.

While the precise pathway ofHGT is uncertain, the fact that one of
the Myxococcia MAGs displayed trends in abundance similar to those
of the Dokdonella sp. suggests that theremay have been an ecological
linkage between the two populations represented by the bins
(Fig. 7E, F). Additionally, one of the putative recipients displayed a
genetic context suggestive of prophage integration. Members of the
phylum Myxococcota span a wide range of different environments,
including sewage, soil, andmarine environments33,34. Most, but not all,
have been demonstrated to have some degree of predation35. We
examined genomic evidence of a predatory lifestyle (e.g., secretion
systems and antibiotic biosynthesis pathways36) in the genome of the
putative donor, Archangium gs. (bin204), of the class Myxococcia
(Fig. 7G). Functional annotations suggested the presence of partial or
complete type 1 secretion systems (T1SS), T2SS, T3SS, T4SS, and T7SS;
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at least one antibiotic biosynthesis monooxygenase; one polyketide
synthase; and 19 separateCAZy classified carbohydrate active enzymes
(Supplementary Data 12).

Discussion
The hospital sewage that was the subject of this studywas found not to
substantially impact the treatment performance, taxonomic compo-
sition, or resistome of the AS reactors, a topic that is explored in
greater depth in a parallel study30. Here, we integrated analysis of
short- and long-read metagenomic sequencing, PPCP screening, and
HGT analysis using Kairos, our recently developed bioinformatics
software package in order to investigate the impact of fluctuating
antibiotic levels on the fate of resistance genes. Mobile resistance
genes derived from both background municipal sewage and hospital
sewage were largely attenuated by AS treatment, but a subset of
resistance genes persisted and were correlated, in part, with a shift in
the levels of macrolide and sulfonamide antibiotics (Fig. 4). We iden-
tified dense networks of gene sharing within and between phyla,
including the putative transfer ofmphAwithinMyxococcota via a novel
myxophage, and at least two compelling instances of hypothetical
in situ HGT. This assessment was achieved through use of a lab-scale
AS system seeded with field-collected AS and municipal and hospital
wastewater feeds. Integrated analysis of short- and long-read meta-
genomic sequencing, PPCP screening, and HGT analysis using Kairos,
our recently developed bioinformatics software package, made these
observations possible.

The findings here illustrate a striking example of where residual
antibiotics appear to act as selective agents for the proliferation of AR
genes during wastewater treatment. However, the potential impact of
antibiotic contamination was not apparent using low-resolution
metagenomic analyzes, such as short read alignment to reference
databases or taxonomic classification37. Alternatively, by integrating
hybrid assembly, MAGs, and microdiversity-aware sequence analysis,
we identified a dynamic shift in themicrobiome over the course of the
experiment due toHGT (Figs. 6, 7) andboth increases and decreases of
specific bacterial lineages predicted to be hosts of the relevant resis-
tance genes (Figs. 5E-G, 7F-K).

It is acknowledged that the in situ criteria used here cannot dif-
ferentiate between clonal enrichment of a rare genome bearing the
putatively transferred gene vs. an HGT event. The in situ criteria could
be met either through HGT that occurred at some previous time (and
was in sufficiently low abundance to elude detection) and then
amplified by host-level selection, or via recombination that occurred
during the sampled period. We also note that it is unlikely antibiotics
directly stimulated transfer, as, thus far, there are few examples of
direct biochemical activation of MGE-associated recombination38. By
contrast, selective enrichment of specific variants, some of which bear
horizontally-acquired genes, ismore parsimonious, and has previously
been shown to be a key factor in the emergence of resistant
phenotypes39. While it is mechanistically important to distinguish
between direct induction of recombination or selection for a sto-
chastic event, both result in elevated copies of the putatively trans-
ferred gene. In this case, it was particularly notable that the emergence
of the putative HGT also co-occurred with elevated antibiotic levels.

Therewas no evidence of bulk selection for hosts ofmacrolide- or
sulfonamide-resistance genes, again highlighting that the impact of
residual antibiotics may be uneven or multifaceted. Profiles of abun-
dances across hosts of macrolide and sulfonamide resistance genes
were variable, implying that changes in host abundance were at least
not solely due to shifting antibiotic contamination (Figs. 5E-G, 7F-K).
Rather, our results suggest that the influence of antibiotics on selec-
tion is moderated by pre-existing dynamics among members of the
community and possibly via HGT.

Surprisingly, we predicted the in situ transfer of mphA between
Proteobacteria andMyxococcota via the activity of a novel myxophage,

a puzzling biological inference.While it is unclear how the phage came
to encode mphA, the co-occurrence of extensive genetic diversity in
the myxophage assemblies, the presence of identical copies ofmphA,
and elevated erythromycin seems too improbable to be a coincidence,
although this cannot be ruled out. It is noteworthy that Myxococcota
have an unusual predatory lifestyle33 and are able to prey on a broad
array of organisms, including both fecal-associated bacteria (which are
abundant in sewage, e.g., E. coli, Klebsiella)40 and soil-associated bac-
teria (including Xanthomonas fragariae)35. While it is possible a
predator-prey relationship might explain the association between the
Myxococcota MAGs and the Dokdonella sp. MAGs41, more experi-
mentation would be necessary to derive such mechanistic insight.
Members of theMyxococcota phylum have recently been reaffirmed as
active predators and important players in wastewater microbiomes42,
and the extensive collection of 52 MAGs presented here should aid in
further characterization of their niche in wastewater.

The present work brings to the fore several important observa-
tions that are emergent from the literature. On the one hand, phages
have been suggested to contribute to resistance gene mobility in
wastewater43; however, whether they play substantive roles in resis-
tance gene mobility remains controversial23. Here, we found a highly
active and diversemyxophage that was prolific amongmembers of the
phylumMyxococcota. In addition, our analyses suggested the potential
for phylum-HGT in a relatively short time scale, defying, at least, our
own expectations. However, this observation is consistent with a
recent observation that gene-sharing graphs derived from global
sewage samples frequently span phyla44. One potential explanation
may be inferred from a previous bioinformatic investigation of inte-
grons, which indicated that shared environment, rather than phylo-
genetic background, was most predictive of integron sharing45.
Regardless, as shownhere, transduction in conjunctionwith additional
modes of mobility (such as transformation) may facilitate the mobility
of genes via an ecologically distinct mechanism relative to
conjugation.

Wastewater is increasingly being recognized as a potential source
of novel resistance genes due to its coalescenceof sub-clinical levels of
antibiotics, extreme genetic diversity, and contact with natural
environments10,46. While the emergence of new resistance genes is
likely to be extremely rare10, factors governing this process remain
uncertain. As presently postulated47, the emergence of novel ARGs can
be generally described as being driven by three factors:means,motive,
and opportunity. A potential novel resistance determinant must be
mobilized out of its original non-resistance context and subject toHGT
(means); then, the gene must be enriched or persist in recipient
organisms, likely due to selection by antibiotics or cross-selection with
other selective agents (motive). Finally, physical proximity to organ-
isms undergoing selection must coincide with the mobilization
(opportunity). Here, we found evidence that reaffirmed this model,
albeit for previously characterized ARGs. More broadly, our findings
highlight the potential for interactive effects of selective agents,
microbial ecology, and HGT in the evolution of antibiotic resistance in
the environment, including the emergence of novel resistance
determinants.

Methods
Sequencing batch reactor design and operation
Two sets of triplicate SBRs were operated for ~three months in three-
liter glass beakers with an active volume of two liters in a temperature
controlled room, as described in Maile-Moskowitz et al.37 The SBRs
were operated on a 12-hour cycle with a two-day hydraulic retention
time and five-day solids retention time. Each cycle consisted of a
10.78 h aeration period, including a 60-minute feed, followed by
8minutes of solids wasting (decanting of AS), 53minutes of solids
settling, and a 12-minute effluent decant. During the aeration/react
period the SBRs were aerated using Top Fin® AquariumAir Pumps and

Article https://doi.org/10.1038/s41467-024-49742-8

Nature Communications |         (2024) 15:5412 9



mixed using stir plates. SBRs were fed and decanted using three- or
four-roller peristaltic Masterflex® EasyLoad pump heads controlled by
Masterflex® pump drives (Model 7553-80). Influent feed was obtained
from a small, local Virginia WWTP (average flow of 3 million gallons
per day), while hospital sewage was obtained from an urban medical
centre in Chicago, Illinois. Untreated hospital sewage was collected
frommanholes over a 24-hour period and shipped to the Virginia Tech
lab on ice. Upon arrival, hospital sewage was stored at 4 °C for 56 days
prior to commencing the experiment. We were unable to obtain fresh
hospital sewage prior to the commencement of the dosing as the
experiment occurred in February 2020, just before global COVID-19
stay-at-home orders were emplaced. After reaching steady-state, SBRs
were maintained for 17 days post-hospital sewage addition.

Shotgun metagenomic sequencing
Mixed ester cellulose filters were washed with autoclaved nanopure
water beforewastewater samples (AS, influent oreffluent)werefiltered
through0.22 µmmixed ester cellulosefilters in triplicate until clogging
of the filter occurred, with approximate volumes and water weight
recorded for each sample. A lab blank was also included for each
sampling point which received only autoclaved nanopure water. To
capture potential contamination incurred during sample preparation,
DNA extraction, and sequencing, we added 37 µL of the Zymo Mock
Microbial Community (DS6700, Zymo Research, Irvine, CA) whole cell
spike into the labblankfilter tubeprior to extraction. For sequencing, a
representative sample of about 10 lab blanks was combined and sub-
mitted for sequencing in parallel for each flow cell.

DNA was extracted using the MP Bio spin-kit for soil (MP Biome-
dicals, Irvine, CA) with the following modifications. We increased the
first centrifugation step by 10minutes to increase the separation of
filter fragments from soluble supernatant. Final elutionwas conducted
in molecular-grade water. DNA was quantified using a qubit fluo-
rometer with the high-sensitivity dsDNA detection assay kit from
Thermo Life Sciences (Q33120, Thermo Fisher,WalthamMA). Samples
were then submitted to the Duke University Center for Genomic and
Computational Biology for library preparation with the KAPA Hyper-
Prep kit and sequencing on an Illumina NovaSeq6000. Nanopore
sequencing was performed on pooled samples from conditions (e.g.,
10%-1, 10%-2, and 10%-3 day 1) using a nanopore minION sequencer
(Oxford Nanopore Technologies). Library preparation was performed
using the ligation sequencing kit SQK-LSK109 with native barcoding
(NBD-104) following manufacturer’s protocol (vNBE_9065_v109_-
revJ_23May2018) and loaded onto an R10.3 flowcell. Reads were
basecalled using guppy v.3.2.10 and a minimum q-score of 7 was
imposed.

Short read preprocessing and sequence analysis
Paired end metagenomic reads were quality filtered and decontami-
nated using bbduk (ktrim=r k = 23 mink=11 hdist=1 tpe tbo maq 4).
Decontamination included removal of adapter sequences, the JGI
contaminant database48, and a custom database of sequences derived
from a sample of negative controls. Quality filtered and decontami-
nated reads were queried against CARD v3.0.749, and experimental
sequences in BacMet v250. Resistance genes were annotated at a
minimum identity of 80% and e < 10-10 using diamond51. Resistance
gene counts were normalized to 16 s rRNA copies derived from
bowtie252mapping of short reads against GreenGenes53 v13.5 (-x 1000--
very-sensitive) and reads per kilobase million (RPKM). Taxonomy was
annotated using kraken2 with gtdb v202 as the underlying taxonomy
database.

Statistics and Reproducibility
Analyzes were performed in R v. 4.1. No statistical method was
used to predetermine sample size. No data were excluded from the
analysis. The experiments were not randomized. The Investigators

were not blinded to allocation during experiments and outcome
assessment.

Assembly, co-assembly, binning and dereplication
Multiple hybrid assembly strategies were performed using short Illu-
mina reads and long minION nanopore reads to improve recovery of
informative resistance gene contexts. Briefly, individual samples were
assembled using OPERA-MS54 (--contig-len-thr 1000 –long-read-map-
per minimap2) and hybridSPAdes55 (metaspades.py with default set-
tings). OPERA-MS was used for all coassemblies, including individual
reactors (e.g., 10%-1) across all timepoints, coassembly of all ML sam-
ples, and of samples partitioned by treatment (i.e., ± hospital effluent
or 10% vs. 0%). MAGs were generated from each of the assemblies/co-
assemblies in the following way: MAGs were predicted from coas-
semblies by first aligning short reads from corresponding samples to
the assembly (using both bbmap and minimap2 in separate runs) and
then binning using MetaBat256 and MaxBin57. Individual sample
assemblies were mapped with only the original sample using both
MetaBat2 andMaxBinusingminimap258 -x sr and bbmap. The resulting
MAGs were dereplicated using derep59 v. 2.1 with default settings
except with an adjusted minimum contamination cutoff of 5%. CAGs
were defined using a correlation matrix derived from RPKM abun-
dances of all bins in AS samples only. Correlations were calculated in R
using cor(method = ”spearman”) and converted to a distance matrix
using vegdist(method= ”euclidean”) from vegan v2.6-4, followed by
hclust(method = ”complete”). Clusters were picked based on the den-
drogram and the Dunn index. Final abundance estimations for the
collection of MAGs were performed by aligning short reads to the
MAGs using bowtie2 (-x 1000--very-sensitive) and relative abundances
were extracted using samtools60 coverage. Taxonomic assignments for
the MAGs were determined using gtdb-tk61.

Annotation of mobile resistance genes and MGEs
All assemblies/coassemblies were searched for resistance genes and
MGE hallmark genes. Protein sequences were predicted using prodigal62

(-meta) and queried against experimental sequences in BacMet v2,
CARD v3.0.7, and mobileOG-db beatrix-v1.663 using diamond blastp (-id
90% -e 1e-10). For subsequent contextual analysis, only those contigs
with a hit fromone of the databases was retained.MGEmarker hits were
subclassified into element classes of plasmid (sequences derived from
COMPASS64 or NCBI Plasmid RefSeq65), transposable element (sequen-
ces derived from ISfinder66), integrative (sequences derived from
ICEberg67 and integration/excision category proteins not included in
ISfinder), or conjugative types (sequences with the transfer major
mobileOG category and conjugation minor category) using the script
getElementClassifications.R (https://github.com/clb21565/mobileOG-
db/blob/main/scripts/getElementClassifications.R) on the beatrix-v1.6
metadata file.

Analysis of HGT with Kairos
To construct gene-sharing networks and identify potential HGTs,
Kairos19 derep-detect was used. Kairos derep-detect identifies near
identical ( ≥ 99% identity) proteins in contigs with different taxonomic
classifications (determined here using mmseqs268 with gtdb69,70 v202
as the underlying database). To assess support for the presence of
variants (in this case as represented by highly similar contigs produced
through multiple assembly/co-assembly strategies), Kairos assess
input reads to short windows extracted from two contigs corre-
sponding to a variable region. The windows are defined by a length l
(where l = 75 bp, by default) to the left and right of the bounds of the
aligned regions in both contigs (150bp total). These edges were then
dereplicated using mmseqs2 (--min-seq-id 0.99 -c 0.88 --cov-mode 1).
The 88% coverage criterion was empirically found to improve
performance19. Reads are aligned to the extracted windows with an
imposed minimum alignment length of 100bp by default, ensuring

Article https://doi.org/10.1038/s41467-024-49742-8

Nature Communications |         (2024) 15:5412 10

https://github.com/clb21565/mobileOG-db/blob/main/scripts/getElementClassifications.R
https://github.com/clb21565/mobileOG-db/blob/main/scripts/getElementClassifications.R


that at least 25 bp of the region of variation that is unique to that
insertion is represented in the aligned region. By including both win-
dows in the read alignment step, reads are directly compared to the
two similar loci simultaneously, thus reducing the likelihood that reads
from one will erroneously map to the other. Contigs are deemed
present if 90% or more of the distinguishing loci are detected. To
identify MAGs that were associated with the putative HGTs observed,
we compared their taxonomic annotations to those of the contigs in
the resistance gene-MGE catalog.

Suspect Screening of PPCPs
All water samples were pre-filtered through 0.7 µm glass fibre filters
(Whatman, Maidstone, UK). Triplicate samples (200mL each) were
then extracted for the target analytes, cleaned up of background
matrixes, and finally concentrated using solid phase extraction (SPE).
Thefinal extractswere thenqualitatively screened for thepresenceof a
total of 138 PPCPs on an ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC/MS/MS) using the method descri-
bed in (Supplementary Methods S2). The multi-compound screening
approach employing UPLC/MS/MS used a custom-made compound
identification database and was semi-quantitative. This approach
enables the calculation of relative change based on peak areas of a
screened compound in samples among those tested within one ana-
lytical batch of samples analyzed. Because quantification for all 138
compounds that were screened for in all water samples was prohibi-
tively expensive and time-consuming, all samples collected over the
course of the experiment were extracted, cleaned up, and analyzed
within one analytical batch to ensure the tracking of a compound’s
relative change over time by comparing its peak area in the samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing reads have been deposited to the SRA under BioProject
PRJNA1020581. MAGs can be accessed at https://zenodo.org/records/
10028566. Source data are provided in this paper.

Code availability
Scripts associated with the present work are available here: https://
github.com/clb21565/metagenomics/tree/main/HospitalEffluentProject.
Current versions of Kairos can be found here: https://github.com/
clb21565/kairos.
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