Skip to main content
. 2024 Jun 12;10:e53354. doi: 10.2196/53354

Table 4.

Performance of machine learning models for risk prediction of long-term cancer-specific survival of patients with second primary lung cancer after 2004.

Model Sensitivity, % Specificity, % AUCa (95% CI)
1-year cancer-specific survival

XGBb 77 60.2 0.73 (0.71-0.75)

RFCc 76.7 63 0.74 (0.72-0.76)

ADBd 83.1 54.4 0.75 (0.73-0.77)

KNNe 70.9 63.6 0.72 (0.70-0.74)

ANNf 88.2 41.9 0.74 (0.72-0.76)

GBDTg 90.6 36 0.74 (0.72-0.76)
3-year cancer-specific survival

XGB 69.9 73.8 0.77 (0.75-0.79)

RFC 75.6 69.2 0.77 (0.75-0.79)

ADB 79.3 66.4 0.76 (0.74-0.78)

KNN 79.6 64 0.75 (0.73-0.77)

ANN 83.6 59.9 0.77 (0.75-0.79)

GBDT 84.4 57.6 0.75 (0.73-0.77)
5-year cancer-specific survival

XGB 79.6 71.3 0.78 (0.75-0.81)

RFC 79.2 71.5 0.79 (0.76-0.82)

ADB 75.3 74.7 0.79 (0.76-0.82)

KNN 74.3 73.9 0.77 (0.74-0.80)

ANN 79.3 71.5 0.80 (0.77-0.83)

GBDT 80.1 69.5 0.78 (0.75-0.81)
10-year cancer-specific survival

XGB 78.8 74.7 0.84 (0.80-0.88)

RFC 78.3 40.7 0.83 (0.79-0.87)

ADB 78.4 81 0.84 (0.80-0.88)

KNN 80.7 73.4 0.78 (0.72-0.84)

ANN 68.8 88.6 0.85 (0.81-0.89)

GBDT 79.7 78.5 0.85 (0.81-0.89)

aAUC: area under the curve.

bXGB: extreme gradient boosting.

cRFC: random forest classifier.

dADB: adaptive boosting.

eKNN: K nearest neighbor.

fANN: artificial neural network.

gGBDT: gradient boosting decision tree.