Table 4.
Model | Sensitivity, % | Specificity, % | AUCa (95% CI) | ||||
1-year cancer-specific survival | |||||||
|
XGBb | 77 | 60.2 | 0.73 (0.71-0.75) | |||
|
RFCc | 76.7 | 63 | 0.74 (0.72-0.76) | |||
|
ADBd | 83.1 | 54.4 | 0.75 (0.73-0.77) | |||
|
KNNe | 70.9 | 63.6 | 0.72 (0.70-0.74) | |||
|
ANNf | 88.2 | 41.9 | 0.74 (0.72-0.76) | |||
|
GBDTg | 90.6 | 36 | 0.74 (0.72-0.76) | |||
3-year cancer-specific survival | |||||||
|
XGB | 69.9 | 73.8 | 0.77 (0.75-0.79) | |||
|
RFC | 75.6 | 69.2 | 0.77 (0.75-0.79) | |||
|
ADB | 79.3 | 66.4 | 0.76 (0.74-0.78) | |||
|
KNN | 79.6 | 64 | 0.75 (0.73-0.77) | |||
|
ANN | 83.6 | 59.9 | 0.77 (0.75-0.79) | |||
|
GBDT | 84.4 | 57.6 | 0.75 (0.73-0.77) | |||
5-year cancer-specific survival | |||||||
|
XGB | 79.6 | 71.3 | 0.78 (0.75-0.81) | |||
|
RFC | 79.2 | 71.5 | 0.79 (0.76-0.82) | |||
|
ADB | 75.3 | 74.7 | 0.79 (0.76-0.82) | |||
|
KNN | 74.3 | 73.9 | 0.77 (0.74-0.80) | |||
|
ANN | 79.3 | 71.5 | 0.80 (0.77-0.83) | |||
|
GBDT | 80.1 | 69.5 | 0.78 (0.75-0.81) | |||
10-year cancer-specific survival | |||||||
|
XGB | 78.8 | 74.7 | 0.84 (0.80-0.88) | |||
|
RFC | 78.3 | 40.7 | 0.83 (0.79-0.87) | |||
|
ADB | 78.4 | 81 | 0.84 (0.80-0.88) | |||
|
KNN | 80.7 | 73.4 | 0.78 (0.72-0.84) | |||
|
ANN | 68.8 | 88.6 | 0.85 (0.81-0.89) | |||
|
GBDT | 79.7 | 78.5 | 0.85 (0.81-0.89) |
aAUC: area under the curve.
bXGB: extreme gradient boosting.
cRFC: random forest classifier.
dADB: adaptive boosting.
eKNN: K nearest neighbor.
fANN: artificial neural network.
gGBDT: gradient boosting decision tree.