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Abstract: HPV16 is responsible for approximately 60% and 90% of global HPV–induced cervical
and oropharyngeal cancers, respectively. HPV16 intratype variants have been identified by HPV
genome sequencing and classified into four phylogenetic lineages (A–D). Our understanding of
HPV16 variants mostly derives from epidemiological studies on cervical cancer (CC) in which HPV16
B, C, and D lineages (previously named “non-European” variants) were mainly associated with
high-grade cervical lesions and cancer. Although a predominance of HPV16 lineage A (previously
named “European variants”) has been observed in head and neck squamous cell carcinoma (HNSCC),
epidemiological and in vitro biological studies are still limited for this tumor site. Next Generation
Sequencing (NGS) of the entire HPV genome has deepened our knowledge of the prevalence and
distribution of HPV variants in CC and HNSCC. Research on cervical cancer has shown that certain
HPV16 sublineages, such as D2, D3, A3, and A4, are associated with an increased risk of cervical
cancer, and sublineages A4, D2, and D3 are linked to a higher risk of developing adenocarcinomas.
Additionally, lineage C and sublineages D2 or D3 of HPV16 show an elevated risk of developing
premalignant cervical lesions. However, it is still crucial to conduct large-scale studies on HPV16
variants in different HPV–related tumor sites to deeply evaluate their association with disease
development and outcomes. This review discusses the current knowledge and updates on HPV16
phylogenetic variants distribution in HPV–driven anogenital and head and neck cancers.
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1. Introduction

Human papillomaviruses (HPVs) are non-enveloped DNA viruses that infect both
cutaneous and mucosal epithelia. To date, over 400 papillomaviruses (PVs) have been
identified and over 200 are HPV genotypes classified into alpha, beta, gamma, mu, and
nu genera [1] (www.hpvcenter.se) (accessed on 13 March 2024). A clear association with
human cancers has been established for the following mucosal alphapapillomavirus HPV
types, namely HPV51, grouped in the alpha-5 species; HPV 56, in the alpha-6; HPV18, 39,
45, and 59, in the alpha-7; and HPV16, 31, 35, 33, 52, and 58, grouped as alpha-9 species.
Therefore, they have been classified by the International Agency for Research on Cancer
(IARC) monograph as carcinogenic (Group 1) or high risk (HR) HPV genotypes [2]. Among
them, approximately 60% of cervical cancer and 90% of oropharyngeal HPV–driven cancers
are attributable to HPV16.

In particular, the HPV16 genotype belongs to the Alphapapillomavirus genus, and it
is included in species 9. Its circular double-stranded DNA genome comprises the following
regions: (i) the long control region (LCR), containing genetic elements involved in viral
replication and transcription; (ii) the early (E) region encoding for the non-structural
proteins E1, E2, E4, E5, E6, and E7 that are involved in fundamental viral processes, with
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E6 and E7 responsible for HPV oncogenicity; and (iii) the late (L) region, encoding the
structural proteins L1 and L2, which are, respectively, the major and minor viral capsid
proteins (Figure 1A–C).

The classification of HPV into genera, species, and genotypes is primarily based on the
nucleotide sequence of the L1 ORF, the most conserved gene, which encodes the major viral
capsid protein [3,4]. A minimum of 60% identity in the L1 nucleotide (nt) sequence defines
HPV types belonging to the same genus. Viruses with L1 nt sequence identity between
71% and 89% belong to the same species (e.g., Alphapapillomavirus species 9), while viruses
showing more than 90% L1 nt identity are defined as distinct genotypes (e.g., HPV16
or HPV18).

Additionally, HPV intra-genotype variants have been identified by sequencing and
phylogenetic analysis of the entire viral genome and classified into lineages when the
genome variability ranges from 1% to 10% (HPV16 lineages A–D), and into sublineages
when the variability ranges from 0.5% to 1% (HPV16 sublineages A1–4, B1–4, C1–4, and
D1–4) [3,5] (pave.niaid.nih.gov accessed on 13 March 2024). HPV16 variant classification
and their phylogenetic stratification into lineages and sublineages are reported in Table 1
and Figure 2.

Studies on the role of HPV16 variants were mainly focused on cervical cancer, high-
lighting a link between specific phylogenetic HPV variants and a higher cancer risk. Some
HPV16 lineages/sublineages were reported to be preferentially associated with an in-
creased risk of cancer, such as HPV16 sublineages D2, D3, or A4. They are also found
to be associated with an increased risk of adenocarcinoma. Moreover, the role of single
nucleotide polymorphisms (SNPs) in the HPV16 genome, such as the E6 T350G that leads to
the amino acid substitution L83V, has been investigated to understand their role in cervical
disease progression and viral persistence. Thus, investigating HPV genome variability
could be beneficial to further exploring the possible association with HPV–related tumors
and/or with the disease outcome.

HPV does not encode its own DNA polymerase. Instead, it recruits high-fidelity
host enzymes for viral genome synthesis, resulting in a low mutation rate across the
HPV genome. DNA mutations occur differently in coding and non-coding viral genomic
regions. In coding regions, the estimated mutation rate ranges from 2 × 10−8 to 5 × 10−9

substitutions per site/year, whereas in non-coding regions, the rate is twice as fast, as
reviewed in [6].

Moreover, during viral infection, as a part of the innate immune response of the host,
the HPV genome can be targeted by cytosine deaminases of the apolipoprotein B mRNA
editing catalytic polypeptide-like 3 (APOBEC3 or A3) family, which includes A3A, A3C,
A3H, A3B, A3D, A3F, and A3G [7,8]. The APOBEC A3 enzymes catalyze the cytosine-to-
uracil conversion, leading to a thymidine substitution during the viral replication. They act
as viral restriction factors to clear the infection. Human APOBEC3 enzymes can inhibit a
broad spectrum of viruses, such as HIV, HBV, HHV-1, and HHV-4 [7,9–11]. Some studies
have reported that a group of viruses, including HR HPV types, have evolved mechanisms
to induce the upregulation of some APOBEC3 family members [11–13]. Thus, HPV variants
may arise due to mutations driven by the APOBEC activity, which targets the viral genome
during the infection and may accidentally contribute to viral evolution. Alternatively, HPV
variants may be selected and evolve to evade APOBEC activity by reducing APOBEC3
target sequences in their genome [14].

Here, the role of HPV16 phylogenetic variants in HPV–related cancers is reviewed
and the implications of variants in anogenital and head and neck cancers are also discussed
based on recent NGS findings.

pave.niaid.nih.gov
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Figure 1. HPV16 genome organization, protein functions, and viral life cycle during productive 
infection. (A) Genome organization of the HPV16 genotype. The HPV genome is a double-stranded 
DNA (indicated by the gray circle), with a size of about 7900 bp. The major six earlyE) open reading 
frames (ORFs), namely E6, E7, E1, E2, E4, and E5, and the two late (L) ORFs, namely L1 and L2, are 
indicated by different colors, with E6 and E7 shown in dark pink. Furthermore, the HR HPVs 
express an additional early protein, E8ˆE2C, by spliced mRNA. The major early p97 and late p670 
promoters are indicated by arrows. The early and late polyadenylation sites, pAE and pAL, 
respectively, are also indicated by grey bar lines. The long control region, LCR (alternatively named 
the upstream regulatory region, or URR), comprises the replication origin and sequences involved 
in transcription. (B) HPV16 proteins. List of the HPV16 proteins and their principal functions. (C) 
HPV life cycle during productive infection. The viral life cycle during productive HPV infection in 
the host epithelial tissue (schematically represented on the left) is characterized by a specific pattern 
of viral gene expression across the epithelial layers. The viral life cycle is strictly regulated and 
linked to the host cell epithelial differentiation process. As reported for the cervical epithelium, HPV 
gains access to the basal layer through the epithelial transition zones (TZ) of the uterine cervix, in 
the presence of microlesions, wounds, or cuts. After the infection of basal cells, the HPV genome is 
maintained in the nucleus in an episomal state at a relatively low copy number. The expression of 
E6 and E7, through the p97 promoter, is necessary to start the viral life cycle. As the infected cells 
migrate to the upper epithelial layers, the viral proteins E1, E2, E4, and E5 are upregulated via the 
p670 promoter to facilitate viral genome amplification. In the upper epithelial layers, the expression 
of the late viral capsid proteins, L1 and L2, promotes capsid assembly and subsequent release of the 
new virion from the epithelial surface. Text and figures are based on the following manuscript: [15–
19]. Created with BioRender.com. 

Figure 1. HPV16 genome organization, protein functions, and viral life cycle during productive
infection. (A) Genome organization of the HPV16 genotype. The HPV genome is a double-stranded
DNA (indicated by the gray circle), with a size of about 7900 bp. The major six early (E) open
reading frames (ORFs), namely E6, E7, E1, E2, E4, and E5, and the two late (L) ORFs, namely L1
and L2, are indicated by different colors, with E6 and E7 shown in dark pink. Furthermore, the HR
HPVs express an additional early protein, E8ˆE2C, by spliced mRNA. The major early p97 and late
p670 promoters are indicated by arrows. The early and late polyadenylation sites, pAE and pAL,
respectively, are also indicated by grey bar lines. The long control region, LCR (alternatively named
the upstream regulatory region, or URR), comprises the replication origin and sequences involved in
transcription. (B) HPV16 proteins. List of the HPV16 proteins and their principal functions. (C) HPV
life cycle during productive infection. The viral life cycle during productive HPV infection in the host
epithelial tissue (schematically represented on the left) is characterized by a specific pattern of viral
gene expression across the epithelial layers. The viral life cycle is strictly regulated and linked to the
host cell epithelial differentiation process. As reported for the cervical epithelium, HPV gains access
to the basal layer through the epithelial transition zones (TZ) of the uterine cervix, in the presence
of microlesions, wounds, or cuts. After the infection of basal cells, the HPV genome is maintained
in the nucleus in an episomal state at a relatively low copy number. The expression of E6 and E7,
through the p97 promoter, is necessary to start the viral life cycle. As the infected cells migrate to the
upper epithelial layers, the viral proteins E1, E2, E4, and E5 are upregulated via the p670 promoter to
facilitate viral genome amplification. In the upper epithelial layers, the expression of the late viral
capsid proteins, L1 and L2, promotes capsid assembly and subsequent release of the new virion
from the epithelial surface. Text and figures are based on the following manuscript: [15–19]. Created
with BioRender.com.
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Figure 2. Phylogenetic analysis of HPV16 variant reference sequences with the corresponding Gen-
Bank accession number. Phylogenetic analysis of HPV16 variant sequences was performed with 
MEGA 7.0.26 software. The tree was built using the Maximum Likelihood method. 

Table 1. Alphanumeric and geographical classification systems of the HPV16 variants. The known 
HPV16 variants, stratified into lineages and sublineages, and the respective GenBank numbers are 
listed in the table and indicated in the text. The HPV16 variants named B3 (KU053915), B4 
(KU053914), C2 (HQ644244), C3 (KU053921), C4 (KU053922), and D4 (KU053933) were only classi-
fied with the alphanumeric system [5] (https://pave.niaid.nih.gov/explore/variants/variant_ge-
nomes) (accessed on 13 March 2024). 

Alphanumeric Classification Geographical Classification 

Lineage Sublineage and  
GenBank Number 

  

A A1 (NC_001526) European (E)  
A A2 (AF536179) European (E) 

A 
A3 (HQ644236)Euro-

pean (E) 

A A4 (AF534061) Asian E(As) 
B B1 (AF536180) African-1 Afr1a 
B B2 (HQ644298) African-1 Afr1b 
B B3 (KU053915) _ _ 
B B4 (KU053914) _ _ 
C C1 AF472509 African-2 Afr2a 
C C2 (HQ644244) _ _ 
C C3 (KU053921) _ _ 
C C4 (KU053922 _ _ 
D D1 (HQ644257) North American-1 (NA)1 
D D2 (AY686579) Asian American 2 (AA)2 

Figure 2. Phylogenetic analysis of HPV16 variant reference sequences with the corresponding
GenBank accession number. Phylogenetic analysis of HPV16 variant sequences was performed with
MEGA 7.0.26 software. The tree was built using the Maximum Likelihood method.

Table 1. Alphanumeric and geographical classification systems of the HPV16 variants. The known
HPV16 variants, stratified into lineages and sublineages, and the respective GenBank numbers are
listed in the table and indicated in the text. The HPV16 variants named B3 (KU053915), B4 (KU053914),
C2 (HQ644244), C3 (KU053921), C4 (KU053922), and D4 (KU053933) were only classified with the
alphanumeric system [5] (https://pave.niaid.nih.gov/explore/variants/variant_genomes) (accessed
on 13 March 2024).

Alphanumeric Classification Geographical Classification

Lineage Sublineage and
GenBank Number

A A1 (NC_001526) European E

A A2 (AF536179) European E

A A3 (HQ644236) European E

A A4 (AF534061) Asian E(As)

B B1 (AF536180) African-1 Afr1a

B B2 (HQ644298) African-1 Afr1b

B B3 (KU053915) _ _

B B4 (KU053914) _ _

C C1 (AF472509) African-2 Afr2a

C C2 (HQ644244) _ _

https://pave.niaid.nih.gov/explore/variants/variant_genomes
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Table 1. Cont.

Alphanumeric Classification Geographical Classification

Lineage Sublineage and
GenBank Number

C C3 (KU053921) _ _

C C4 (KU053922) _ _

D D1 (HQ644257) North American-1 (NA)1

D D2 (AY686579) Asian American 2 (AA)2

D D3 (AF402678) Asian American 1 (AA)1

D D4 (KU053933) _ _

2. Methodology

The aim of the present review was to give an overview of the most investigated
HPV16 SNPs, variant lineages, and sublineages and their geographic distribution, and to
describe their possible link with HPV–related cancers. Moreover, the comprehensive review
presented here will be helpful in exploring the role of HPV16 phylogenetic variants and
their contribution to cancer progression. The literature search strategy relied only on the use
of PubMed with the following keywords: “HPV16 variants”, “HPV16 lineages”, “HPV16
sublineages”, “HPV16 SNPs”, “HPV16 variants and cervical cancer, “HPV16 variants and
head and neck cancer”, “HPV16 variants and oropharyngeal cancer”, “HPV16 variants and
HPV-associated cancers”, and “HPV16 variants and next generation sequencing”. In the
present manuscript, peer-reviewed reviews, meta-analyses, and original research articles
were included. Non-peer-reviewed sources, articles not available in English, and studies
not including the HPV16 genotype were not included in this review.

3. HPV16 Variants, Lineages, and Their Classification

Overall, analysis of the whole genome sequence of HPV16 has revealed characteristic
mutations that categorize HPV16 isolates into four phylogenetic lineages, namely A, B, C,
and D, subdivided into 16 sublineages: A1 to A4, B1 to B4, C1 to C4, and D1 to D4. Figure 2
shows a phylogenetic tree built using HPV16 variant reference sequences retrieved from
the Pave database (https://pave.niaid.nih.gov) (accessed on 13 March 2024) [5].

The HPV16 variants have been geographically classified depending on the place
of their initial identification; in fact, they were named European (E), Asian American
(AA), African-1, and African-2 (Af-1 and Af-2) variants [20]. According to this first
classification, the European lineages appear to be the most prevalent worldwide [21],
showing a large diffusion in Europe, North and South America (sublineages A1–3), and
Asia (sublineage A4), and with a minor representation in Africa, where B and C variants
predominate [22,23]. Recently, the novel A5 subvariant was identified in cervical samples
from Japanese women [24], although its corresponding sequence has yet to be reported in
the Pave database (https://pave.niaid.nih.gov) (accessed on 13 March 2024).

An alphanumeric system is now used to classify HPV16 variants [22], while geographic
classification is no longer recommended, as reported by Burk et al. and Mirabello et al. [5,25]
(Table 1). Indeed, to avoid misleading geographic nomenclatures of HPV variants and
facilitate cross-study comparisons, adherence to the new classification based on lineages (A
up to D) and sublineages (A1–up to D–4) is recommended [25].

Additionally, Cornet et al. (2012) [23] have reported a combination of SNPs located in
the E6 and LCR regions specific to each of the HPV16 sublineages, which they proposed
as “diagnostic” SNPs. Yet, some non-lineage-specific SNPs were also found in the HPV16
sublineages, such as the most studied T350G nt variation [23]. Moreover, a larger spectrum
of SNPs occurring in the viral early genes, namely E1, E2, E4, E5, E6, and E7, and in
the LCR was reviewed by Bletsa et al. (2021) [26]. Focusing on E6, a pattern of SNPs
in this viral ORF was found in each of the HPV16 sublineages, such as the A1 and A2

https://pave.niaid.nih.gov
https://pave.niaid.nih.gov
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sublineages (T350G), the A4 sublineage (T178G), the B lineage (G132C, C143G, G145T,
T286A, A289G, and C335T), the C lineage (T109C, G132T, C143G, G145T, T286A, A289G,
C335T, and G403G), and the D lineage (G145T, T286A, A289G, C335T, T350G, and A532G)
reviewed in [26]. Also, the nt sequence analysis of E7 revealed specific nucleotide variations
related to the following lineages: A4 sublineage (A647G), B lineage (T789C and T795G), C
lineage (A647G, T789C, and T795G), and D lineage (T732C, T789C, and T795G), reviewed
in [26]. Most of the SNPs located in the E6 and E7 genes are described in the following
paragraphs and in Table 2. Mainly SNPs in HPV E6 and E7 ORFs have been investigated,
as these genes encode for oncoproteins that facilitate the degradation of essential tumor
suppressor cellular proteins, such as p53 and pRb, involved in the cell cycle, apoptosis, and
cellular proliferation pathways [15] (Figure 1B). Therefore, E6 and E7 are recognized as the
major viral oncoproteins, since they are the main drivers of HPV–mediated carcinogenicity.

Table 2. Main findings from studies reporting (A) HPV phylogenetic variants distribution in head
and neck tumors from 2000 to 2023, including those exploring also (B) specific SNPs in E6 and
E7 viral oncogenes.

(A)

Variant
Classification

System
Reference Year Country Typing

Method HPV16 Gene

HPV16
Lineages
and Number
(n) of Cases

Cancer Specimen
and Total Sample
Size Number (n)

Geographical [27] 2000 USA Sanger
sequencing E6

European
prototype (n = 39)
Asian (n = 9)
North American (n = 2)
African 1 (n = 2)

HNSCC (n = 253)

Geographical [28] 2007 Italy Sanger
sequencing E6

European-German (n = 9)
African 2 (n = 2)
Asian American (n = 1)
Unclassified (n = 1)

HNSCC (n = 115)

Geographical [29] 2008 USA Sanger
sequencing E6 European (n = 13)

Asian (n = 1) HNSCC (n = 135)

Geographical [30] 2014 Italy Sanger
sequencing L1 European (n = 41)

African (n = 10) OPSC (n = 81)

Geographical [31] 2016 Brazil Sanger
Sequencing LCR-E6 European (n = 12)

Asian American (n = 9) HNSCC (n = 186)

Geographical [32] 2018 USA Sanger
Sequencing E6-E7

European (n = 77)
Asian (n = 6)
African 1A (n = 1)
African 2A (n = 1)
African 2B (n = 1)
North American (n = 2)
Asian American 1 (n = 2)
Asian American 2 (n = 2)

OPSCC
(n = 226)

Alphanumeric [24] 2021 Japan Sanger
sequencing LCR-E6

A4 (n = 12)
A1/A2/A3 (n = 8)
D (n = 2)
A5 (n = 2)

OPSCC (n = 91)

Alphanumeric [33] 2021 USA NGS WG

A1 (n = 112)
A2 (n = 63)
A3 (n = 3)
A4 (n = 14)
C (n = 1)
D1 (n = 1)
D3 (n = 13)
D4 (n = 2)

OPC
(n = 259)
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Table 2. Cont.

(A)

Variant
Classification

System
Reference Year Country Typing

Method HPV16 Gene

HPV16
Lineages
and Number
(n) of Cases

Cancer Specimen
and Total Sample
Size Number (n)

Alphanumeric [34] 2022 USA NGS WG

A1 (n = 215)
A2 (n = 107)
A3 (n = 3)
A4 (n = 22)
B1 (n = 1)
C1 (n = 6)
D1 (n = 1)
D2 (n = 2)
D3 (n = 25)
D4 (n = 2)

OPSCC (n = 460)

Alphanumeric [35] 2022 Greece Sanger
sequencing E6 A3 (n = 34)

D1 (n = 6) HNSCC (n = 40)

Alphanumeric [36] 2023 Canada Sanger
sequencing E6

A1 (n = 38)
A2 (n = 54)
D2-D3 (n = 2)

HNSCC
(n = 94)

(B)

Reference Year Country Typing
Method HPV16 Gene

E6 and E7 SNPs
AA Change and
Number (n) of Cases

Cancer
Specimen and Total

Sample Size
Number (n)

[37] 2004 Germany Sanger
sequencing E6-E7

350T (n = 6)
T350G (L83V) (n = 8)
A131G (R10G)/C712A
(H51N) (n = 7)

HNSCC (n = 24)

[29] 2008 USA Sanger
sequencing E6

E-350T (n = 6)
E-350G (L83V) (n = 4)
E-T131G (R10G) (n = 2)

HNSCC (n = 135)

[38] 2009 Italy Sanger
sequencing E6 T350G (L83V) (n = 5) UADT

(n = 77)

[39] 2012 Sweden Sanger
sequencing E6 E-A131G (R10G) (n = 21)

E-T350G (L83V) (n = 43) TSCC (n = 108)

[40] 2015 Japan Sanger
sequencing E6 E-350T (n = 2)

E-350G (L83V) (n = 8) TSCC (n = 24)

[32] 2018 USA Sanger
sequencing E6-E7

7392G (L90V) (n = 12)
7173G (R17G) (n = 4)
7754A (H51N) (n = 2)

OPSCC
(n = 226)

[35] 2022 Greece Sanger
sequencing E6 T350G (L83V) (n = 33) HNSCC (n = 40)

[36] 2023 Canada Sanger
sequencing E6 350T (n = 33)

350G (L83V) (n = 40)
HNSCC
(n = 94)

HNSCC: head and neck squamous cell carcinoma; UADT: upper aerodigestive tract; OPC: oropharyngeal cancer;
OPSCC: oropharyngeal squamous cell carcinoma; TSCC: tonsillar squamous cell carcinoma.; WG: whole genome;
NGS: next generation sequening.

4. HPV16 Variants and Cervical Cancer

HR HPV genotypes are associated with various anogenital cancers, i.e., cervical,
vaginal, vulvar, penile, and anal cancers, as well as oropharyngeal squamous cell carcinoma
(OPSCC). HR HPV genotypes display different oncogenicity, with HPV16 being the most
prevalent type detected in premalignant and malignant lesions [2,41] and responsible for
the majority of cervical cancers worldwide [42,43]. Epidemiological studies conducted
in patients with cervical cancer have provided evidence that HPV16 variants differ in
(i) geographical distribution, (ii) persistence in the infected host, and (iii) ability to favor
progression to cancer [44–46].
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In the next subsections, data from studies exploring HPV variant distribution and
persistence in the host are discussed; the sturdiness and advancement of research studies
are highlighted together with the connection between viral variants and disease outcome.

4.1. HPV Variant Distribution and Persistence in the Host

Focusing on geographical variant distribution, the HPV16 sublineages A1, A2, and A3
are the most prevalent worldwide and are responsible for the majority of HPV16 infections
as observed by analyzing cancer samples and healthy controls [23,47,48]. The persistence
of HPV16 infection in the host is a key step for viral-mediated carcinogenesis. Previous
studies have often compared “European” to “non-European” HPV16 variants and found
that non-European variants exhibit an increased risk of viral persistence [46,49–52]. As
reported in a 3-year longitudinal follow-up study based on HPV16 whole-genome Sanger
sequencing, infections with variants other than A1–A2 (the most common “European”
sublineages) are preferentially cleared by the host. Moreover, single nucleotide polymor-
phisms (SNPs) across the HPV16 genome did not affect clearance or viral persistence,
suggesting that the progression to tumor could be host-related [53]. The risk of HPV16
persistence in the infected host has been extensively studied, focusing on specific viral
regions; e.g., E6 nucleotide polymorphism 350T versus 350G. As described above, this
nucleotide mutation results in AA change from valine to a leucine (L83V) at position 83 in
the E6 viral protein. Recently, the presence of the T350G variant has been associated with
progression to high-grade lesions and with an elevated risk of developing CC in a study
conducted in Argentina [54].

The prevalence of the E6 variation in HPV16 sublineages A1–A3 has shown a higher mu-
tation rate of T350G in Central/South America compared to a European cohort, particularly
in cervical and penile cancers [47]. In vitro biological studies supported the epidemiological
findings [55–59]. However, it has become evident that the oncogenicity of HPV16 E6 variants
could be population-dependent [60,61], underlining a role played by the host’s genetic back-
ground [60,62–64]. In addition, a two-fold increase in the risk of HPV persistence has been
observed for the European E6 350T prototype in a European cohort [64,65].

Recently, E6 AA changes have been studied by using several machine-learning ap-
proaches to predict the development of high-grade cervical lesions (H-SIL) [66]. These in
silico findings indicate that D32E and H85Y AA mutations in the E6 protein result in an
increased ability to degrade p53 when compared to the E6 prototype [66].

4.2. Sturdiness and Advancement

To better discriminate the variability within the HPV genome sequence, large-scale
studies based on NGS techniques have been designed [52,63,67,68]. This sequencing
methodology allows for high throughput testing and facilitates full analysis of the entire
HPV genome to unravel mutations.

Mirabello and collaborators assessed HPV16 variant lineages and their association
with the risk of developing cervical precancer and cancer in 3200 enrolled women [63]. They
showed that sublineage A4 was associated with an increased risk of developing adenocar-
cinoma, whereas lineage C showed an elevated risk of developing cervical premalignant
lesion CIN3, as did the D2–D3 sublineages, which are also associated with an increased
cancer risk compared to the A1–A2 sublineages [63]. Furthermore, the study showed an
increased risk of developing precancerous or cancerous lesions when the ethnicity of the
patients matched the geographical origin of the infecting HPV16 variants [63]. In another
study conducted by Clifford et al. (2019), the HPV16 D2 and D3 sublineages, along with
A3 and A4, showed an increased risk of cervical cancer compared to the A1 sublineage [48].
In a study conducted in Guatemala by Lou et al. (2020), the HPV16 D2 and D3 sublineages
were frequently observed in cervical tumors and in adenocarcinoma histological type [69].
Moreover, in cancers harboring the HPV16 D2 sublineages, the authors reported a higher
rate of viral DNA integration into the host genome [69].
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In a study conducted in Japan by whole genome sequencing (WGS) on HPV16 isolates
from cervical samples collected from women with and without cervical malignancies and
invasive cervical cancer, Hirose et al. (2019) reported a prevalent clustering of HPV16
isolates mainly in sublineages A4 (52%) and A1 (21%) [24]. Sublineage A4 showed a signifi-
cantly higher risk for cervical cancer development compared to other A sublineages [24].
In addition, the A4 sublineage was frequently detected in invasive CC (73.2% of cases), and
a higher risk of progression from premalignant lesions (CIN2-3) to cervical squamous cell
carcinoma was found for this sublineage compared to HPV16 clades A1, A2, and A3 [24].

4.3. Disease Outcome

Exploring the role of HPV variants in premalignant and malignant cervical lesions,
HPV16 B, C, and D lineages (known as the “non-European” variants) have been shown to
be prevalent in high-grade lesions and cervical squamous cell carcinoma [44,50,51,70,71];
however, some studies have reported a lack of association with cervical disease [72–74]. In
a large study across Europe, Asia, and Central/South America, HPV16 sublineages A1–A3
were shown to be the most prevalent in cervical, vaginal, and penile cancers, regardless of
the geographical origin of patients, while sublineage A4 was mainly associated with anal
cancer in Asian cohorts [47]. Recently, in the context of the HPV Infection in Men (HIM)
studies, a high prevalence of the HPV16 A1 sublineage was found in the anal swabs from
men with anal cancer from Brazil, Mexico, and the United States [75], with no significant
differences observed between variant lineages and HPV16 persistence [75].

The association between HPV16 sublineages and cancer histology showed an increased
risk of developing an adenocarcinoma for the A4 sublineage, while the D2–D3 HPV16
sublineages were strongly associated with an increased risk of developing premalignant
CIN3 lesions and cervical cancer, with the strongest risk of adenocarcinomas linked to the
D2 sublineage [25,63]. The HPV16 D clade was also prevalent in adenocarcinomas [76,77]
from South/Central and North American patients [48], although these findings were not
confirmed by De Boer et al. when E6 and L1 were sequenced in a relatively small group of
HPV16–positive adenocarcinoma samples [78].

Genomic characterization of 228 primary cervical cancers within “The Cancer Genome
Atlas (TCGA)” program showed a predominance of European HPV16 variants (primarily
the A1 variant), whereas non-European variants (sublineages A4, B1, C1, D2, and D3) were
significantly associated with cervical adenocarcinomas [79].

5. HPV16 Variants and Head and Neck Tumor

Head and neck cancers rank as the sixth most common cancer type globally [80], with
an increasing incidence of HPV–driven OPSCC in developed countries, particularly among
men [81]. Alcohol, smoking, and persistent HR HPV infections are the major risk factors
for HNSCC. A recent systematic review and meta-analysis has provided evidence that
artificial intelligence (AI) using image-based analysis can be a promising tool for predicting
HPV status in HNSCC [82]. However, its accuracy is still lower compared to the p16INK4a

immunohistochemistry, a reference diagnostic method in HPV-related OPC [82]. Among
HR HPVs, the majority (up to 90%) of HPV–driven OPSCCs are related to HPV16 infection.
The prevalence of HPV–induced OPSCCs varies geographically, ranging from 22 to more
than 74% [83], whereas only 2.0–3.9% of oral and 2.0–3.1% of laryngeal cancers are attributed
to HR HPV infections [83–85]. Although HPV16 variants have been extensively studied in
cervical cancer, less is known about their significance in head and neck cancers [86]. A list
of studies conducted on HNSCC and published in the last 23 years is reported in Table 2.

A study conducted in Greece showed that 85% of HPV16 sequences detected in
40 specimens from subjects with HNSCC were clustered into the European sublineage
A3, while the remaining 15% of HPV16 variants were related to sublineage D1 [35]. In
another study on HPV16–positive OPSCCs performed in the USA, the A1 sublineage was
associated with poor recurrence-free survival (RFS) [87]. Conversely, variants other than
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the HPV16 A1 sublineage are correlated with improved RFS, particularly in moderate or
low tobacco smokers [87].

A recent systematic review of studies on head and neck cancers and HPV16 variants
using geographical nomenclature and including studies from the USA (n = 3), Germany
(n = 1), Italy, (n = 2) Brazil (n = 1), Japan (n = 1), and Iran (n = 1) revealed a predominance
of European variants in HNSCCs, followed by Asian American and African lineages [86].
Therefore, even though a predominance of European strains has been reported, no correla-
tion with patient prognosis has been made [86].

In a comparative study conducted in the USA on HPV16 variant distribution in CC
and OPSCC by grouping both European and Asian (E plus A) variants, the authors showed
that this combined variant group was more prevalent in OPSCC compared to CC [32].
Conversely, the group of Asian American (AA1 plus AA2) HPV16 variants prevailed
in cervical samples. In addition, non-synonymous mutations in the E6 protein showed
significantly higher prevalence rates in OPSCCs, while E7 nucleotide sequences showed
fewer mutations in both cancer types [32].

Conversely, an Italian study reported a prevalence of 19.6% for African HPV16 variants
in HNSCC samples, highlighting their relevance in the head and neck anatomical tumor
site [30]. As seen before in CC studies, when focusing on specific viral genome regions, such
as the E6 gene, the most frequent polymorphism reported in a small cohort of HNSCCs was
T350G [35,37]. However, this finding needs further investigation to determine its impact
on clinical outcomes. Others have compared the frequency of the E6 polymorphisms
in tonsillar squamous cell carcinoma (TSCC), CC, and cervical samples from Swedish
patients [39], and reported that the R10G amino acid change (nt A131G) was frequent in
TSCC, rare in cervical samples, and absent in CC, with no significant differences found in 3-
year disease-free survivors among patients. In addition, European E6 variants carrying the
L83V (nt change T350G) mutation were detected across all cancer types, with no significant
correlation found with disease-free survivors among the patients [39].

Finally, a comparative study performed in the USA based on E6 sequencing data from
oral rinse samples and matched tumor tissues showed that the most frequent variants were
European [29], with the E6 E-350T prototype (n = 6) being the most prevalent in oral rinse
samples, followed by the E6 variant E-350G (n = 4).

To date, very few NGS–based studies on HPV variants in HNSCC specimens have
been conducted [33,34]. Thus, further studies are needed to elucidate the possible impact
of HPV16 phylogenetic variants on HNSCC and particularly in OPC. In a large USA–based
study focused on HPV16–positive OPSCC, whole-genome NGS sequencing identified A1
as the most prevalent sublineage, although no correlation between HPV variant lineages
and histological subtypes was reported [33]. In a recent study performed in the USA on
a cohort of OPC patients, the majority of the HPV16 variants belonged to the A lineage
(90.3% of cases) [34]. Among them, A1 was the most common sublineage, being detected
in more than a half of the cases, followed by A2 (27.8%), D3 (6.5%), and A4 (5.7%) [34]. The
most important findings in this study include eight SNPs, observed in some HPV genes,
significantly associated with reduced patient survival. These polymorphisms were found
in the viral E1 gene (nt position 1053), with four in the L2 gene (nt positions 4410, 4539, 5050,
and 5254), two in the L1 gene (nt position 5962 and 6025), and one in the LCR region (nt
position 7173) [34]. The latter was strongly associated with an increased mortality hazard
rate. These results indicate that nucleotide variations across the HPV16 genome can impact
the prognosis of HPV–positive OPC patients [34]. However, HPV infection is a necessary
but insufficient condition for cancer development, which is a multifactorial event involving
lifestyle, environmental, and genetic host factors.

Moreover, in recent years, evidence suggests that mutations in certain host genomic
loci (e.g., HLA) are associated with either cervical cancer or head and neck cancer sus-
ceptibility [88,89]. Nevertheless, the precise contribution of these mutations in cancer
development remains unknown, and specific studies on this topic need to be addressed [90].
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6. Conclusions

To date, the majority of studies aimed at exploring the significance and distribution
of HPV variants have been designed and mainly conducted on cervical cancer. Overall,
some limitations should be highlighted, including the small sample size analyzed in some
studies, the paucity of current studies of HPV variants in HPV–associated cancers other
than cervical cancer, the shortage of NGS–based investigations, together with the absence
of mechanistic biological studies focusing on specific HPV16 SNPs.

The main findings from the cervical cancer studies could be summarized as follows:
the HPV16 sublineages, namely D2, D3, A3, and A4, show an increased risk of cervical
cancer development, with the HPV16 sublineages A4, D2, and D3 mainly associated
with an increased risk of developing adenocarcinomas. Also, studying the HPV genome
variability by NGS-WGS in head and neck cancer specimens has revealed associations
between different HPV16 SNPs (e.g., E1, L1, L2, and LCR) and disease prognosis in HPV–
related OPC. The potential impact of HPV variants on cancer development at different
anatomical sites and their association with disease outcome remains largely unexplored and
needs further investigation. Finally, both NGS techniques and the current alphanumeric
nomenclature of HPV variants should be used in future epidemiological studies to facilitate
a fast and accurate molecular characterization of the HPV16 genome in large-scale studies.
In conclusion, with the advent of new molecular techniques such as NGS-WGS, additional
studies are warranted to achieve an in-depth and precise characterization of HPV variants
in CC and HNSCC, as well as in other HPV–related tumors.
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