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Abstract: The COVID-19 pandemic, which emerged in early 2020, has had a profound and lasting
impact on global health, resulting in over 7.0 million deaths and persistent challenges. In addition to
acute concerns, there is growing attention being given to the long COVID health consequences for
survivors of COVID-19 with documented cases of cardiovascular abnormalities, liver disturbances,
lung complications, kidney issues, and noticeable cognitive deficits. Recent studies have investigated
the physiological changes in various organs following prolonged exposure to murine hepatitis virus-
1 (MHV-1), a coronavirus, in mouse models. One significant finding relates to the effects on the
gastrointestinal tract, an area previously understudied regarding the long-lasting effects of COVID-19.
This research sheds light on important observations in the intestines during both the acute and
the prolonged phases following MHV-1 infection, which parallel specific changes seen in humans
after exposure to SARS-CoV-2. Our study investigates the histopathological alterations in the small
intestine following MHV-1 infection in murine models, revealing significant changes reminiscent of
inflammatory bowel disease (IBD), celiac disease. Notable findings include mucosal inflammation,
lymphoid hyperplasia, goblet cell hyperplasia, and immune cell infiltration, mirroring pathological
features observed in IBD. Additionally, MHV-1 infection induces villous atrophy, altered epithelial
integrity, and inflammatory responses akin to celiac disease and IBD. SPIKENET (SPK) treatment
effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue architecture and
ameliorating inflammatory responses. Furthermore, investigation into long COVID reveals intricate
inflammatory profiles, highlighting the potential of SPK to modulate intestinal responses and restore
tissue homeostasis. Understanding these histopathological alterations provides valuable insights into
the pathogenesis of COVID-induced gastrointestinal complications and informs the development of
targeted therapeutic strategies.

Keywords: intestine; fibrosis; infection; pili; goblet cell; long COVID; murine hepatitis virus-1

1. Introduction

The enduring global ramifications of the COVID-19 pandemic persist, marked by
widespread morbidity and mortality. By 12 January 2023, the cumulative death toll had
surpassed 7.7 million since the pandemic’s inception in early 2020, coupled with a daily
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surge of over 39,000 new cases worldwide [1]. Encouragingly, out of 775 million individuals
affected, 767 million have successfully recuperated from mild to severe SARS-CoV-2 infec-
tions [1]. Despite collaborative global endeavors towards vaccine development to mitigate
mortality rates, there remains a conspicuous absence of specific therapeutic interventions
for viral infection [1–4].

In addition to the acute manifestations of COVID-19, survivors contend with persistent
health challenges, including disrupted sleep patterns, osteoporosis, subfertility, exacerbated
diabetes, fatigue, and complications affecting various bodily systems such as musculoskele-
tal, cardiovascular, gastrointestinal, pulmonary, neurologic, and urologic systems [1,2,5–8].
The intricate interplay between genetic mutations of SARS-CoV-2 and the spectrum of
documented post-infection complications poses a significant challenge for scientists in eluci-
dating the precise pathophysiological mechanisms. Furthermore, the progression of disease
pathogenesis, spanning from weeks to months, demonstrates indications of multiple organ
dysfunction or failure occurring in one or more instances following post-acute SARS-CoV-2
infection—referred to as post-acute sequelae of SARS-CoV-2 infection, whether presenting
with or without apparent symptoms and behavioral changes.

Research findings indicate the emergence of a clinical syndrome akin to severe acute
respiratory syndrome (SARS) in mice infected with murine hepatitis virus-1 (MHV-1),
presenting with a notably high mortality rate [9–18]. These mice exhibit marked lung
injury, resulting in mortality rates ranging from 40–60% between days 7 and 12 post-
infection [18]. Upon post-mortem examination, severe interstitial pneumonitis is evident in
the lungs, characterized by interstitial inflammatory reactions and substantial infiltration of
lymphocytes and macrophages [16,18]. Additionally, investigations into the livers of MHV-
1-infected A/J mice unveil evidence of severe hepatic congestion, resembling observations
in humans infected with SARS-CoV-2 [16,18].

In conjunction with multi-organ dysfunction, alterations in the intestine linked to
COVID-19 have been confirmed during the acute stages post-infection. The intestine
exhibits a spectrum of manifestations that can vary significantly among individuals.

Considering the shared genus among MHV, severe acute respiratory syndrome coron-
avirus, and SARS-CoV-2, insights from MHV-1 could potentially yield mechanistic compre-
hension of SARS-CoV-2 infection in humans [1–3]. While notable parallels exist between
MHV-1 in murine hosts and SARS-CoV-2 in humans, encompassing specific pathogenic
characteristics, discernible differences also manifest. For instance, variations in viral binding
receptors are evident, with SARS-CoV-2 engaging angiotensin-converting enzyme-2 (ACE2)
while MHV-1 interacts with carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM1) [15,16,18,19]. Further distinctions encompass the proteolytic cleavage of four
essential amino acids at the S1/S2 site of the SARS-CoV-2 spike protein [19–21]. Never-
theless, the noted similarities outweigh the differences. Significantly, the delineation of
pathological and functional alterations in the MHV-1 murine model of COVID-19 under-
scores a substantial level of analogy to humans afflicted by SARS-CoV-2 infection [15,16,18].

In this investigation, we aimed to explore the correlation between acute and enduring
intestinal modifications in COVID-19. Additionally, we sought to assess whether the inhibi-
tion of viral entry through the utilization of a recently identified 15-amino-acid synthetic
peptide, SPIKENET (SPK), which effectively impedes the binding of Spike glycoprotein-1
with host receptors and exhibits potent anti-inflammatory properties in response to severe
inflammatory stimuli, can mitigate or prevent intestinal alterations.

2. Materials and Methods
2.1. Mice

We used 8-week-old female A/J mice weighing 22–24 g each. These mice were
purchased from Jackson Laboratories (Bar Harbor, ME, USA) and were kept in cages at
the University of Miami Miller School of Medicine animal isolation facility. The animals
were fed a standard lab chow diet (Envigo 2918 irradiated, Teklad diet, Dublin, VA, USA)
and provided with water ad libitum (autoclaved tap water). The study was performed
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according to the guidelines of the University of Miami Institutional Animal Care and
Use Committee (IACUC protocol number 20–131 LF/Renewed protocol number 20–162).
Experimental groups: In the acute investigation, these mice were divided into 4 groups:
MHV-1 infection alone (n = 16), healthy control (n = 7), SPK alone (n = 5), and SPK-treated
mice (n = 5). For the long COVID study, we investigated 12 mice (4 MHV-1 infection,
4 healthy control, 4 SPK treated group).

2.2. Viral (MHV-1) Inoculation and SPIKENET

MHV-1 treatment was procured from the American Type Culture Collection (ATCC,
cat# VR 261, Manassas, VA, USA). Mice were stratified into four groups: (1) a healthy
control cohort, (2) a group inoculated with MHV-1 virus, (3) a group inoculated by SPK
alone, and (4) a group inoculated with MHV-1 virus and subsequently treated with SPK.
MHV-1 viral inoculation was executed following established protocols [11,15,16,18,19]
involving intranasal administration of 5000 PFU MHV-1 to groups 2 and 4 with vigilant
monitoring to ensure adequate inhalation of the virus. Mice in group 4, receiving MHV-
1 inoculation, were further treated with 5 mg/kg body weight of SPIKENET (SPK), as
previously outlined (3 doses of 5 mg/kg given every alternate day from day 2, i.e., 2, 4, and
6 days post-MHV-1) [14–16,18,19].

2.3. Intestine Tissues Collection and Storage

The intestinal tissue of the mice was harvested, with fecal matter carefully removed
before fixation in 10% formalin. For acute studies, this process occurred 7 days post-
infection, while for long COVID investigations, it took place 12 months post-infection.
Subsequently, the specimens were embedded in paraffin and sectioned into 10 µm thick
slices using an ultra-thin semiautomatic microtome. This cutting procedure was conducted
utilizing the Histoscore auto-cut automated rotary microtome from Leica Biosystems Inc.,
Buffalo Grove, IL, USA, following processing through the Histoscore PELORIS 3 Premium
Tissue Processing System.

2.4. Histological Staining

Histological staining of the mice intestine with hematoxylin and eosin (H&E) was
conducted using the following materials and reagents: SelecTech hematoxylin and eosin
staining system (consisting of Hematoxylin 560, Blue Buffer 8, Define, Alcoholic Eosin
Y 515, and Eosin Trichrome 515) (Leica Biosystems, Cat# 3801570/3801615, IL, USA),
formalin-fixed paraffin-embedded mice intestinal tissue sections, xylene (C8H10, CAS RN
106-42-3, Fisher Scientific, Hampton, NH, USA), absolute ethanol (E7023, Sigma-Aldrich,
St. Louis, MO, USA), 95% ethanol, 70% ethanol, distilled water, microscope slides (Epredia™
Premium Microscope Slides in Tropical Packaging, Cat# 22-339-411, Portsmouth, NH, USA),
and coverslips (Gold Seal® Cover Glass (Cat# 6376501, Electron Microscopy Sciences,
Hatfield, PA, USA) [22]. Initially, deparaffinization was achieved through the following
steps: the slides were immersed in xylene for 5 min, followed by absolute ethanol for 3 min,
then placed in 95% ethanol for 2 min, and subsequently in 70% ethanol for 2 min [22]. The
tissue sections were then rinsed with distilled water. Hematoxylin staining was performed
by submerging the slides in hematoxylin solution for 5–10 min, followed by rinsing with
distilled water to remove excess stain and differentiation with 1% acid alcohol until sections
turned blue. The slides were then rinsed again in distilled water [22]. Subsequently,
eosin staining was carried out by exposing the slides to eosin Y solution for 2–3 min,
followed by rinsing with distilled water [22]. Dehydration of the slides was accomplished
by sequentially immersing them in 70%, 95%, and absolute ethanol, followed by placement
in xylene for 5 min. Finally, the slides were mounted in mounting media, and coverslips
were applied [22].
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3. Results

While primarily recognized as a respiratory illness, emerging evidence suggests that
SARS-CoV-2 infection can also impact the gastrointestinal tract, with notable changes
occurring in the small intestine. Diverse histological alterations were discerned during our
scrutiny of MHV-1 infection within the murine intestinal, probing into acute, long COVID,
and SPK treatments as well as SPK alone (SPK did not display any changes in the control
group, which was identical to the healthy group (figure is not shown)). Whereas the precise
mechanisms by which SARS-CoV-2 affects the small intestine remain under investigation,
several hypotheses have been proposed. These include direct viral invasion of enterocytes
expressing the angiotensin-converting enzyme 2 (ACE2) receptor, dysregulation of the gut
microbiota, immune-mediated damage, and systemic effects of cytokine release.

The histopathological findings in Figure 1 shed light on the acute significant intesti-
nal changes observed in the MHV-1 model and their potential relevance to inflammatory
bowel disease (IBD) [23,24]. The model presents notable alterations in colonic architecture,
including mucosal inflammation, lymphoid hyperplasia, and microthrombus formation, as
highlighted in Panel (B). These features resemble the inflammatory processes commonly
observed in IBD, where acute, chronic inflammation in the gastrointestinal tract leads to
tissue damage and dysfunction. In (C), we noticed hyperplasia of goblet cells scattered
throughout the colonic mucosa, indicative of an adaptive response to mucosal injury. This
finding aligns with the increased mucus production often observed in IBD [24], which
protects against luminal insults. Moreover, various inflammatory cells within the lamina
propria, as depicted by the blue arrow, suggest an active immune response in the affected
tissue. We observed diffuse proliferation of lymphoid tissue, microbleeding, and melanocy-
tosis in the colonic mucosa (D), further indicating ongoing inflammation and tissue damage.
These pathological features resemble the characteristic histological changes seen in IBD,
such as crypt distortion, epithelial ulceration, and infiltration of immune cells into the
mucosa and submucosa.

We found significant changes in this model. These alterations could parallel COVID-
induced colonic issues, as shown in Figure 2. Panel B emphasizes early pathological features
following MHV-1 infection, characterized by visible mucosal layer sloughing (red arrow)
accompanied by inflammatory alterations within the muscularis mucosa layer (black arrow)
and generalized inflammation (blue arrow). These findings resonate with reports of COVID-
induced colonic manifestations, such as mucosal injury and inflammatory responses.
Panel C demonstrates the progression of villus degeneration (red arrows) alongside the
presence of crypt apoptotic bodies (green arrow), suggesting a continuum of tissue damage
reminiscent of COVID-associated gastrointestinal complications. In Panel D, regenerative
responses during the acute phase, particularly following SPK treatment, are evident. These
include the reconstruction of the muscularis mucosa layer (red arrow), normalization of
goblet cells (white arrow), restoration of crypt and lamina propria anatomy (yellow arrow),
and mitigation of inflammatory changes. Understanding these histopathological alterations
contributes to elucidating the pathogenesis of MHV-1 infection and provides insights into
potential therapeutic strategies for mitigating COVID-induced colonic issues.

We also examined the small intestinal changes post MHV-1 infection, with implications
for potential therapeutic interventions such as SPK treatment. Figure 3, Panel A serves as a
reference point, depicting the typical crypt morphology with intact goblet cells. As shown
in panel B, along with several mitotic figures within the villi (yellow arrows), characteristic
pathological features of MHV-1 infection emerge, including sloughing villi (black arrow)
and the destruction of enterocytes, representing the simple columnar epithelium (red arrow).
Notably, edema surrounding enteroendocrine cells (blue arrow) mirrors histopathological
changes observed in conditions like celiac disease, where disruption of the epithelial barrier
and villous atrophy are prominent features. Findings reminiscent of inflammatory bowel
disease (IBD) [23,24], such as altered epithelial integrity and increased enterocyte turnover,
are apparent.
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Figure 1. This illustrates the histopathological changes observed in acute extensive intestinal inflam-
mation in the MHV-1 model in small and large intestines. In Panel (A), the typical architecture of
the large intestine is depicted, with intact villi highlighted by a star. Panel (B) demonstrates colonic
mucosal inflammation and lymphoid hyperplasia, indicated by black arrows, accompanied by mi-
crothrombi marked by yellow arrows. In Panel (C), hyperplasia of goblet cells scattered throughout
the colonic mucosa is shown (yellow arrows), along with various inflammatory cells within the
lamina propria (blue arrow). Panel (D) reveals diffuse proliferation of lymphoid tissue (white star),
microbleeding (red arrow), and melanocytosis (white arrows) in the colonic mucosa. These findings
provide insight into the pathological features associated with acute significant intestinal changes in
the MHV-1 model. (H&E, original magnification 66× (A–D)). MHV-1 infection alone (n = 16), healthy
control (n = 7), and SPK-treated mice (n = 5).
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Figure 2. This shows acute small and large intestinal changes induced by MHV-1 infection. In Panel
(A), a histological section displays the typical regular colonic layers. Panel (B) exhibits early mani-
festations of disease, with evident mucosal layer sloughing (red arrow), concomitant inflammatory
alterations in the muscularis mucosa layer (black arrow), and overall inflammation (blue arrow).
Panel (C) depicts diverse stages of villus degeneration (red arrows) alongside the presence of crypt
apoptotic bodies (green arrow). In Panel (D), regenerative responses during the acute phase of
SPK treatment are evident, including the reconstruction of the muscularis mucosa layer (red arrow),
normalization of goblet cells (white arrow), restoration of crypt and lamina propria anatomy (yellow
arrow), and mitigation of inflammatory changes. (H&E, original magnification 66× (A–D)). MHV-1
infection alone (n = 16), healthy control (n = 7), and SPK-treated mice (n = 5).
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Figure 3. This portrays the acute small intestinal changes ensuing from MHV-1 infection. In
Panel (A), a depiction of normal crypt morphology with intact goblet cells is observed.
Panel (B) showcases several mitotic figures within the villi (yellow arrows) alongside sloughing villi
(black arrow) and the destruction of enterocytes, representing the simple columnar epithelium (red
arrow) accompanied by edema surrounding enteroendocrine cells (blue arrow). Panel (C) further
elucidates the presence of edema surrounding enteroendocrine cells (blue arrow), dying Paneth
cells (green arrow), increased mucus secretion (yellow arrow), and invasion of red blood cells (red
arrows). Panel (D) demonstrates the restoration of regular histopathological changes following
SPK administration characterized by reduced sloughing and normalization of goblet cells. These
observations offer insights into the dynamic alterations occurring in the small intestine during MHV-1
infection and hint at the potential therapeutic benefits of SPK treatment. (H&E, original magnification
66× (A–C) and 22× (D)). MHV-1 infection alone (n = 16), healthy control (n = 7), and SPK-treated
mice (n = 5).

Panel C offers further insight into the pathological cascade, unveiling pronounced
edema surrounding enteroendocrine cells (blue arrow), the presence of dying Paneth
cells (green arrow), increased mucus secretion (yellow arrow), and invasion of red blood
cells (red arrows). These findings corroborate the multifaceted nature of MHV-1-induced
intestinal damage and underscore similarities with the histopathological alterations in
celiac disease and IBD, including Paneth cell abnormalities and altered mucin secretion,
contributing to mucosal inflammation and barrier dysfunction.

Panel D highlights the potential therapeutic benefits of SPK administration, showcas-
ing the restoration of regular histopathological changes characterized by reduced sloughing
and normalization of goblet cells. These observations deepen our understanding of the dy-
namic alterations occurring in the small intestine during MHV-1 infection and underscore
the relevance of studying viral-induced intestinal pathology in the context of celiac disease
and IBD [23–25].

Figure 4 shows various intestinal damage induced by MHV-1 infection in an acute
setting. There are severe inflammatory changes evident, penetrating all layers of the small
intestine in Panel B. Papillary necrosis, apoptosis, and inflammation of the lamina propria
indicate significant tissue damage, reminiscent of findings reported in COVID-19 patients
with gastrointestinal symptoms as well as with IBD [24]. In Panel C, we observe the infil-
tration of immune cells, including neutrophils and lymphocytes, into the small intestinal
tissue. These cells play crucial roles in the immune response against viral infections but can
also contribute to tissue damage when dysregulated. Additionally, microthrombi, indicated
by black arrows, highlight the potential involvement of coagulation abnormalities in small
bowel pathology during viral infections. Meanwhile, Panel D further emphasizes the
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presence of microthrombi, dying crypts, and pronounced inflammation of the villi. The
disruption of crypts, responsible for epithelial cell renewal, suggests impaired regenerative
capacity in the face of viral assault. Moreover, the inflammation of villi compromises their
absorptive function, potentially leading to malabsorption and nutrient deficiencies.
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Figure 4. Representation of acute small bowel damage induced by MHV-1 infection.
Panel (A) demonstrates normal small bowel histology, while Panel (B) depicts severe inflamma-
tory changes penetrating all layers of the small intestine, including papillary necrosis, apoptosis, and
an inflamed lamina propria. Panel (C) highlights the infiltration of immune cells, with neutrophils
(yellow arrow) and lymphocytes (blue arrow) evident alongside observable microthrombi (black
arrows). Panel (D) further illustrates microthrombi (black arrows), dying crypts (yellow arrows),
and pronounced villi inflammation (blue arrows). (H&E, original magnification 22× (A–D)). MHV-1
infection alone (n = 16), healthy control (n = 7), and SPK-treated mice (n = 5).

We noted the potential efficacy of SPK in a novel experimental model of intestinal
damage induced by MHV-1 infection. Figure 5B shows acute inflammatory changes ac-
companied by microthrombi (yellow arrow) and a unique hemosiderin deposition (black
arrow). Further, in Panel C, we observe an extent of damage, with severe inflamma-
tory changes leading to villi destruction (blue arrows). Remarkably, Panel D demon-
strates the restoration of intestinal architecture following SPK treatment. The resolution of
acute inflammatory changes, disappearance of microthrombi, and restoration of villi struc-
tures suggest the therapeutic efficacy of SPK in mitigating intestinal damage induced by
viral infection.

Examining small ileum histopathology following MHV-1 infection sheds light on
potential parallels with Crohn’s disease progression. We found, in Panel B of Figure 6,
that the acute phase of infection is marked by severe crypt hyperplasia and sloughing
of villi, indicative of an aggressive inflammatory response akin to what is observed in
Crohn’s disease [23,24]. Panel C portrays a more advanced manifestation, reflecting the
destructive nature of the infection on the ileal tissue in one part of the ileum. This stage
is typified by extensive destruction, including blunting of crypts and villi and loss of
brush borders, reminiscent of the histopathological changes seen in Crohn’s disease, where
chronic inflammation leads to significant structural damage and functional impairment.
Interestingly, Panel D shows a substantial improvement in the damage that occurred by
MHV-1 post-administration of SPK. The crypt–villus structure appears re-established, and
brush borders are evident again.
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Figure 5. SPK restoration of intestinal architecture post MHV-1 infection. Panel (A) displays standard
intestinal architecture in a control group. In Panel (B), acute inflammatory changes, microthrombi
(yellow arrow), and hemosiderin deposition (black arrow) are evident in ileum. Panel (C) illustrates
acute severe inflammatory changes resulting in villi destruction (blue arrows). Panel (D) demonstrates
the restoration of these changes following SPK treatment. (H&E, original magnification 66× (A–D)).
(MHV-1 infection alone (n = 16), healthy control (n = 7), and SPK-treated mice (n = 5)).
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Figure 6. Acute ileum changes post MHV-1 infection. Panel (A) illustrates the histology of a normal
ileum. In Panel (B), acute severe hyperplasia of crypts is observed, accompanied by various stages
of inflammatory changes. Panel (C) showcases the massive destruction of one part of the ileum,
characterized by the blunting of crypts and villi and the loss of brush borders. Panel (D) depicts
the restoration of tissue architecture following SPK treatment. (H&E, original magnification
66× (A,D) and 22× (B,C)). (MHV-1 infection alone (n = 16), healthy control (n = 7), and SPK-treated
mice (n = 5)).

A novel investigation established in our laboratory demonstrated a unique intestinal
finding in long COVID. In our experimental model, we found various changes (Figure 7).
Panel B shows distinct pathological features; noteworthy are the presence of nests of ery-
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throcytosis denoted by yellow arrows, the diffused inflammation marked by a prominent
red arrow, and the infiltration of lymphocytes depicted by blue arrows. Furthermore, an
upsurge in goblet cells, various apoptotic bodies, congestion, and thrombosis, indicated by
a discernible black arrow, collectively contribute to the potential pathological profile associ-
ated with long COVID, as evident in our model. In Panel C, a pronounced inflammatory
cellular invasion is apparent, evidenced by an extensive infiltration of inflammatory cells
denoted by the blue arrow. Concurrently, an increase in Paneth cells, highlighted by yellow
arrows, and the presence of neutrophils, indicated by a white arrow, suggest an altered
immune response in the affected tissue. Panel D further elucidates the complexity of the
inflammatory milieu observed in long COVID, with scattered inflammatory cell infiltrates
depicted by yellow arrows, accompanied by nests of erythrocytosis and conspicuous apop-
totic bodies marked by black arrows. The heightened presence of Paneth cells emphasizes
the dynamic interplay between the viral infection and the host immune response.
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Figure 7. This illustrates the duodenum intestinal changes associated with long COVID. In Panel (A),
a depiction of standard small intestinal architecture is shown. Panel (B) highlights alterations
observed in long COVID, including nests of erythrocytosis indicated by yellow arrows, diffused
inflammation marked by a red arrow, lymphocyte invasion denoted by blue arrows, along with an
increased number of goblet cells, various apoptotic bodies, congestion, and thrombosis indicated
by a black arrow. Panel (C) exhibits severe inflammatory cellular invasion (blue arrow), accompa-
nied by an increase in Paneth cells (yellow arrows) and the presence of neutrophils (white arrow).
Panel (D) demonstrates various inflammatory cell infiltrates (yellow arrow) alongside erythrocyto-
sis, with evident apoptotic bodies (black arrows) and an increase in Paneth cells. (H&E, original
magnification 66× (A–D)). (4 MHV-1 infection, 4 healthy control, 4 SPK treated group).

The investigation of SPK effects within the realm of long COVID unveils discernible
alterations in the architectural integrity of the intestine. We noticed, in Figure 8B, that
prominent deviations emerge, indicative of pathological changes such as lymphoid hy-
perplasia, as denoted by the yellow arrow, suggesting an augmented mucosal immune
response, potentially in response to persistent viral presence. Further, the increase in goblet
cells with prominent mucus discharges, highlighted by the red arrow, implies a height-
ened mucin production, possibly as a protective mechanism against viral invasion and
associated inflammation. We also detect, in Panel C, that Auerbach’s plexus, an integral
component of the enteric nervous system, is depicted (blue arrow) alongside dying Paneth
cells displaying apoptotic bodies (yellow arrows) and diffused inflammatory cell infiltrates.
These findings underscore the dysregulated neural regulation and ongoing inflammatory
milieu within the affected tissue, which may also trigger further inflammation. Meanwhile,
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in Panel D, following intervention with SPK, a remarkable restoration of regular intestinal
layers is observed. The normalization of goblet cell numbers, reduction in inflammation,
and restoration of Paneth cell counts signify the therapeutic efficacy of SPK in mitigating
pathological alterations associated with long COVID. Additionally, the preservation of
the submucosal (Meissner’s) plexus and myenteric (Auerbach’s) plexus in their normal
state validates the capacity of SPK to modulate intestinal responses and restore tissue
homeostasis in the context of long COVID.
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Figure 8. This depicts the SPK effects observed in long COVID in the small intestine (jejunum and
ileum). Panel (A) presents the standard architecture observed across all intestinal layers. In Panel
(B), lymphoid hyperplasia is highlighted by the yellow arrow, alongside an increase in goblet cells
with large mucus discharges indicated by the red arrow. Panel (C) illustrates Auerbach’s plexus (blue
arrow), dying Paneth cells showing apoptotic bodies (yellow arrows), and diffused inflammatory
cell infiltrates. Panel (D) demonstrates the restoration of regular intestinal layers, normalized goblet
cell numbers, reduced inflammation, and the return of average Paneth cell counts. Additionally, the
presence of the submucosal (Meissner’s) plexus and myenteric (Auerbach’s) plexus (yellow arrow)
in their normal state is noted. (H&E, original magnification 66× (A,D) and 22× (B,C)). (4 MHV-1
infection, 4 healthy control, 4 SPK treated group).

4. Discussion

The investigation delved into the multifaceted impact of viral infections, particularly
MHV-1, on the gastrointestinal tract, shedding light on potential parallels with COVID-
induced gastrointestinal complications. Notably, we found acute significant intestinal
changes akin to inflammatory bowel disease (IBD), including mucosal inflammation, lym-
phoid hyperplasia, and microthrombus formation, suggesting a complex interplay between
viral invasion, immune response dysregulation, and tissue damage. Additionally, we
found villus degeneration, enterocyte destruction, and inflammatory cell infiltrates, parallel
pathological features observed in conditions like celiac disease and IBD. Furthermore, our
investigation extended to long COVID, revealing distinct pathological profiles characterized
by inflammatory cell infiltration, altered immune responses, and architectural disruptions
in the intestine. The study’s findings deepen our understanding of viral-induced intestinal
pathology, offering insights into potential mechanisms underlying COVID-associated gas-
trointestinal complications and long COVID. We also examined the efficacy of our protein-
based medication (SPK) in mitigating intestinal damage and restoring tissue homeostasis;
we identified its potential as a promising therapeutic intervention for COVID-induced
gastrointestinal complications and long COVID. These findings not only contribute to
elucidating the pathogenesis of viral-induced intestinal pathology but also pave the way
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for developing targeted therapeutic strategies to alleviate gastrointestinal manifestations of
viral infections and improve patient outcomes.

In the acute phase of the infection, we have reported, for the first time, the dissemi-
nation of coronavirus through the bloodstream to various organs, including the intestine.
This builds upon previously documented findings of viral load detection in the blood and
the presence of the virus within multiple organs [14–19]. We also reported the presence of
the virus and viral particles in the brains of infants born to mothers infected with SARS-
CoV-2 [21]. Indeed, viral particles, specifically nucleocapsids, have been identified within
the nuclear membrane. Viral particles also sequestrated in the nucleus suggest possible
adverse effects in both acute and long COVID, as studies have shown cell injury when
exposed to SARS-CoV-2 viral particles in vitro [10,12].

Since the onset of the COVID-19 pandemic in 2020, a comprehensive examination of its
clinical manifestations has unveiled diverse and often enigmatic multiorgan pathological
changes and complications. Our prior study documented diverse clinical manifestations
and alterations in mice during both the acute and prolonged phases of COVID-19 [15]. Our
investigations have focused on elucidating the potential alterations in the intestine, reveal-
ing a spectrum of pathological changes in a well-established mouse model of COVID-19.
Over time, it is anticipated that various intestinal disorders may emerge as sequelae of
COVID-19. These potential disorders encompass but are not limited to IBD, celiac, colonic
malignancy, etc. [23–26]. The etiology of these disorders is likely multifactorial, involving
intricate interactions between the virus and the host’s genes. While the virus could poten-
tially trigger gastrointestinal disorders, its direct role in causing genetic mutations leading
to these conditions is still under study. Understanding the complexity of the SARS-CoV-2
virus and its potential involvement in gastrointestinal disorders is crucial. This highlights
the importance of ongoing research to clarify how the virus may affect genetic pathways
and contribute to the development of these disorders.

A large cohort study accomplished by US Department of Veterans Affairs national
health care databases of 154,068 short-term COVID-19 survivors as well as 5,859,621 patients
of long COVID (1-year post-infection). The study showed the development of various
gastrointestinal manifestations among these individuals, including IBD, irritable bowel
syndrome, dyspepsia, chronic diarrhea, intestinal angina, gastric acid reflux disorder,
abdominal pain, and other liver and pancreatic diseases [27]. Cheung et al. found that 48%
of COVID-19 patients have fecal shedding of SARS-CoV-2 RNA, which suggests intestinal
epithelial cell infection [28]. Xiao et al. identified the SARS-CoV-2 N protein in the intestinal
epithelium, which favors intestinal tropism [29].

The significant expression of angiotensin-converting enzyme 2 (ACE2) and trans-
membrane protease serine subtypes 2/4 (TMPRSS) on the lining of the small intestine’s
mucosa links acute SARS-CoV-2 infection with gastrointestinal symptoms such as nausea,
vomiting, diarrhea, and abdominal pain, while long term reported symptoms are appetite
loss, weight loss, and irritable bowel syndrome, albeit with varying prevalence rates in
the context of post-acute sequelae of SARS-CoV-2 infection (PASC) [27–30]. Various evi-
dence indicates persistent inflammation and likely induction of autoimmunity in certain
PASC patients, possibly influenced by the continued presence of the virus or viral pro-
teins in multiple organs, including the gastrointestinal tract [27,30–32]. Elevated levels
of cytokines and specific immune cell types in the blood of PASC individuals suggest
a prolonged inflammatory response, highlighting the intricate interplay between viral
persistence, immune dysregulation, and possible autoimmune reactions in PASC develop-
ment [27,33]. Furthermore, in PASC, reactivation of latent viruses like Epstein–Barr virus or
cytomegalovirus may contribute to the pathogenesis due to either direct invasion and/or
immune mediation (T cells and cytokines), particularly when autoantibodies targeting
IFNα2 may impede the body’s immune response and correlate with increased levels of
inflammatory cytokines [27–30]. In addition to the overarching considerations previously
outlined, distinctive characteristics of the gastrointestinal mucosal immune system could
play a pivotal role in the pathophysiology of gastrointestinal PASC. Specific mechanisms
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potentially contributing to gastrointestinal PASC encompass intestinal dysbiosis, maladap-
tive neuro-immune interactions, viral persistence, and abnormal immune activation within
the gastrointestinal tract [27,31,34].

Investigations have also examined the correlation between the gut microbiome and
PASC [34]. Liu et al. conducted a study wherein they analyzed the fecal microbiome
composition using shotgun metagenomic sequencing in a prospective cohort of 106 patients
with varying severity of COVID-19, tracking them from admission up to 6 months [34]. The
authors found a significant reduction in microbial diversity and distinct gut microbiome
profiles associated with PASC [34].

Given the high incidence of motility-related disorders in gastrointestinal PASC, it
is essential to consider post-infectious neuro-immune-related disorders in the disease’s
pathogenesis [31,33–35]. The pathophysiology of these post-infectious gut–brain disorders
remains unclear, hampered by limited studies of varying sizes and different time points
assessed post-infection. Proposed concepts include microbial dysbiosis, increased intestinal
permeability, and low-grade activation of the intestinal immune system [27,34,36]. Fur-
ther, Lai et al. found communications between gut sensory neurons (nociceptors), gut
epithelial cells, and microorganisms, which collectively synchronize mucosal host defense
mechanisms [34,36]. Furthermore, macrophages residing in the muscularis propria, closely
interacting with enteric neurons, adopt tissue-protective roles that inhibit neuronal damage
after infection [34–38].

We previously reported the therapeutic advantage of SPK in the liver, skin, brain,
and renal [15–19,39]. We also found that SPK downregulates TGF-β in the kidney, which
ultimately improved renal histopathology post-SPK treatment. These findings highlighted
the potential therapeutic benefits of SPK treatment, emphasizing its role in mitigating specif-
ically intestinal damage and restoring tissue homeostasis, which is particularly evident
in restoring regular histopathological changes and normalizing inflammatory responses.
Moreover, SPK intervention demonstrated promising outcomes in preserving intestinal
integrity, reducing inflammation, and modulating immune responses, emphasizing its
potential as a therapeutic avenue for addressing long COVID sequelae of viral infections
on the gastrointestinal tract.

TGF-β initiates an intracellular signaling cascade involving proteins like Smad pro-
teins that transduce the TGF-β signal from the cell membrane to the nucleus [40–44]. In
the nucleus, Smad proteins and other transcription factors regulate the expression of genes
involved in collagen synthesis, including genes that encode various types of collagens, the
principal component of the extracellular matrix [40–44]. It found that TGF-β acts as a nega-
tive regulator of mucosal inflammation and indicates that defective production/activity
of TGF-β can potentially lead to the development of severe IBD [44]. Further, it was dis-
covered that TGF-β1 expression increased, but the TGF-β1 mediated immunosuppression
significantly decreased due to high Smad7 (considered an inhibitory signal to TGF-β1) [44].
Additionally, knocking out Smad7 leads to restoring TGF-β1 activity and reducing the
inflammation associated with IBD [44].

5. Conclusions

In conclusion, our investigation into histopathological changes in the small intestine
following MHV-1 infection in murine models unveils significant parallels with IBD, celiac
disease. Noteworthy observations encompass mucosal inflammation, lymphoid hyperpla-
sia, goblet cell hyperplasia, and immune cell infiltration, resembling pathological features
seen in IBD. Furthermore, MHV-1 infection induces villous atrophy, altered epithelial
integrity, and inflammatory responses akin to celiac disease. Encouragingly, SPK treat-
ment effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue
architecture and ameliorating inflammatory responses. Our exploration of long COVID
reveals intricate inflammatory profiles, underscoring SPK’s potential to modulate intestinal
responses and restore tissue homeostasis. These findings shed light on the pathogenesis of
COVID-induced gastrointestinal complications and offer insights for targeted therapeutic
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strategies. The promising efficacy of SPK as a therapeutic intervention to mitigate long
COVID intestinal alterations initiated by SARS-CoV-2 provides hope in addressing the
enduring effects of the pandemic.
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