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Abstract: Wheezing children infected with rhinovirus (RV) have a markedly increased risk of sub-
sequently developing recurrencies and asthma. No previous studies have assessed the association
between cytokine response and the severity of acute illness in the first wheezing episode in children
infected with RV. Forty-seven children treated both as inpatients and as outpatients infected with RV
only, aged 3–23 months, with severe first wheezing episodes were recruited. During acute illness,
peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with anti-CD3/anti-CD28
in vitro. A multiplex ELISA was used to quantitatively identify 56 different cytokines. The mean age
of the children was 17 months, 74% were males, 79% were hospitalized, and 33% were sensitized.
In adjusted analyses, the inpatient group was characterized by decreased expressions of interferon
gamma (IFN-γ), interleukin 10 (IL-10), macrophage inflammatory protein 1 alpha (MIP-1α), RANTES
(CCL5), and tumor necrosis factor-alpha (TNF-α) and an increased expression of ENA-78 (CXCL5)
compared to the outpatient group. The cytokine response profiles from the PBMCs were different
between the inpatient and outpatient groups. Our results support that firmly controlled interplay
between pro-inflammatory and anti-inflammatory responses are required during acute viral infection
to absolve the initial infection leading, to less severe illness.
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1. Introduction

Bronchiolitis is one of the most common illnesses in young children, affecting up to
30% of all children before the age of two years, and it is the most common cause necessi-
tating hospitalization in early childhood [1]. While bronchiolitis is generally considered
as a self-limiting condition and the majority of children suffering from bronchiolitis can
be treated as outpatients, an estimated 1–2% of all children require hospitalization due
to bronchiolitis during their first 24 months of life, and furthermore, up to 10–15% of the
overall hospitalizations of children under 24 months are directly linked to bronchiolitis [2].
Additionally, a significant portion of the global mortality in young children, particularly in
infants, resulting from an acute respiratory tract infection, is attributed to viral bronchioli-
tis [2–4]. While the general infant mortality rate has decreased, the bronchiolitis-associated
rate of mortality has remained relatively stable [2,5]. The risk of severe bronchiolitis has
been associated with respiratory syncytial virus (RSV) infection, prematurity, ages under 6
months, exposure to tobacco smoke, congenital heart defects, and Down syndrome [4–6].
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Historically, bronchiolitis has been considered as one condition, leading to a scarcity
of data on the morbidity linked with non-RSV viral agents associated with bronchioli-
tis in children. Though RSV is the predominantly identified viral agent associated with
bronchiolitis during the first 12 months of age, rhinovirus (RV) infections become the
most prevalent thereafter [1]. Interestingly, emerging evidence is questioning one disease
approach, suggesting that bronchiolitis is more of a heterogeneous spectrum encompassing
various endotypes that may exhibit different clinical and immunological characteristics
as well as clinical long-term prognoses [1]. Moreover, recent studies have indicated that
RV-linked bronchiolitis exhibits a stronger association with a subsequent poorer long-
term prognosis, including recurrent wheezing and asthma, compared to other causative
agents [1,7]. This association is suggested to arise from the interplay between environmen-
tal factors (e.g., viruses, allergens) and genetic factors (e.g., immune responses). Hence,
children infected with these different bronchiolitis endotypes might benefit from different
treatment strategies. In our previous studies, we demonstrated differences in the cytokine
responses between wheezing children infected with RV and RSV [8] and observed a de-
creasing trend in the cytokine responses in young wheezing children infected with both
RV and human bocavirus 1 (HBoV1) compared to RV only [9], suggesting that there is a
difference in the proposed bronchiolitis endotypes at the cellular level.

The onset of acute wheezing illness in the presence of RV infection induces a swift surge
of interferons (type I and III), activating the innate immunity response [1]. Subsequently,
cytokines and chemokines are released, leading to various potentially adverse epithelial
reactions (cell death, necrosis, sloughing, and unwarranted mucus production). Moreover,
variations in the cadherin-related family member 3 (CDHR3) gene or 17q21 locus are
associated with the severity of the illness and long-term prognosis [1,7,10,11]. Furthermore,
RV infections of the airway epithelium, both in human and murine models, have been
proposed to induce type 2 innate cytokines, such as IL-25 and IL-33, further enhancing type
2 immunity in the lungs via activating IL-5- and IL-13-producing innate lymphoid cells
(ILCs) 2 and T-helper 2 (Th2) cells [12–14].

There are currently no data on the immunological factors influencing the need for
hospitalization or the severity of disease during the first assessment of bronchiolitis in
young children with RV-induced wheezing. Therefore, we aimed to compare the cytokine
profiles of the children suffering from a severe first wheezing episode caused by RV who
were treated as outpatients to those who were treated as inpatients. Our hypothesis is that
a difference in cytokine expression from the peripheral blood mononuclear cells (PBMCs)
of children with virus-induced acute wheezing is associated with its severity, constituting a
more appropriate resolution of the acute disease.

2. Materials and Methods
2.1. Subjects

The study population was a derivation of the Vinku2 study, which compared the
long-term efficacy of oral prednisolone (2 mg/kg/d for 3 days) to a placebo in children
with RV-positive first-time wheezing (updated version for seven-year follow-up, trial no.
NCT00731575, original version EudraCT 2006-007100-42) [15]. The recruitment of patients
was prospectively conducted in the 2007–2010 period at the Department of Pediatrics, Turku
University Hospital (Turku, Finland). Patients aged 3–23 months, delivered at ≥36 weeks
of gestation, suffering from the first episode of wheezing (parental report and verified
from medical charts), and singleton RV infection detected in a nasopharyngeal aspirate
(NPA) sample by polymerase chain reaction (PCR) without prior steroid treatment were
eligible. The study commenced once written informed consent was provided by a parent
or guardian. Children with chronic non-atopic disease, previous corticosteroid treatment,
or the need for intensive care were excluded according to the study’s protocol. This study
was approved by the Ethics Committee of the Turku University Hospital.
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2.2. Study Protocol

The requirement for hospitalization was evaluated by an on-duty physician inde-
pendent of this study. The recruitment of the study subjects was conducted by the study
physician. During the enrollment period, the children’s guardians were questioned using a
standard survey on risk factors for asthma (host and environmental), and the children were
clinically evaluated by the study physician. Furthermore, using a standardized procedure,
an NPA sample was taken for viral diagnostics [16], and a blood sample was obtained. After
a positive RV-PCR test, the children were randomized to receive either oral prednisolone or
a placebo (prednisolone receivers were excluded from the later analyses). The follow-up
was conducted as previously described [15].

2.3. Objective

The objective of this study was to compare the cytokine profiles of admitted and non-
admitted children infected with RV who were suffering from severe first-time wheezing.

2.4. Definitions

Wheezing was referred to as expiratory breathing difficulty accompanied with bilateral
high-pitched whistling sounds. A wheezing event combined by a PCR detection of RV-RNA
was called an RV-associated wheezing episode. Atopy was defined as a positive allergen-
specific immunoglobulin E (IgE) antibody (cut-off level ≥ 0.35 kU/L) to one or more
common allergens (codfish, cow’s milk, egg, peanut, soybean, wheat, cat, dog, horse, birch,
mugwort, timothy, Cladosporium herbarum, and Dermatophagoides pteronyssinus) (Phadiatop
Combi®, Phadia, Uppsala, Sweden). Aeroallergen sensitization was defined as positive IgE
antibodies to one or more of the latter eight allergens, and perennial aeroallergen sensitiza-
tion was referred to as positive IgE antibodies to dog, cat, or Dermatophagoides pteronyssinus.
The diagnosis of eczema was based on the characteristic clinical manifestations of the
illness, including pruritus, typical morphology, and the chronicity of the condition. If the
child exhibited atopic traits (defined above) and presented with eczema, the eczema was
categorized as atopic eczema. Type 1 immunity was defined as the activation and function
of T-helper 1 cells (Th1), type 1 innate lymphoid cells (ILCs), and classically activated
macrophages. Conversely, type 2 immunity was defined as the activation and function of
Th2 cells, ILC2s, and macrophages activated by IL-4- and IL-13. Additionally, the involvement
of basophils, eosinophils, and mast cells was considered to be part of type 2 immunity. Type
3 immunity was classified as the actions and functions of Th17 cells, ILC3s, and neutrophils.
While IFN-γ and IL-12 were referred to as type 1 cytokines, IL-4, IL-5, and IL-13 were referred to
as type 2 cytokines, IL-17 and IL-22 were referred to as type 3 cytokines, and IL-10 and TGF-β
were referred to as Treg-associated cytokines.

2.5. Laboratory Data

A sample of NPA was taken with a nasal swab (nylon flocked dry swab, 520CS01,
Copan, Brescia, Italy) and placed at −70 ◦C. PCR analyses for the detection of viral agents
were conducted as previously described [9,16–20]. In short, the extraction of nucleic acids
from samples was performed, and in-house reverse transcription (RT)-PCR was used to detect
the presence of RV A, B, and C, RSV A and B, and enteroviruses at the Virus Diagnostic Lab-
oratory, Department of Virology, University of Turku (Turku, Finland) [21,22]. Furthermore,
the presence of RV A and B, RSV A and B, influenza viruses A and B, human metapneu-
movirus, parainfluenza virus types 1–3, adenovirus, and coronaviruses 229E, NL63, OC43,
and HKU1 was identified with a multiplex PCR test (Seeplex RV12 ACE Detection, Seegene,
Seoul, Korea). Additionally, the presence of acute HBoV1 infection was assessed using both
PCR and paired sera (IgM and IgG), as described earlier [20,22].

The presence of eosinophilia (B-Eos) and the levels of allergen-specific immunoglobu-
lin E (IgE) were assessed according to the standard diagnostics of the Central Laboratory of
Turku University Hospital. The quantification of serum 25-hydroxyvitamin D (25(OH)D)
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levels was performed using liquid chromatography–tandem mass spectrometry at Mas-
sachusetts General Hospital (Boston, MA, USA).

During acute illness, peripheral blood was gathered, and PBMCs were extracted using
density gradient centrifugation (Ficoll-Paque™ PLUS, GE Healthcare, Amersham, United
Kingdom) according to the manufacturer’s instructions. The protocols of processing and
storing of PBMCs have previously been described [8]. In brief, samples were stimulated
with 0.25 µL of anti-CD3/anti-CD28 (1 µg/mL/1 µg/mL) (BD Biosciences, Franklin Lakes,
NJ, USA) for 24 h, and the resulting supernatants were deposited at −80 ◦C. Following the
thawing of the samples, the levels of 56 different cytokines were quantified by using multi-
plex ELISA with the Bio-Plex 200 System, employing the Bio-Plex Manager 6.0 Software
(Bio-Rad, Cressier, Switzerland).

In some samples, during the multiplex analyses, fluorescence failed to reach the
quantitative limit of detection (Table S1). Therefore, cytokines that were detected within
the limit of quantification in more than half of the samples (29/56, 52%) were included
in the further analyses. Samples falling below the limit of detection were set to half the
value of the lower threshold of the assay, and samples surpassing the limit of detection
were assigned to the upper threshold of the assay [8,9]. The minimum and maximum
quantifiable values of the multiplex assays are presented in Tables S2 and S3.

2.6. Statistics

The data distribution was tested using the Kolmogorov–Smirnov test. Due to the
skewness of the data, the levels of cytokines were log10- or x2-transformed when appropri-
ate. For other statistics, we used the two-sample t-test, Mann–Whitney U test, χ2 test, or
Fisher’s exact test. Furthermore, a multivariable linear model was performed to analyze
the differences in cytokine responses between study groups after adjusting for baseline
characteristics. The adjustments included baseline characteristics that significantly differed
among the study group (sensitization, oxygen saturation at entry, CRP at entry, and parental
allergy). For each cytokine, separately, the backward stepwise method was used for the
final adjusted model, and only statistically significant baseline characteristic variables were
included in the adjusted model (inclusion criteria p < 0.05).

A two-sided p < 0.05 was considered statistically significant, and adjustments for
multiple testing were not performed due to the nature of this study. Statistical analyses
were performed using JMP software (JMP version 13.1.0, SAS Institute, Cary, NC, USA).

3. Results
3.1. Study Population

At first, 125 children were enrolled in this study, of whom 12 declined to continue. A
total of 113 children proceeded with the clinical follow-up. Next, all non-sole RV patients
were excluded before further analyses. Thus, 52 children were eligible in the study entry.
Subsequently, we excluded 5 children due to the absence of cytology samples, and ulti-
mately, the cytology data of 37 children from the inpatient group and 10 children from the
outpatient group were included in the analyses (Figure 1, study flow chart).

3.2. Patient Characteristics

The mean age of the patients was 17 months (SD 6), and 74% of the study subjects
were males. Moreover, 79% were hospitalized, 33% were atopic, and 22% had atopic
eczema. Children who were treated as inpatients had a lower oxygen saturation and higher
C-reactive protein (CRP) levels at entry, were more atopic, and were more sensitized to
food allergens. Moreover, in the children who were treated as inpatients, the prevalence of
the parental allergies were more dominant compared to the children who were treated as
outpatients (all p < 0.05, Table 1).
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Table 1. Patient characteristics at time of study entry.

Characteristic Inpatient (n = 37) Outpatient (n = 10) p-Value

Age, months 13.3 (5.7) 12.4 (5.4) 0.63

Male sex, no. 29 (78%) 6 (60%) 0.25

Weight, kg 10.5 (2.1) 10.6 (2.1) 0.85

Preceding wheezing, days 1 (1–1) 1 (1–2) 0.11

Preceding cough, days 2 (1–3) 2 (3–5) 0.08

Preceding rhinitis, days 3 (2–5) 4 (3–6) 0.06

Preceding temperature over
37.5 ◦C 1 (0–2) 0 (0–2) 0.48

Clinical score, points 6 (4–9) 5 (4–7) 0.39

Oxygen saturation, % 96 (95–98) 98 (97–100) 0.02

Temperature, ◦C 37.5 (0.6) 37.2 (0.5) 0.24

CRP, mg/L 15 (7–23) 7 (2–16) 0.048

B-Eos (1 × 109/L) 0.53 (0.35–0.84) * 0.48 (0.31–0.61) * 0.42

B-Eos > 0.4 × 109/L 24 (67%) * 5 (56%) * 0.70

Total IgE 26 (11–56) 12 (6–24) * 0.06

Eczema, no. 11 (30%) 0 (0%) 0.09

Atopic eczema, no. 11 (30%) 0 (0%) 0.09

Sensitization, no. 15 (41%) 0 (0%) * 0.02

Food, no. 13 (35%) 0 (0%) * 0.04

Aero, no. 10 (27%) 0 (0%) * 0.17

Perennial, no. 9 (24%) 0 (0%) * 0.17

Parental asthma, no. 7 (19%) 2 (20%) 1.0

Parental allergy, no. 27 (73%) 2 (20%) 0.004

Parental smoking, no. 16 (43%) 6 (60%) 0.48

S-25-OHD, nmol/L 5150 (770–18,200) 2000 (1.6–59,750) 0.42

B-Eos, blood eosinophil count; S-25-OHD, serum 25-hydroxyvitamin D. Values are presented as mean (standard
deviation), median (interquartile range), or number (%). Data were analyzed using two-sample t-test, Mann–
Whitney U-test, χ2 test, or Fisher’s exact test. Bold text; statistical significance p < 0.05. * One sample missing due
to absence of blood sample.

3.3. Differences in Cytokine Expression at Time of Study Entry

After stimulation with anti-CD3 and anti-CD28, we observed significant differences
in the cytokine responses between the patients treated as inpatients and those treated
as outpatients. The hospitalized group had lower expressions of IFN-γ (median 1.6 vs.
24 pg/mL), IL-10 (13 vs. 110), MIP-1α (42 vs. 440), RANTES (290 vs. 1300), and TNF-α
(52 vs. 810) and a higher expression of ENA-78 (1400 vs. 120) compared to the non-
hospitalized group (all p < 0.05, Table 2, Figure 2, Table S2). The expressions of IL-1β and
IL-6 were marked but not statistically significant (all p < 0.09, Table 2 and Table S4).
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Table 2. Differences in cytokine expression levels at time of study entry.

Cytokine Inpatient n = 37 Outpatient n = 10 p-Value
Univariate

p-Value
Multivariate Adjustments

IFN-γ 1.6 (1.5–60) 24 (18–180) 0.02 0.03 1

IL-10 13 (5.0–120) 110 (18–380) 0.09 0.03 1

IL-1β 1.6 (1.6–15) 80 (1.6–1200) 0.10 0.07 -

IL-6 25 (5.5–270) 1000 (7.4–2200) 0.12 0.09 -

MIP-1α 42 (8.5–260) 440 (69–920) 0.03 0.04 -

RANTES 290 (97–590) 1300 (290–3600) 0.005 0.002 -

TNF-α 52 (16–820) 810 (60–4100) 0.01 0.01 -

Eotaxin-2 780 (680–1100) 670 (420–810) 0.054 0.31 3

ENA-78 1400 (410–2700) 120 (36–670) 0.003 <0.001 -

Values are presented as medians (interquartile range). Data were analyzed using Mann–Whitney U-test and
multivariable linear model. Log10-transformed cytokine expression levels were used in analyses. Adjust-
ments for immunologic analyses included baseline characteristics that significantly differed between groups
(sensitization = 1, oxygen saturation at entry = 2, CRP at entry = 3, parental allergy = 4). A backward stepwise
method was used for the final adjustment model separately for each cytokine. Only statistically significant baseline
characteristic variables (p < 0.05) were included in the final model. All data are presented in Supplementary
Table S4. Bold text; statistical significance at p < 0.05.
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4. Discussion

While the overall cytokine response in both the outpatient and inpatient groups
exhibited similarities, importantly, the inpatient group displayed a more pronounced
downward trend across both pro- and anti-inflammatory cytokine profiles. Distinctions
between the different subtypes of cell-mediated immunity have been described in detail
before [23]. Notably, the hospitalized children were characterized by decreased expressions
of IFN-γ, IL-10, MIP-1α, RANTES, and TNF-α and an increased expression of ENA-78
compared to the non-hospitalized children.

Classically, both IFN-γ and TNF-α are considered pro-inflammatory cytokines. The
former is considered as a central effector of the immune system, specifically associated with
type 1 immunity, and it is known for its involvement in both host defense and immune
surveillance, as well as immune-regulatory capabilities countering viral infections via the
inhibition of viral replication [24]. The latter is associated with both type 1 and type 3
immune responses and is known for its crucial role in host defense in response to infections
and injuries, in the induction of proinflammatory proteins, as well as in the promotion
of the differentiation of Th17 cells [25]. Additionally, IFN-γ is a major cytotoxic T-cell
proliferator [26].

MIP-1α is primarily a macrophage-derived chemokine known for its proinflammatory
capabilities and the chemotaxis of eosinophils, macrophages, and lymphocytes [27]. Inter-
estingly, MIP-1α, as well as RANTES, is also associated with the proliferation of airway
smooth muscle, leading to airway tissue remodeling [28,29]. Moreover, during bronchiolitis,
the increased expression of MIP-1α has been associated with the severity of illness, a longer
duration of supplemental oxygen therapy [30,31], and recurrent wheezing [32]. However,
the latter was only observed in hospitalized children, and comparisons were not made with
non-hospitalized children.

RANTES, a known chemoattractant of eosinophils, basophils, monocytes, and lym-
phocytes, is commonly recognized as a type 2 inflammation-associated chemokine [33,34].
However, in recent studies, it has also been suggested to have a more pleiotropic role in
cell-mediated immunity. Furthermore, in a recent study, a decreased expression of RANTES
from PBMCs after RV infection was observed in children with asthma compared to non-
asthmatic children [35]. This finding is in line with our results. ENA-78 is primarily known
for the chemotaxis of neutrophil, particularly during the early stages of infection [36], and
moreover, ENA-78 is indirectly involved in B-cell chemotaxis via CXCL13 [37].

Interestingly, the children who were treated as outpatients showed a more profound
anti-inflammatory cytokine response characterized by increased levels of IL-10, which is
associated with Treg responses, compared to those who were treated as inpatients. IL-10 is
crucial in downregulating the inflammatory effects of type 1–3 inflammation. However,
the data concerning the effects of IL-10 in bronchiolitis are contradicting. Though increased
levels of IL-10 have been reported to be associated with recurrent wheezing [38], and lower
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IL-10 levels have been shown to be associated with more severe diseases [39], conversely, IL-
10 has not been reported to play a role in the severity of disease [40]. Interestingly, a study
focusing on IL-10 over-expression in a transgenic mouse model indicated that IL-10 had a
dualistic effect regarding the severity of illness in RSV infection (attenuating in the acute
phase, but in later phases, the effect might be additive), suggesting that the levels and the
effect of IL-10 are time-dependent [41]. This finding is in line with our results. In addition,
a prior study observing the cytokine responses from ILC2s showed diminished cytokine
levels of IFN-γ and IL-10 in children with recurrent wheezing compared to children with
viral bronchiolitis [42]. This observation aligns with our own findings.

Surprisingly, the non-hospitalized children were also characterized by more of a
marked pro-inflammatory response compared to the hospitalized children, as demonstrated
by the higher expressions of IFN-γ, TNF-α, and MIP-1α. This may indicate that both closely
controlled pro- and anti-inflammatory responses are required to adequately absolve the
initial infection, leading to less severe illness. Importantly, the dysregulation of Treg cells
has been associated with more profound type 2-skewed immune responses, contributing to
asthma development [43].

In our previous studies, we demonstrated that the cytokine profiles of children infected
with RV and RSV differ from each other and that HBoV1, while occurring as a coinfection
with RV, decreases the overall cytokine response in the first severe wheezing episode [8,9].
Thus, this emphasizes the possibility of different bronchiolitis endotypes. This study is in
line with these results. RV-associated wheezing illness, at least partly, shares both clinical
and pathophysiological asthma-like characteristics [1]. While the cytokine expression
in both study groups generally resembled each other, the children who were treated as
outpatients appeared to express a more robust and more controlled cytokine response
overall (pro- and anti-inflammatory) compared to those who were treated as inpatients.

While the activation of PBMCs via anti-CD3/anti-CD28 closely resembles the natural
activation of T-cells via the T-cell receptor [44], variations in stimulation protocols can
induce modifications in cytokine response profiles. Consequently, a comparison of our
results to those from other studies differing in stimulation protocols presents a challenge,
and our findings should be validated under comparable conditions. Intriguingly, certain
significantly different cytokine responses were not derived from T-cells. Conversely, the
activation of PBMCs under the presence of anti-CD3/anti-CD28 may lead to the indirect
activation of other types of lymphocytes, leading to a heightened expression of non-T-cell-
derived cytokines [45]. The cytokine assays used in our study were broad and capable of
detecting various inflammatory responses beyond those originating solely from T-cells.
This was partly intentional, given the novelty of our study design and protocol, making it
difficult to predict specific cytokine differences or responses.

The current study is fortified by numerous strengths, including the careful selection of
study participants, thorough viral diagnostics, and in-depth analyses of cytokine response
profiles. The original hypothesis of our current study aimed to differentiate cytokine
responses between the hospitalized and non-hospitalized children and, therefore, the
absence of a “control” group. Nevertheless, our study also exhibits some limitations. Firstly,
while an a priori power calculation was carried out to test our primary hypothesis, there was
no power calculation for this analytic design, and the moderately limited number of study
subjects prevented the use of ideal multivariable model analyses. Nonetheless, both study
groups originated from a novel bronchiolitis subgroup. Secondly, the restricted volume of
culture medium posed a challenge in the execution of the dilution series, leading to the
fluorescence of several cytokines to exceed the upper limit of quantification, consequently
complicating the analyses of these cytokines. Nevertheless, the quantity of impacted
cytokines was modest (Table S1). Thirdly, although different RV serotypes may exhibit
distinct behaviors and trigger the immune system through different mechanisms, the cases
in our study were mainly RVA- or RVC-positive with no RVB infections identified. However,
RVA and RVC are both associated with more severe disease, which may explain the lack of
differences between the serotypes. Fourthly, flow cytometry was not performed. Therefore,
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there is a possibility that the differences in cytokine responses may, at least partly, reflect the
differences in the proportion of PBMCs that are T-cells between the study groups. However,
contrary to this, the differences were not universal across all cytokines, and in 80% of the
analyses, no significant difference was found between the study groups, indicating that
the expression of those cytokines was equal. Further, the cytokine responses observed
from the PBMCs stimulated with anti-CD3/anti-CD28 may vary from the responses in
other regions of the body, such as in the respiratory tract. Finally, despite the fact that early
wheezing disease in children infected with RV has been more strongly associated with risks
of both subsequent recurrencies and asthma compared to other viral agents [7], due to the
restricted sample size, the long-term prognoses of the study groups could not be assessed.

In summary, our current study supports the emerging assumption that bronchiolitis
is a spectrum encompassing different endotypes. Our findings also support that robust
and controlled cytokine and chemokine responses are required to avoid the need for
hospitalization. Our study also reveals potential new biomarkers for early events of asthma
in high-risk cohorts, namely first-time wheezing children infected with RV. However,
further trials are warranted.
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Abbreviations

ENA-78 epithelial-derived neutrophil-activating peptide 78, CXCL5
IFN-γ interferon gamma
IL-1β interleukin 1 beta
IL-10 interleukin 10
MIP-1α macrophage inflammatory protein-1 alpha
PBMC peripheral blood mononuclear cell
RANTES Regulated upon activation, normal T-cell expressed and presumably secreted, CCL5
TNF-α tumor necrosis factor-alpha
RV rhinovirus
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