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Abstract: As solid organ transplant (SOT) recipients remain at risk of severe outcomes after SARS-
CoV-2 infections, vaccination continues to be an important preventive measure. In SOT recipients
previously vaccinated with at least three doses of BNT162b2, we investigated humoral responses
to BNT162b2 booster doses. Anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin G
(IgG) was measured using an in-house ELISA. Linear mixed models were fitted to investigate the
change in the geometric mean concentration (GMC) of anti-SARS-CoV-2 RBD IgG after vaccination in
participants with intervals of more or less than six months between the last two doses of vaccine. We
included 107 SOT recipients vaccinated with a BNT162b2 vaccine. In participants with an interval of
more than six months between the last two vaccine doses, we found a 1.34-fold change in GMC per
month (95% CI 1.25–1.44), while we found a 1.09-fold change in GMC per month (95% CI 0.89–1.34)
in participants with an interval of less than six months between the last two vaccine doses, resulting
in a rate ratio of 0.82 (95% CI 0.66 to 1.01, p = 0.063). In conclusion, the administration of identical
COVID-19 mRNA vaccine boosters within six months to SOT recipients may result in limited humoral
immunogenicity of the last dose.

Keywords: solid organ transplant recipient; COVID-19; vaccine; booster; SARS-CoV-2; BNT162b2;
immunogenicity
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1. Introduction

After infection with SARS-CoV-2 solid organ transplant (SOT), recipients remain at risk
of severe outcomes due to COVID-19 [1–3]. Although SOT recipients elicit inferior responses
to COVID-19 mRNA vaccines compared to healthy populations [4–7], vaccination is an
important preventive measure to lower the risk of severe disease in SOT recipients [2,8–14].

Although no protective antibody concentration threshold has been established, lower
SARS-CoV-2 antibody concentration has previously been reported to be associated with
increased risk of severe COVID-19 [15,16]. A third primary dose and additional booster
doses have been shown to improve humoral immune responses and vaccine effectiveness
in SOT recipients [4,8,13,14,17–23]. Furthermore, booster doses have been recommended
as both humoral immunity and the effectiveness of COVID-19 mRNA vaccines wane over
time [5,7,24]. Hence, many SOT recipients have been vaccinated with multiple COVID-19
mRNA vaccine boosters. In Denmark, most SOT recipients have received monovalent
BNT162b2 vaccines as the first four vaccine doses and bivalent BNT162b2 Original/BA.1
or BNT162b2 Original/BA.4-5 as the fifth vaccine dose.

Although the WHO recommends an interval between the administration of COVID-19
booster doses of 6–12 months in immunocompromised individuals [25], Australian health
authorities recommend COVID-19 vaccination of immunocompromised individuals ev-
ery six months [26], and the Centers for Disease Control (CDC) recommends at least a
two-month interval between COVID-19 booster doses [27]. Evidence on the impact of the
interval between boosting with COVID-19 mRNA vaccines on humoral responses in SOT
recipients is limited to studies indicating a beneficial effect of an extended interval between
the first and second vaccine dose and second and third vaccine dose in immunocompe-
tent populations [28–32]. Depending on the timing of both future SARS-CoV-2 surges
and modifications of the available COVID-19 mRNA vaccines, repeated vaccination with
identical epitopes might become relevant again in the future. As most SOT recipients have
received a primary vaccine series of three or more vaccines, we aimed to investigate the
impact of time between identical COVID-19 mRNA booster vaccine doses on humoral
vaccine responses among SOT recipients previously vaccinated with three or more doses
of BNT162b2. We hypothesized that a shorter interval between booster doses impacts
humoral responses negatively.

2. Methods
2.1. Study Design

This study is a prospective observational cohort study of immune responses to SARS-
CoV-2 infections and vaccinations in SOT recipients followed at Copenhagen University
Hospital, Rigshospitalet. Vaccination against SARS-CoV-2 in Denmark was initiated on
27 December 2020. From January 2021 through April 2021, adult kidney, liver, and lung
transplant recipients who had not yet received their second SARS-CoV-2 vaccine dose
were invited to participate. From July 2021, adult kidney, liver, and lung transplant recip-
ients were invited to participate regardless of vaccination status. Blood was collected at
predefined times at study entry, approximately 3 weeks, 2 months, 6 months, 12 months,
18 months, and 24 months after the first SARS-CoV-2 vaccine dose, regardless of the ad-
ministration of additional SARS-CoV-2 vaccine doses. The results from the first 12 months
of the study have previously been described [5,6].

In this study, we used results from samples collected at 18 months and 24 months.
Since we aimed to study the impact of time between identical COVID-19 mRNA vaccine
booster doses on humoral vaccine responses among SOT recipients previously vaccinated
with three or more doses of BNT162b2, the 18-month samples were defined as the baseline,
and 24-month samples were defined as follow-up in the present study. To be included,
participants had to have provided both a baseline and follow-up sample and have been
vaccinated with a monovalent or bivalent BNT162b2 vaccine between baseline and follow-
up (Figure 1). Participants with fewer than three vaccine doses before the baseline and
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participants vaccinated with any other COVID-19 vaccine than BNT162b2 at any time prior
to the follow-up sample were excluded.
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Figure 1. A schematic graphic showing the timeline of vaccinations and blood sampling in the study.
Syringes indicate the time of vaccination and blood vials indicate the time of blood sampling.

All participants provided written and oral informed consent. The study was conducted
in accordance with the declaration of Helsinki and approved by the Regional Scientific
Ethics Committee of the Capital Region of Denmark (H-20079890).

2.2. Clinical Information

Data on demographics, transplantation-related variables, medication, comorbidities,
and acute graft rejections were collected from medical records. Vaccination information
was collected from the Danish Vaccination Register (DDV) [33] (since 2015, it has been
mandatory to register all vaccines administered in Denmark in DDV). Data on SARS-CoV-2
PCR tests were collected from the Danish Microbiology Database (MiBa), which contains
information on all SARS-CoV-2 PCR tests conducted in the primary sector, hospitals, and
SARS-CoV-2 test centers in Denmark [34].

2.3. Definitions

Participants were defined as infected before baseline if they had nucleocapsid (N)
antibody-positive blood samples and/or positive SARS-CoV-2 PCR test at or before baseline.

Participants were defined as infected between baseline and follow-up if they had
N-antibody-negative samples at baseline and N-antibody-positive samples at follow-up
and/or positive SARS-CoV-2 PCR tests between baseline and follow-up. Participants
without any N-antibody-positive samples and without any positive SARS-CoV-2 PCR tests
were defined as infection-naïve.

The time between the last two BNT162b2 vaccine doses was defined as the number of
days from the last previous BNT162b2 vaccine dose to the BNT162b2 vaccine dose adminis-
tered between baseline and follow-up. If the interval was more than 183 days, participants
were defined as having a more than six months interval between the last two vaccine doses.
The time between the last two BNT162b2 vaccine doses was dichotomized as more or
less than six months to reflect the WHO recommendation of at least a six-month interval
between booster doses in immunocompromised individuals [25].

2.4. Antibody Quantification

In all participants, both ancestral strain anti-SARS-CoV-2 receptor binding domain
(RBD) immunoglobulin G (IgG) antibodies and ancestral strain N-antibodies were mea-
sured. The concentration of anti-SARS-CoV-2 RBD IgG antibodies in venous blood was
determined using an in-house ELISA-based assay, as previously described [3,5,35,36]. The
threshold of a positive IgG response was set to 225 AU/mL based on a receiver operating
characteristic (ROC) curve analysis to estimate the optimal cut-off between serum from
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naturally infected convalescent individuals and serum from pre-pandemic individuals
obtained before COVID-19 emergence [35]. The presence of N-antibodies was measured
using the Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics GmbH, Mannheim,
Germany) on a Cobas 8000 analyzer system (Roche Diagnostics), according to the manufac-
turer’s instructions.

2.5. Statistics

Continuous independent variables were reported as medians with interquartile ranges
(IQR). Categorical independent variables were reported as frequency counts and per-
centages. The distribution of data was assessed by quantile–quantile plots. Geometric
mean concentrations (GMCs) with 95% confidence intervals (CIs) were calculated to report
anti-SARS-CoV-2 RBD IgG antibody concentrations at baseline and follow-up. To test for
differences in GMCs of SARS-CoV-2 anti-RBD IgG between baseline and follow-up, the
paired t-test was used. To calculate the change in GMCs of anti-SARS-CoV-2 RBD IgG per
month, linear mixed models were fitted. The dependent variable for the minimally adjusted
linear mixed models was the log10-transformed anti-SARS-CoV-2 RBD IgG concentration.
The independent variables were the time from baseline to follow-up, the interval between
the last two BNT162b2 vaccine doses (either as a continuous variable or dichotomized
as more or less than six months), and an interaction term between time from baseline to
follow-up and the vaccine dose interval variable, each treated as fixed effects. The inter-
action term allowed us to test whether the slope of the change in the dependent variable
differed between participants with more or less than six months interval between the last
two BNT162b2 vaccine doses. The intercept and slope were included as random effects. In
the adjusted models, we further adjusted for age, sex, time of last infection, and the use of
monoclonal antibody therapy within six months by adding the variables as fixed effects.
Estimates from the models were back-transformed to report the fold change in GMCs per
month and the rate ratio of fold change per month between participants with an interval
between the last two BNT162b2 vaccine doses of more and less than six months. To assess
the impact of SARS-CoV-2 infections on the results, linear mixed models were fitted after
excluding participants with SARS-CoV-2 infection between baseline and follow-up. In
sensitivity analyses, we investigated whether immunosuppressive maintenance therapy
modified the association between the monthly rate of change in GMCs of anti-SARS-CoV-2
RBD IgG and the time between the last two BNT162b2 vaccine doses by adding an in-
teraction term between the interval between the last two BNT162b2 vaccine doses and
maintenance immunosuppressive therapy, either defined as a calcineurin inhibitor (yes/no),
antimetabolite (yes/no) or corticosteroid (yes/no). All statistical analyses were performed
using R statistical software V 4.3.0 [37] and the lme4 package [38].

3. Results
3.1. Cohort Characteristics

Out of the 277 SOT recipients included in the VACCIM cohort, 107 were vaccinated
with a BNT162b2 vaccine between baseline and follow-up and had blood samples avail-
able at each time point, making them eligible for inclusion in this study (Figure 2). The
median age at baseline was 61.0 years (IQR 54–67), and 66 (61.7%) were male. We included
50 (46.7%) kidney transplant recipients, 38 (35.5%) liver transplant recipients, and 19 (17.8%)
lung transplant recipients. The median time from transplantation to baseline samples was
7 years (IQR 4–12), and 19 (17.8%) were retransplanted before inclusion. Calcineurin in-
hibitors were used as immunosuppressive maintenance therapy in 95 (88.8%) participants,
while 92 (86.0%) received an antimetabolite, and 73 (68.2%) received corticosteroids. Ev-
idence of a SARS-CoV-2 infection before baseline was present in 60 (56.1%) participants,
while 17 (15.9%) were infected between baseline and follow-up. There were 96 (89.7%)
participants who had an interval between their last two BNT162b2 vaccine doses of more
than six months, and 11 (10.3%) had an interval of less than six months between their last
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two BNT162b2 vaccine doses. Data on COVID-19 vaccines and other clinical characteristics
are shown in Table 1.
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Figure 2. Consort diagram. A diagram showing the number of eligible SOT recipients and reasons
for exclusion from the study.

Table 1. Cohort characteristics.

n = 107

Age at baseline, median [IQR] in years 61 [54, 67]

Male sex, n (%) 66 (61.7)

Time from transplantation to baseline, median [IQR] in years 7 [4, 12]

Transplant type, n (%)

Kidney 50 (46.7)

Liver 38 (35.5)

Lung 19 (17.8)

Re-transplantation, n (%) 19 (17.8)

Comorbidities, n (%)

Diabetes mellitus 24 (22.4)

Cardiovascular disease 81 (75.7)

Dialysis 2 (1.9)

Immunosuppressive maintenance therapy, n (%)

Tacrolimus * 72 (67.3)
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Table 1. Cont.

n = 107

Ciclosporin * 23 (21.5)

mTOR inhibitor * 17 (15.9)

Corticosteroids 73 (68.2)

Antimetabolites

None 15 (14.0)

Azathioprine 14 (13.1)

Mycophenolate 78 (72.9)

Time from baseline to follow-up sample, median [IQR] in
months 4.5 [3.9, 4.9]

Time from baseline sample to vaccination, median [IQR] in days 35 [21, 52]

Time from vaccination to follow-up, median [IQR] in days 98 [80, 114]

Number of vaccine doses at baseline, n (%)

3 10 (9.3)

4 92 (86.0)

5 5 (4.7)

Type of latest COVID-19 vaccine at follow-up, n (%)

Monovalent BNT162b2 5 (4.7)

Bivalent BNT162b2/BA.1 34 (31.8)

Bivalent BNT162b2/BA.4-5 68 (63.6)

Time between last two doses of COVID-19 vaccine, median
[IQR] in days 253 [241, 261]

Time between last two doses of COVID-19 vaccine, n (%)

More than six months 96 (89.7)

Less than six months 11 (10.3)

Time of latest SARS-CoV-2 infection, n (%)

Never infected 30 (28.0)

Before baseline 60 (56.1)

During follow-up 17 (15.9)

Monoclonal anti-SARS-CoV-2 antibody within six months
before baseline, n (%) 7 (6.5)

* Six participants received both a calcineurin inhibitor (tacrolimus or ciclosporin) and an mTOR inhibitor.

3.2. GMC of Anti-SARS-CoV-2 RBD IgG

In all participants, the GMC of anti-SARS-CoV-2 RBD IgG was 5299 AU/mL (95%
CI 3185–8816) at baseline and increased to 18,140 AU/mL (12,434–26,464) at follow-up
(p < 0.001). In participants with an interval of more than six months between their last
two BNT162b2 vaccine doses, the GMC of anti-SARS-CoV-2 RBD IgG increased from
5375 AU/mL (95% CI 3105–9307) at baseline to 20,282 AU/mL (95% CI 13,689–30,050) at
follow-up (p < 0.001), while we did not observe a statistically significant difference between
baseline and follow-up GMCs of anti-SARS-CoV-2 RBD IgG in participants with an interval
of less than six months between their last two doses of BNT162b2 vaccine (4680 AU/mL,
95% CI 1037–21,108 to 6849 AU/mL, 95% CI 1720–27267, p = 0.484) (Figure 3).
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Figure 3. Observed anti-SARS-CoV-2 RBD IgG concentrations in SOT recipients with intervals
between the last two BNT162b2 vaccine booster doses of more and less than six months. Boxplots
showing median log10-transformed concentrations of anti-SARS-CoV-2 RBD IgG with interquartile
ranges in SOT recipients with more (red) or less (blue) than six months interval between last two doses
of BNT162b2 booster vaccine doses, before (baseline) and after (follow-up) receiving the latest booster
dose. Each dot represents the observed individual concentration in each sample. Crosses (+) indicate
the mean of log10-transformed anti-SARS-CoV-2 RBD IgG concentrations. A paired t-test was used to
compare the mean log10-transformed anti-SARS-CoV-2 RBD IgG concentrations at baseline; p-values
are printed on the figure. The dashed horizontal line indicates the assay’s minimum threshold for an
IgG response.

3.3. Monthly Change in the GMC of Anti-SARS-CoV-2 RBD IgG

To assess the impact of time from the last vaccine dose on the rate of change in the
GMC of anti-SARS-CoV-2 RBD IgG per month from baseline to follow-up, we fitted linear
mixed models.

In the adjusted analysis, we found a 1.34-fold change in GMCs per month (95%
CI 1.26–1.44) in participants with more than six months interval between their last
two BNT162b2 vaccine doses, while we found a 1.09-fold change in GMCs per month
(95% CI 0.89–1.34) in participants with less than six months interval between their last
two BNT162b2 vaccine doses (Figure 4 and Table 2). The monthly rate of change in
participants with less than six months interval between the last two BNT162b2 vaccine
doses was 0.82 times (95% CI 0.66–1.01, p = 0.063) the monthly rate of change in par-
ticipants with more than six months interval between their last two BNT162b2 vaccine
doses (Figure 5).

After excluding participants who were infected between baseline and follow-up, the
monthly rate of change in GMCs in participants with less than six months interval between
their last two BNT162b2 vaccine doses was 0.79 times (95% CI 0.65–0.95, p = 0.011) the
monthly rate of change in participants with more than six months interval between their
last two BNT162b2 vaccine doses (Table 2 and Figure 5). When fitting models with the
interval between the last two BNT162b2 vaccine doses as a continuous variable, we found
that each 1-month increment in the duration of time between the last two BNT162b2 vaccine
doses was associated with an increase in the monthly rate of change of 4% in GMCs (rate
ratio: 1.04 (95% CI 1.01–1.08)/month, p = 0.022). After excluding participants who were
infected between baseline and follow-up, we found that each one-month increment in the
duration of time between the last two BNT162b2 vaccine doses was associated with an
increase in the monthly rate of change of 5% in GMCs (rate ratio: 1.05 (95% CI 1.02–1.08),
p = 0.001, Supplementary Table S1). In sensitivity analyses, we investigated whether
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immunosuppressive maintenance therapy modified the association found between the
monthly rate of change in the GMC of anti-SARS-CoV-2 RBD IgG and the time interval
between the last two BNT162b2 vaccine doses. We found no significant interactions
between immunosuppressive maintenance therapy and the time interval between the
last two BNT162b2 vaccine doses (Supplementary Table S2).

Viruses 2024, 16, x FOR PEER REVIEW 8 of 14 
 

 

who were infected between baseline and follow-up, we found that each one-month 
increment in the duration of time between the last two BNT162b2 vaccine doses was 
associated with an increase in the monthly rate of change of 5% in GMCs (rate ratio: 1.05 
(95% CI 1.02–1.08), p = 0.001, Supplementary Table S1). In sensitivity analyses, we 
investigated whether immunosuppressive maintenance therapy modified the association 
found between the monthly rate of change in the GMC of anti-SARS-CoV-2 RBD IgG and 
the time interval between the last two BNT162b2 vaccine doses. We found no significant 
interactions between immunosuppressive maintenance therapy and the time interval 
between the last two BNT162b2 vaccine doses (Supplementary Table S2). 

 
Figure 4. Predicted anti-SARS-CoV-2 RBD IgG concentrations in SOT recipients with intervals 
between their last two BNT162b2 vaccine booster doses of more and less than six months. Change 
in log10-transformed anti-SARS-CoV-2 RBD IgG concentration per month from baseline to follow-
up in SOT recipients vaccinated with a BNT162b2 booster vaccine between baseline and follow-up 
as predicted by a linear mixed model. Red represents SOT recipients with an interval of more than 
six months between the last two BNT162b2 vaccine booster doses. Blue represents SOT recipients 
with less than six months interval between the last two BNT162b2 vaccine booster doses. Shaded 
areas represent 95% confidence intervals. 

Figure 4. Predicted anti-SARS-CoV-2 RBD IgG concentrations in SOT recipients with intervals
between their last two BNT162b2 vaccine booster doses of more and less than six months. Change in
log10-transformed anti-SARS-CoV-2 RBD IgG concentration per month from baseline to follow-up
in SOT recipients vaccinated with a BNT162b2 booster vaccine between baseline and follow-up as
predicted by a linear mixed model. Red represents SOT recipients with an interval of more than six
months between the last two BNT162b2 vaccine booster doses. Blue represents SOT recipients with
less than six months interval between the last two BNT162b2 vaccine booster doses. Shaded areas
represent 95% confidence intervals.

Table 2. Monthly fold change in GMCs.

Vaccinated with Less than Six Months Interval Vaccinated with More than
Six Months Interval

Rate Ratio of Monthly Fold Change in GMCs
between SOT Recipients Vaccinated with Less

than 6 Months Interval and More than
6 Months Interval

n
Fold Change

in GMCs
per Month

95% CI n
Fold Change

in GMCs
per Month

95% CI Rate Ratio 95% CI p-Value

All 11 96

Crude 1.09 0.89–1.33 1.34 1.25–1.44 0.81 0.66–1.01 0.059

Adjusted 1.09 0.89–1.34 1.34 1.25–1.44 0.82 0.66–1.01 0.063

No infection
during

follow-up
10 80

Crude 0.97 0.82–1.15 1.24 1.17–1.32 0.78 0.65–0.93 0.007

Adjusted 0.99 0.83–1.17 1.25 1.18–1.33 0.79 0.65–0.95 0.011

Adjusted for age, sex, transplant type, time of last SARS-CoV-2 infection, and monoclonal SARS-CoV-2 antibody
therapy within six months of baseline, as appropriate.
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Figure 5. Forest plot of rate ratios between monthly fold changes in anti-SARS-CoV-2 RBD IgG
concentration in SOT recipients with intervals of more or less than six months between their last
two BNT162b2-containing vaccine doses. Results from linear mixed models showing rate ratios
between monthly fold changes in anti-SARS-CoV-2 RBD IgG concentration in SOT recipients with
intervals of more or less than six months between their last two BNT162b2 vaccine doses stratified by
SARS-CoV-2 infection status. Adjustments in models containing all SOT recipients included sex, age,
transplant type, infection status (infection-naïve, previous infection, and infected during follow-up),
and monoclonal antibody treatment within 6 months prior to the baseline sample. Adjustments in
models including SOT recipients not infected between baseline and follow-up included sex, age,
transplant type, infection status (infection-naïve and previous infection), and monoclonal antibody
treatment within 6 months prior to baseline sample. Adjustments in models including only infection-
naïve SOT recipients included sex, age, and transplant type.

4. Discussion

In this observational cohort study, we investigated the impact of time between
BNT162b2 booster doses on humoral immune responses in SOT recipients. Overall, we
observed an increase in the GMC of anti-SARS-CoV-2 RBD IgG in SOT recipients from
baseline to follow-up. In SOT recipients with more than six months interval between their
last two BNT162b2 vaccine doses, we observed an increase in the GMC of anti-SARS-CoV-2
RBD IgG between baseline and follow-up, while we did not observe a statistically signifi-
cant change in the GMC of anti-SARS-CoV-2 RBD IgG between baseline and follow-up in
SOT recipients with less than six months interval between the last two BNT162b2 vaccine
doses. Although, there was no statistically significant association between having a less
than six-month interval between the last two BNT162b2 vaccine doses and a lower rate
of monthly change in the GMC of anti-SARS-CoV-2 RBD IgG among all SOT recipients.
We found the association to be statistically significant when excluding SOT recipients with
SARS-CoV-2 infections between baseline and follow-up. This suggests that the administra-
tion of identical COVID-19 mRNA vaccines within an interval of less than six months may
have a limited impact on humoral immune responses.

To the best of our knowledge, no other previous studies have reported on the impact
of time between the administration of identical COVID-19 booster vaccine doses in SOT
recipients, but an extended interval between the first and second dose of BNT162b2 has
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previously been reported to enhance immunogenicity in immunocompetent populations.
Thus, it was found that in healthcare workers, a 6–14-week interval between the first and
second BNT162b2 dose resulted in both higher concentration of circulating antibodies and
higher neutralizing antibody titers compared to a conventional 3–4-week dosing inter-
val [29]. Furthermore, Parry et al. reported peak antibody concentrations to be higher
among elderly people vaccinated with an 11–12-week interval between the first two doses
of BNT162b2 compared to elderly people vaccinated with a 3-week dosing interval [30],
and Hall et al. found both antibody concentrations and neutralization titers to be higher
in healthcare workers who received two doses of BNT162b2 with 8–16 weeks interval
compared to healthcare workers who received two doses BNT162b2 with 3–6 weeks inter-
val [28]. Shaw et al. found a 12-week dosing interval between the primary and secondary
doses of BNT162b2 to result in higher antibody concentrations, higher neutralization titers,
and a slower decay of antibody concentration in the following six months than a 4-week
dosing interval between the first two doses of BNT162b2 in adults older than 50 years [31].
Prusinkiewicz et al. investigated the impact of time between the first, second, and third
vaccine doses in a cohort of Canadian paramedics and found that a longer interval between
both the first and second and the second and third vaccine doses was independently associ-
ated with increased immunogenicity [32]. Thus, the findings in other populations than SOT
recipients support our results, indicating a weaker humoral response when vaccinating
with a shorter interval between doses. Due to concerns about weak humoral responses
and findings showing improved humoral responses with the administration of additional
COVID-19 mRNA booster vaccines, SOT recipients have received multiple booster doses.
However, our results indicate that many boosters within short time intervals may not be
the optimal strategy to improve humoral responses.

A mechanistic explanation for improved humoral immunogenicity after longer inter-
vals between vaccine doses could be that a longer time interval allows for more time to
generate and mature B cells. Nicolas et al. compared a 3-week dosing interval to a 16-week
dosing interval in healthcare workers vaccinated with mRNA vaccines and found a longer
dosing interval to positively impact B-cell responses and maturity, while T-cell responses
were minimally affected [39]. Although Buckner et al. studied the impact of time from
SARS-CoV-2 infection to the administration of booster doses of mRNA vaccines, rather
than the time between vaccine doses, it is interesting that they found an interval between
infection and vaccination of less than 180 days to mute B-cell responses [40], as this may
indicate that repeated antigenic exposure beyond the primary vaccination series with an
interval of less than six months is ineffective in mounting a humoral immune response. In
our study, most participants were infected with SARS-CoV-2 prior to baseline. Importantly,
the frequency of previously infected participants and the time from the last infection did
not differ between participants vaccinated with intervals of more or less than six months
between the last two BNT162b2 vaccine doses in our cohort.

When considering what the optimal interval between the administration of COVID-19
mRNA vaccine booster doses is in SOT recipients, it is a major limitation that no correlate
of protection against disease has been established. Thus, although our study corroborates
previous evidence that a longer time interval between vaccine doses has a positive effect
on humoral immune responses, the clinical implications of our findings, including the
impact on protection against infection and protection against severe COVID-19, remain
to be elucidated. Scenarios may occur where viral mutations cause untimely surges of
new SARS-CoV-2 variants, and in such cases, early boosting to improve immunity in risk
groups may be tempting. Although our study does not provide evidence against such a
strategy, it does imply that the impact of time between vaccine doses should be taken into
consideration together with factors such as the waning of immunity and the effectiveness
of vaccines over time. Thus, our data corroborate the present WHO recommendation of
a six-month interval between booster doses in immunocompromised individuals when
considering how to achieve increased immunogenicity of a booster dose. However, in a
high-risk population such as SOT recipients, the potential benefits to immunogenicity of
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booster doses from longer intervals between doses may be outweighed by the potential
risks of waning immunity due to less frequent vaccinations, especially in situations with
high infection rates.

Our study had some limitations. Firstly, we only report on humoral responses to the
ancestral strain RBD of SARS-CoV-2, and although all vaccines administered in the present
study contained mRNA encoding both the ancestral and omicron strains’ SARS-CoV-2
Spike proteins, the current circulating SARS-CoV-2 variants and current vaccines are of
the omicron lineage. Thus, although the scope of the study was to report on the impact of
time intervals between booster doses when vaccinating with similar epitopes (the ancestral
strain), it would have added important information to also report the results of the humoral
response to the variant-updated parts of the vaccines. Secondly, we lacked data on cellular
responses to vaccination. Lastly, the results should be interpreted carefully due to the
relatively small number of participants (n = 11, 10.3%) with an interval between vaccine
doses of less than six months. Our study had strengths as well. Due to well-maintained
national Danish registries and the use of an N-antibody assay, we had accurate data on
the time of both vaccinations and SARS-CoV-2 infections. Furthermore, we examined
the impact of following current recommendations and provided novel evidence to guide
future policies.

In conclusion, administration of identical COVID-19 mRNA vaccine boosters within six
months to SOT recipients may result in limited humoral immunogenicity of the last dose.
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