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ABSTRACT: Bituminous carbonate rocks of the Upper Cretaceous Shu’ayb Formation from the Ajloun outcrop in Northern
Jordan were geochemically and petrologically analyzed in this study. This study integrates kerogen microscopy results with
geochemical results (i.e., biomarker, stable carbon isotope, and major elemental compositions) to understand the organic matter
(OM) inputs and to reveal the dispositional setting and its effect on the occurrence of OM. The Shu’ayb bituminous carbonate rocks
have high total organic carbon (TOC) and sulfur (S) contents, with average values of 12.3 and 4.59 wt %, respectively, indicating
redox conditions during their precipitation. The high abundance of alginite (i.e., lamalginite) in the Shu’ayb bituminous carbonate
sediments is a further evidence for redox conditions. The finding of mainly marine-derived OM was also demonstrated by the
biomarker distribution and carbon isotope composition. The biomarkers are represented by a narrow Pr/Ph ratio of up to 0.97,
abundance of tricyclic terpanes, and high C27 regular sterane, indicating that the OM was primarily derived from phytoplankton
algae, along with small amounts of land plant-derived materials, and were accumulated under reducing conditions. The studied
Shu’ayb bituminous carbonate facies is composed of mainly calcium (CaO; average, 45.10 wt %), with significant amounts of silicon
(Si2O3; avg., 9.35 wt %), aluminum (Al2O3; avg., 6.91 wt %), and phosphorus (P2O3; avg., 1.47 wt %) and low amounts of iron
(Fe2O3) and titanium (TiO2) of less than 1 wt %, indicating that the detrital influx was low in an open water depth system with
higher primary bioproductivity. The geochemical proxy suggests that the Shu’ayb bituminous carbonate facies was established in a
saline water environment, with Ca/Ca + Fe and S/TOC values of more than 0.9 and 0.50, respectively, which could be attributed to
the increase in reducing conditions of the water column. The chemical index of alteration values of more than 0.8 also indicate that
the Shu’ayb bituminous carbonate facies formed during warm and humid climatic conditions, thereby resulting in intense subaerial
weathering.

1. INTRODUCTION

Organic matter (OM)-rich fine-grained rocks such as shale,
mudrock, and carbonate have been increasingly considered as
conventional and unconventional oil and gas resources.1−3

These organic-rich sedimentary rocks were deposited in both
marine and continental environments and have recently become
an essential target resource for oil exploration in petroleum-
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Figure 1. (A) Geographic map of Jordan showing the Wadi Ajloun area in Northern Jordan and (B) the Ajloun area showing the geological exposures
of various geological formations.
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producing sedimentary basins of the world.2,4 Most of the fine-
grained organic-rich sediments contain noticeable quantities of
more than three percent OM and were deposited under redox
conditions.5−7 However, several environmental factors such as
water column oxygenation levels and climatic conditions
together with other factors of weathering, clay content,
sedimentation rates, and sea-level change have seriously
impacted the OM in these organic-rich sediments.8−11

This study focuses on Jordanian oil shales, which possess
resources of more than 65 billion tons of oil shale deposits.12

Jordanian basins include a number of OM-rich horizons, such as
the Upper Cretaceous bituminous sediments.13−19 The Upper
Cretaceous (OAE2) sediments are characterized by fine-grained
organic-rich facies of black shale, calcareous shale, and marl and
are considered key factors for water column bioproductivity and
preservation of OM during reducing conditions.13−17

The Shu’ayb Formation in Northern Jordan was deposited
during this time. The Upper Cretaceous Shu’ayb bituminous
carbonates in northern basins of Jordan have recently attracted
researchers’ attention and upstream exploration ventures due to
the superior source rocks found in these basins and oil
generation potential, with the high total organic carbon
(TOC) content reaching 12 wt %.19 The Shu’ayb organic-rich
carbonate sediments are enriched in sapropelic OM and belong
to one of the high-quality oil-source rocks in Northern Jordan’s
basins.19 A preliminary study proposed that the bituminous
carbonates mainly contain Types I and II kerogen, which can
generate profitable amounts of sulfur-rich oil during the early
mature stage of the oil window.19

Although previous works have focused on the geochemical
assessment of the bituminous carbonate facies in the Shu’ayb
Formation and its ability for oil generation potential,19 little is
known about the depositional environment factors and their
implication for understanding the organic carbon accumulation
in the Upper Cretaceous sequence in Northern Jordan.
Therefore, the main objective of this study was to understand
the source of OM, depositional environment factors (i.e.,
paleoredox, paleosalinity, and warm climatic conditions) that
influenced the organic carbon productivity and preservation in
the Shu’ayb bituminous carbonate rocks. In this case, the current
study integrated geochemical results with new findings of
biomarker and carbon isotope composition as well as inorganic
geochemical studies of the bituminous carbonate rocks within
the Upper Cretaceous Shu’ayb bituminous carbonate strata at
the Ajloun outcrop, Northern Jordan, using multigeochemical
techniques together with organic petrology.

2. GEOLOGICAL SETTING
Tectonic movements during Cenomanian time significantly
influenced the depositional environment in the eastern part of
Neo-Tythes. This shift can be documented in the sediments
deposited during that time.20

In Jordan, a recognizable layer of organic-rich sedimentary
rocks was deposited within the inner/midshelf overlaid by
shallow subtidal to supratidal inner-shelf platform deposits.21−23

The study area is situated in the northwest of Amman, and the
investigated site lies along the Ajloun-Irbid Road (Figure 1A).
The area is characterized by a complex topography with steep
reliefs. The elevation within the area ranges between 945 m in
the northern part and 918 m above the sea level (ASL) in the
southern part of the study area. However, numerous structural
features such as folding and faulting in the study area indicate
that the Ajloun area was subjected to different tectonic and

structural movements; these movements led to the formation of
the so-called Ajloun Dome.21,24

The Upper Cretaceous rocks are exposed in the Wadi Ajloun
area, Northern Jordan, and consist of limestones, marly
limestone, and soft marl which belong to the Ajloun Group.25

The Ajloun Group is divided into formations, from bottom to
top as follows: 1) Fuhays, 2) Hummar, 3) Shu’ayb, and 4) Wadi
As Sir (refer to Figure 1B). A sequence of marls at the bottom
(The Fuhays Formation), massive dolomitic limestone
(Hummar Formation) in the middle and, chalky limestones
and organic-rich chalky marls (Shu’ayb Formation) at the top
were deposited during the early Cenomanian to the early
Turonian age.26

The Ajloun section, which belongs to the Shu’ayb Formation
(Figure 2), consists mainly of massive crystalline fossiliferous

limestones at the bottom. White, hard chalk containing many
fossil forms such as gastropods, ostracods, and bivalves is
observed just below the organic-rich sediments. Layers of marly
limestones characterized by a high concentration of OM and an
abundance of macrofossils occur within the massive limestone
layer (Figure 2). This layer underlies sequences of marls and
limestones, which also include high organic carbon contents.
Veins filled with siliceous-free crystals can be observed in
siliceous chalk. Hard siliceous chalky limestones with moderate
contents of microfossils such as ostracods become dominating
upward.24,27,28 This formation varies in thickness, starting from
3 m within the top part and the thickness increasing downward.
The organic-rich beds contain varying amounts of bioturbations,
alongside large fossils such as gastropods, burrows, and bivalves;
these kinds of fossils were depositedmainly within amoderate to
subtidal marine environment.24 The Shu’ayb Formation in the
study area has a total thickness from the base to the top around 3
m and comprises three beds enriched in OM, with a TOC
content of up to 12.3 wt %.19

Figure 2. Sedimentary log and field photograph of the studied Shu’ayb
Formation in the study area. The field photograph was taken by
Mohammad Alqudah.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02582
ACS Omega 2024, 9, 27458−27479

27460

https://pubs.acs.org/doi/10.1021/acsomega.4c02582?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02582?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02582?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02582?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. MATERIALS AND EXPERIMENTAL METHODS
A section from the Ajloun exposure in Wadi Ajloun, Northern
Jordan, containing 15 bituminous carbonate samples of the
Shu’ayb Formation was investigated (Figure 2). However, the
pretreatment process was done on the samples by cleaning up
the weathered surfaces prior to performing the geochemical and
petrological analyses.

The ground bituminous carbonate samples were analyzed
geochemically and by microscopic examination. Other inves-
tigations, including the TOC content, sulfur (S) content, carbon
isotope composition, gas chromatography−mass spectrometry
(GC−MS), and X-ray fluorescence (XRF) analysis, were
conducted on the samples. These analyses were performed at
different geochemical and organic petrological laboratories in
the universities (i.e., University of Malaya in Malaysia, Al-Bayt
University in Jordan, and Calgary University in Canada).

3.1. Microscopic Examinations. The whole bituminous
carbonate samples underwent organic petrological examination
and organic facies analysis using a standard polished block
procedure,29 as described in the following subsection. In this
case, the entire rock volume of the samples was ground into
small portions in the range 1.5−2 mm and then gathered with a
SeriFix resin and a hardener agent. Then, the surface was
smoothed by silicon carbide paper and alumina powder
following the standard procedure of ASTM D2797-04. The
resultant blocks were then examined using a LEICA DM4
microscope under white light with an oil-immersion medium,
cross-polarized, and under UV light. The OM input and its
morphology were examined under a fluorescence microscope
using a mercury (Hg) lamp for the UV light analysis.

3.2. Organic Geochemical Analyses. The TOC and S
contents and gas chromatography−mass spectrometry (GC−
MS)were conducted on the samples. The analysis of TOC and S
(weight percent) contents of finely milled (60 μm) 15 samples
was performed by a LECO CS244 analyzer. Carbonate minerals
were removed from the sample using 10% dilute hydrochloric
acid.

Of these 15 samples, the free bitumen in the studied organic-
rich samples was extracted from 10 crushed samples (30 g) using
Soxhlet extraction for 72 h, with a mixed solvent of
dichloromethane and methanol. The extracted bitumen was
then fractioned into saturate, aromatic, and polar fractions using
different polarity solvents and applying a medium-pressure
liquid chromatography separation method.

Later, the saturated hydrocarbon fraction was analyzed using
GC−MS to pick the biomarker compounds using an Agilent
GC−MS HP 5975B MSD equipped with a flame ionization
detector. The capillary column of the GC−MS apparatus had a
diameter of 0.32 mm, a length of 30 m, and a film thickness of
0.25 μm. In the GC−MS furnace, the samples were heated from
40 to 300 °C (the rate was approximately 4 °C/min), and then
the temperature was fixed at 300 °C for 30 min. Finally, the
saturated HC fraction was separated into biomarker com-
pounds, including normal alkanes, hopanoids, isoprenoids,
steranes, and terpanes, which were detected and quantified
from their peak heights from m/z 85, 191, and 217 (see
Appendix).

In addition, 15 bituminous carbonate samples from the
Shu’ayb Formation in the Ajloun section were also subjected to
stable carbon isotope analysis. The samples were crushed and
powdered prior to analysis on a mass spectrometer at Calgary
University (Canada). All values reported here are based on the

standard δ-notation relative to the Vienna PDB (Pee Dee
Belmenite) standard.

3.3. XRF Analysis. The presence of inorganic compounds
such as trace metals (e.g., silicon, manganese, aluminum, and
iron) and the elemental compositions of the Shu’ayb bituminous
carbonate samples were determined by XRF analysis at the
Water, Environment and Arid Regions Research Center, Al Al-
Bayt University. In this analysis, the bulk 15 bituminous
carbonate ground samples were passed through 200 meshes and
analyzed using an XRF apparatus to measure the main major
oxides (i.e., CaO, SiO2, Al2O3, Fe2O3, K2O, MgO, P2O5, Na2O,
and TiO2).

4. RESULTS
4.1. Microscopic Features. Microscopic examinations

were performed on Shu’ayb bituminous carbonate samples
under white and UV light, as shown in Figures 3 and 4,

respectively. A high percentage of liptinite and a smaller quantity
of vitrinite macerals are the dominant organofacies (Figure 3).
Liptinites include structured and unstructured OM, with
fluorescence colors fluctuating from greenish to orange and
yellow (Figure 3B,D,F). However, alginite is the most common
group found within the liptinites (Figure 3A−F), which
appeared as a lamalginite algae based on its morphology.
Lamalginite arose from algae and was placed in lamellae (Figure
3A−F). However, the lamalginite assemblages are assumed to
have formed in aquatic medium.17,29−31 Other unstructured
OM such as bituminite was also recognized in the studied
Shu’ayb carbonate samples (Figure 3E), which have a greenish
fluorescence under UV light (Figure 3F).

Figure 3. Photomicrographs of the investigated organic-rich carbonates
of the Upper Cretaceous Shu’ayb Formation, under reflected light and
fluorescence under UV, with a field width of 0.2 mm, showing (A−D)
alginite, mainly lamalginite, and (E and F) unstructured bituminite OM
associated with lamalginite algae.
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In addition, foraminifera assemblages are dominant in the
studied Shu’ayb samples, which were infused with the mineral
matrix and characterized by a greenish fluorescence when
examined under UV light (Figure 4). The common identified
foraminifera are planktonic foraminifera (p) species, including
Globigerina connecta sp., Globigerina falconensis sp., Orbulina
bilobata sp., and Heterohelix sp. (Figure 4).

4.2. TOC and Sulfur Contents. TOC content is exclusively
used to understand organic-richness during deposition, conven-
tionally reported as a function of preservation of OM during
reducing environmental conditions.

In this study, the TOC results show that all samples are rich
and exhibit high values, ranging from 1.20 to 12.30 wt % (Table
1); most of the samples have a TOC range of 2.45−12.30 wt %,
whereas four samples exhibited relatively low TOC values
between 1.20 and 1.50 wt % (Table 1). Consequently, all the
examined bituminous carbonate samples of the Shu’ayb
Formation were accumulated under redox conditions. However,
the measured high TOC content alone is insufficient to assess
the redox conditions; accordingly, biomarker fingerprints also
pointed to the source of OM and its environmental condition,
which are explained in the following sections.

The total sulfur (TS) content in the Shu’ayb bituminous
carbonate samples was also measured and ranged from 2.09 to
4.59 wt % (Table 1). Most of the analyzed samples have TS
values of more than 2.5 wt %, while other limited samples show
lower TS values between 2.09 and 2.40 wt % (Table 1).
However, the S content usually distinguishes marine environ-
ments from nonmarine.32,33 In this case, Wei and Algeo33

indicated that the sediments deposited within marine environ-
ments show the sulfur content ranges from 0.48 to 1.69 wt %,
and TOC contents are more than 2%, while the sediments

deposited in freshwater environments have the values of TS
range from 0.03 to 0.16 wt %. Accordingly, the Shu’ayb
bituminous carbonate facies was mainly deposited in a marine
setting, with a high S content of up to 4.59 wt % (Table 1).

4.3. Stable Carbon Isotope (δ13C) Composition. The
carbon isotope (δ13C) composition of OM in the Shu’ayb
bituminous carbonate facies was determined, and the analyzed
samples revealed a range of δ13C values for OM from −28.90 to
−31.40‰, as detailed in Table 1. The δ13C values can be
distinguished into nonmarine and marine OM inputs, as
suggested by Sofer34 and Summons et al.35 Specifically, lower
δ13C values (less negative) revealed the terrigenous origin, while
higher lighter δ13C values (more negative) suggested marine
OM source. Consequently, the examined bituminous carbonate
samples of the Shu’ayb Formation appeared to be of marine
origin, with little input from terrigenous OM.

4.4. Major Oxides. The abundances of major oxides, with
their geochemical ratios, are given in Table 1. The studied
Shu’ayb bituminous carbonate samples have higher CaO, SiO2,
and Al2O3 when compared with other oxides (Table 1). The
amount of CaO, SiO2, and Al2O3 in most of the studied samples
range from 12.03 to 63.29 wt %, from 11.26 to 44.57 wt %, and
from 11.26 to 44.57 wt %, respectively (Table 1). The Shu’ayb
carbonate samples are also depleted in Fe2O3, P2O5, NaO2,
MgO, K2O, TiO2, and MnO, respectively (Table 1). However,
Al2O3 and SiO2 are strongly correlated, as observed from
relatively low Si/Al ratios of 1.02 and 1.66 (Table 1) and the
positive correlation between Al2O3 and SiO2 (Figure 5A),
suggesting that Si in the studied samples was mainly from clay
minerals rather than from the quartz mineral.36−38 It appears
that the presence of clay minerals in the analyzed samples is
confirmed by the positive correlations between both Al2O3 and

Figure 4. Photomicrographs of the investigated organic-rich carbonates of the Upper Cretaceous Shu’ayb Formation, under reflected white and blue
lights, with a field width of 0.2 mm, showing different types of planktonic foraminifera assemblages (A,B) Globigerina connecta sp., (C,D) Orbulina
bilobata sp., (E,F) Heterohelix sp., (G,H) Globigerina falconensis sp., and (K,J) Orbulina bilobata sp.
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K2O together with TiO2, as indicated by the adjusted R2 values
of 0.75 and 0.85 (Figure 5B,C). These correlations suggest the
existence of Ti within clay lattices and low detrital input.39

Furthermore, different salinity, climate, paleoproductivity,
and detrital influx proxies were estimated depending on the
amounts of their major elements. These geochemical ratios are
Si/Al, P/Ti, K/Al, Ti/Al, Al/Ti, Ca/Ca + Fe, Al/Al + Fe, and the
chemical index of alteration (CIA) value, which were found to
be in the range of 1.02−1.66, 6.96−7.85, 0.04−0.05, 0.02−0.04,
27.36−41.08, 0.87−0.89, 0.97−0.99, 0.87−0.89, and 0.87−0.93,
respectively (Table 1). These ratios of salinity, paleoclimate,

detrital influx, and water depth of the depositional environment
setting aremarkedly similar to each other and to the TOCprofile
(Figure 6).

4.5. Hydrocarbon and Biomarker Distributions.Hydro-
carbon distributions of some saturated HC fractions of OM in
samples such as normal alkane, acyclic isoprenoid, terpane, and
sterane biomarkers were determined using the mass fragmento-
gram on m/z 85, 191, and 217 ions in GC−MS.
n-Alkane and acyclic isoprenoid distributions show that most

of the studied samples display a bimodal distribution along the
entire C15−C34 range (Figure 7). This hydrocarbon distribution

Figure 5. (A) Relationship between SiO2 and Al2O3 contents and (B,C) relationships between TiO2 and (B) K2O and (C) Al2O3K contents in the
studied carbonate-rich samples, showing that the Si and Ti elements are mainly sourced from clay minerals.

Figure 6.Chemostratigraphy distribution of TOC, TS, and geochemical ratios of Si/Al, P/Ti, K/Al, Ti/Al, Al/Ti, 100 × Mg/Al, Ca/(Ca + Fe), Al/(Al
+ Fe), and CIA for the Upper Cretaceous Shu’ayb Formation from the Ajloun outcrop in Northern Jordan.
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of the studied samples result in carbon preference index (CPI)
and waxiness index (WI) in the range of 1.01−1.41 and 1.05−
1.38, respectively, as shown in Table 2.

In addition, the chromatograms show that isoprenoid
hydrocarbons (Pr and Ph) predominate, aside from n-alkanes
(Figure 7). These acyclic isoprenoids and their relative ratios
(Pr/Ph, Pr/n-C17, and Ph/n-C18) are widely used to understand
the paleo-redox conditions.40,41 However, Ph generally
predominated over Pr in most of the chromatograms (Figure
7), resulting in a low Pr/Ph ratio of the majority of the studied

samples between 0.39 and 0.97 (Table 2). Moreover, the
isoprenoid ratios were also found based on the proportion of n-
C17 and n-C17 over Pr and Ph, with ratios from 0.40 to 0.62 and
from 0.33 to 1.13, respectively (Table 2).

A considerable number of hopanes, including C30 hopanes,
C29 norhopanes, and homohopanes of C31−C35, were detected
using m/z 191 mass fragmentograms (Figure 8A). They clearly
show that the frequency of C30 hopanes is relatively more than
that of C29 norhopanes (Figure 8A), resulting in relatively high
C29/C30 hopane values of 0.54−1.05 (Table 2). C31 hopane is

Figure 7. m/z 85 mass fragmentograms showing n-alkane and acyclic isoprenoid (e.g., pristane and phytane) distributions of the aliphatic fraction in
the extracted bitumen from the studied bituminous carbonate rock in the Ajloun area.
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also dominant when compared with the composition of
homohopane series (Figure 8A). However, the frequency of
C30 hopanes is also more than C31R homohopane and
gammacerane (Figure 8A), resulting in lower C31R/C30H
(0.25−0.55) and G/C30 (0.14−0.29) ratios (Table 2).

In addition, the m/z 191 data displayed high numbers of
tricyclic terpanes, ranging fromC19 to C26 (Figure 8A). Tricyclic

terpanes were identified by the significant numbers of C19, C20,
andC23 tricyclic terpanes (Figure 8A). The proportion of C23tri/
C24tri was found to be more than 1.8 (Table 2). Additionally,
several tricyclic terpane ratios such as C24Te/C24T and C26T/
C25T were calculated and used to infer about the depositional
environment setting, as discussed in the next subsections.

Figure 8.m/z 191 and 217 mass fragmentograms of the aliphatic fraction in the extracted bitumen from the studied bituminous carbonate rock in the
Ajloun area.
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Steranes and diastereomers were produced by the m/z 217
mass fragmentogram of the studied extracted samples (Figure
8B). Results showed that there was a significant abundance of
steranes (Figure 8B). The distribution of C27−C29 regular
steranes represented by a majority of C27 regular sterane, with a
minority of and C29 and C28 regular steranes (Figure 8B), which
provided ratios of 35.78−52.51% for C27, 27.77−43.25% for C29,
and 20.00−39.45% for C28 and a high C27/C29 regular ratio
between 0.83 and 1.94 (for more information, see Table 2).

In addition, polycyclic aromatic hydrocarbons like dibenzo-
thiophene (DBT) and phenanthrene (P) were recognized in the
unsaturated fractions of the studied samples using m/z 178 and
m/z 184 ions. The DBT/P ratio was calculated based on the
relative abundance of DBF and P and is a useful indicator of
depositional environment and lithologies.42,43 In this case, the
samples have a high DBT/P ratio of more than 1, ranging from
1.09 to 2.50, as shown in Table 2.

5. DISCUSSION
5.1. Origin and Source of Organic Matter Input.

Knowledge on the origin and source of OM input to the
bituminous carbonate rocks of the Shu’ayb Formation was
primarily obtained by employing multibiomarker proxies
together with kerogen microscopy.

The saturated and heterocyclic aromatic hydrocarbons,
supported by their ratios, provided important information for
assessing the OM input during the accumulation. As a result, the
bimodal distributions of hydrocarbon in the studied samples
revealed multisource OM with a substantial input of the marine
one.44,45 This deduction was further strengthened by the plot of
CPI vs WI (Figure 9A). Moreover, verification of the significant
influx of algal marine-derived OM into the Shu’ayb bituminous
carbonate rocks was done by analyzing the isoprenoids and their
ratios (Figure 9B,C).

Further, the understanding of the OM input was gained by
cross-verifying and utilizing hopane and terpane biomarkers
(Figure 8A), along with their ratios (Table 2). In this case, the
majority of the studied samples exhibited a C31R/C30 hopane
ratio of greater than 0.25 (Table 2), suggesting the origin from
marine source rocks.46,47 This observation was supported by the
correlation between the high C31R/C30 hopane ratio and the low
C26T/C25T ratio of less than 1 (Figure 10A). The higher DPT/P
ratio consistently more than 1 in the majority of the examined
samples is a suggestive indication of the marine origin of OM
input (Figure 10B).

The marine contribution of OM was further supported by the
distribution of tricyclic terpanes and their ratios, as detailed in
Table 2. The high occurrences of C23 tricyclic and relatively high

Figure 9. Geochemical biomarker results of the extracted bitumen from the studied bituminous carbonate rock in the Ajloun area, showing (A) CPI
versus waxiness degree and (B) pristane/n-C17 versus phytane/n-C18, and (C) pristane/n-C17 Pr/Ph, indicating that these bituminous carbonate
sediments contain mainly marine OM and deposited under anoxic environmental conditions.
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C24 tricyclic-to-C24 tetracyclic terpane ratio (Figure 8A),
associated with the C23triT/C24T ratio which exceeds 2 and
the C24te/C24T ratio of less than 1 (Table 2), suggesting a
tremendous evolution of marine OM into the Shu’ayb
bituminous carbonate strata (Figure 11A).

In terms of regular steranes, the examined oil shales showed
higher values of C27 over C29, with a substantial C27/C29 ratio
exceeding 1 (Table 2). This elevated ratio supports the presence
of marine OM, especially with significant input from algae
(Figure 11B). The interpretation was further supported by the
distribution pattern of C27 to C29 regular steranes, indicating that

Figure 10.Geochemical biomarker results of the extracted bitumen from the studied bituminous carbonate rock in the Ajloun area, showing (A)CR31/
C30 homohopane versus C26/C25 tricyclic terpane ratio and (B) Pr/Ph versus DBT/P, indicating marine carbonate-rich facies.
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OM primarily derived from planktonic zoophyte and algal
origins, with little input of OM derived from terrestrial materials
based on the diagram provided by Huang and Meinschein,48 as
shown in Figure 12.

In addition, the high occurrences of phytoplankton algae (i.e.,

lamalginite assemblages; Figure 3A−F) in the studied samples

also worked well with the biomarker results. The lamalginite

Figure 11. Geochemical biomarker results of the extracted bitumen from the studied bituminous carbonate rock in the Ajloun area, showing (A)
C23T/24T versus C24Te/C24T and (B) Pr/Ph versus C29/C27 regular sterane, indicating that marine OM was deposited under anoxic conditions.
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algae assemblages are considered to be of marine origin and were
deposited under redox conditions.30,31

5.2. Paleoredox Conditions. The paleoredox conditions
are an important factor and majorly impact the preservation of
OM,47,48 where four conditions can be distinguished based on

the availability of O2 in bottom water, namely, oxic, dysoxic,
anoxic nonsulfidic, and anoxic sulfidic (euxinic) conditions.

Anoxic condition was recognized during the deposition time
of Shu’ayb Formation based on the high values of OM in the
bituminous carbonate succession, where the TOC reached up to
12.30 wt % (Table 1), which, in turn, enhanced the preservation

Figure 12. Ternary diagram of regular steranes (C27, C28 and C29) of the extracted bitumen from the studied bituminous carbonate rock in the Ajloun
area, showing the relationship between the sterane compositions and the OM input. .

Figure 13. Relationship between TOC and TS contents for the studied bituminous carbonate rock in the Ajloun area, showing an anoxic marine
environmental setting.
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and organic enrichment. Moreover, the high OM is mainly
associated with high total sulfur (TS) content, which is
considered as a better proxy for the reducing marine
environment than the pyritic sulfur in sediments.17,32 In this
case, highly reducing marine environmental conditions showed
a high S value which exceeds 2 wt %,17 which has been seen in
the studied bituminous carbonate samples, as characterized by a
high TS content of up to 4.59 wt% (Table 1). The explanation of
highly reducing marine environmental conditions was clearly
demonstrated by the association between the TOC and S of the
samples (Figure 13). Moreover, the concentrations of TOC and
S contents together with Fe element were plotted on the Fe−
TOC−S ternary diagram of Dean and Arthur49 and show that
most of the analyzed Shu’ayb bituminous carbonate samples
plotted on the zone of high Fe sulfurized during the poor-
oxygenated environments, with a S/Fe ratio of more than 1.5
(Figure 14).

In addition, the redox conditions (i.e., reduction vs oxidation)
during the time of deposition were also assessed using the
isoprenoid biomarker and its Pr/Ph ratio.40,50 For example, Pr/
Ph < 1 suggests an anoxic condition in a calm and quiet
environment, and Pr/Ph of >2 points to terrestrial influences
and translates to an oxic condition.51 In this study, the Shu’ayb
bituminous carbonate sediments were accumulated during
anoxic depositional settings, as deduced by a narrow Pr/Ph
ratio (0.39 to 0.97) (Table 2), as anoxic conditions endorse Ph
occurrences over Pr.52 The high Ph/n-C18 ratio also agreed with
the redox (anoxic) conditions during the accumulation of
carbonate sediments, as shown in Figure 9B.

The marine anoxic conditions in the Shu’ayb bituminous
carbonate sediments were also indicated by the distribution of
homohopanes, whereby the C35 homohopanes dominated
relative to the C34 homohopanes, with C35/C34 ratios having
the highest values between 1.34 and 3.5 (Table 2).

5.3. Paleosalinity Conditions. The paleosalinity condition
is important and helpful for recognizing how organic carbon is
enriched, as assessed from the biological evidence and anoxic
conditions of the water column.53

In this study, major elements that indicate the salinity of the
studied samples, including Ca, Mg, Fe, and Al elements, and
their 100 × Mg/Al, Ca/Mg, and Ca/Ca + F indexes (Table 1)
were used to estimate the salinity degree during the
deposition.54−56

The value of less than one for the ratio 100 × Mg/Al index
infers freshwater conditions, while above five of the same ratio
suggests the salinity water conditions.54,55 Accordingly, the
studied bituminous carbonate rocks of the Shu’ayb Formation
were deposited in salinity water, with an average value of 6.82 of
100 × Mg/Al index (Table 1). This interpretation of the salinity
water conditions was confirmed by the relationship between the
100 × Mg/Al index and the high Ca/Mg ratio (Figure 15).
Additionally, the proportion of inorganic elements, i.e., Ca and
Fe and their Ca/Ca + Fe ratios also provide salinity
inferences.57,58 In this regard, saline water showed a high Ca/
Ca + Fe ratio of more than 0.8, while the Ca/Ca + Fe ratio
between 0.4 and 0.8 indicated brackish water, and a value of <0.4
was indicative of freshwater during deposition.57,58 The studied
Shu’ayb bituminous carbonate rocks exhibited a Ca/Ca + Fe
ratio >0.8 (0.97−0.99; Table 1), corresponding to the saline
water.

Additionally, the proportion of TOC and TS contents and
their S/TOC ratio also provide salinity inferences.33 Wei and
Algeo33 reported that the calculated S/TOC ratio of a range

between 0.01 and 0.06 indicates freshwater environments, while
the S/TOC ratio with values ranging between 0.07 and 0.35 is
associated with deposition in a brackish-water environment, and
the sediments deposited in a marine environment have a
relatively high S/TOC ratio in the range of 0.17−0.47. Looking
at the environmental salinity characteristics based on the S/
TOC ratio above and comparing it with that of the studied
Shu’ayb bituminous carbonate facies, it shows that most of the
Shu’ayb carbonate samples fall within the marine (seawater)
environment, with a high S/TOC ratio between 0.36 and 1.98
(Table 1).

One of the prominent features of the salinity stratification of
the water column is the occurrence of gammacerane in the m/z
191 mass fragmentogram (Figure 8A). The high gammacerane/
C30 hopane (G/C30) ratio is linked with stratification (hyper-
salinity) conditions of the water columns.59

The moderate gammacerane index of the samples (0.14 and
0.29) (Table 2) corresponds to moderate stratification during
deposition of the Shu’ayb bituminous carbonate rocks. This
finding is consistent with the Pr/Ph and C35/C34 ratios versus
G/C30 ratio (Figure 16), as the layering, in effect of salinity, of
the water columns regulates the oxygen content during the
accumulation the bituminous carbonate sediments of the
Shu’ayb Formation.53

5.4. Paleoclimate Conditions and Paleoproductivity.
The paleoclimate conditions were reconstructed based on
multiple proxies, including inorganic geochemical data together
with foraminifera assemblages, as presented in the previous
subsections.

Themajor oxides like, SiO2, Al2O3, K2O, andNa2O (Table 1),
can be obtained to reveal warm and humid climates.17,60,61

However, Al2O3 and K2O are major oxides, and their K/Al ratio
is widely accepted to investigate the paleoclimatic condi-
tions.61−63 Al generally occurs within the kaolinite and are
known to be linked with a warm climate,64,65 while K can be
found within the illite and reflecting dry and cold climatic
conditions.66 In this case, lower K/Al ratios are extensively
related to hot and humid climatic conditions, wherein there is
enhanced contribution of kaolinite and to a lesser extent
illite.62,63,67 The K/Al ratio for most of the studied carbonates
reveals lower values in the range 0.04 to 0.05 (Table 1),

Figure 14. Fe−TOC−S ternary diagram of carbonate samples of the
Shu’ayb Formation, showing low oxygen content (anoxic conditions)
during deposition (modified after Dean and Arthur49).
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suggesting higher kaolinite than illite contents and the presence
of warm and humid climatic conditions.

However, the chemical index of alteration [CIA =Al/(Al +Na
+ K)] was calculated based on the formula of Nesbitt and
Young68 and also used to assess the amount of weathering of pre-
existing rocks, which can provide clues about the climatic
conditions.60,70−73 CIA values of 0.8−1.0 are extensively related
to hot and humid climatic conditions. While cold and arid
climatic conditions are associated with lower CIA values of less
than 0.7.68−71 The results show that the CIA for most of the
studied carbonates reveal values in the range 0.87 to 0.93 (Table
1), suggesting that a warm and humid climate prevailed during
the period of organic-rich carbonate deposition. This
interpretation of the warm-humid climatic conditions is also
consistent with the high abundance of OM/phytoplankton and
algal origin, together with foraminifera assemblages, as observed
via microscopic examinations (Figures 4 and 5) and biomarker
distributions of isoprenoids (Figure 9B) and regular steranes
(Figure 12).

However, most of the modern analogues are warm water
provinces.66 Many planktonic foraminifera can be indicators of
these warming, as temperature controls its composition, shell
size, and its diversity to a certain extent.72−74 The most species
that are preferred for warming are Globigerina sp., Globorotalia
sp., Globigerinoides sp., Globoturborotaliid sp., andOrbulina sp.75

The studied Shu’ayb carbonate facies have mainly Globiger-
inoides sp. and Orbulina sp. (Figure 4), suggesting the plankton
fauna in these carbonate sediments is typical of warm-water
conditions.

In this case, we believed that the presence of a warm and
humid climate therefore enhanced increasing in the nutrient

level on the sea surface and appearance of some high nutrient
indicator species. However, most of the nutrients are
phosphorus (P) and nitrogen (N), which commonly occur in
seawater. Higher P concentrations in the seawater enhance the
growth of algae and cause large phytoplankton blooms.
Particularly, Shu’ayb samples consist of a high abundance of P
oxide, with a range between 1.04 and 1.95 wt % (Table 1), which
is considered to be much higher than the average for shale (0.19
wt %).8 However, the P element is mainly dissolved in OM or
absorbed on the sediments’ surface areas. In this regard, the
weak correlation between P2O5 (%) and Ti (ppm) in the
Shu’ayb carbonate samples of this study (Figure 17) indicates
that P is of organic origin and can be used as a paleoproductivity
proxy.78 In this context, the relationship between P and Ti
elements and their P/Ti ratio can be used as a proxy to indicate
the role of marine primary productivity during deposition.76,77

For example, a P/Ti ratio <0.34 reveals low paleo-productivity;
0.34 < P/Ti < 0.79 and P/Ti > 0.79 are associated with medium
to high paleoproductivities.76 In this point of view, most of the
studied Shu’ayb carbonate samples are characterized by high
marine primary productivity, as indicated by the P/Ti ratios of
more than 6 (Table 1).

5.5. Detrital Influx and Water Depth. The chemical
composition of sediment fractions is reflected by the
accumulated siliciclastic and carbonate mineral-associated
elements.78 Aluminum (Al2O3), titanium (TiO3), silicon
(SiO2), sodium (NaO), and magnesium (MgO) are associated
with minerals derived from the land such as quartz and clays79,80

and frequently used to estimate the detrital influx.81,82 For
example, the relative abundance of Si, and thus Si/Al, in a
predominantly detrital interval can be used as a reliable proxy for

Figure 15.Ca/Mg vs 100 × Mg/Al ratio plot, showing salinity seawater during the deposition time of the studied bituminous carbonate rock from the
Shu’ayb Formation in the Ajloun area, Northern Jordan.
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relative changes in the proportions of silt to clay fractions.83 In
this case, the high Si/Al ratio indicates coarse grain size of clastic
sediments during deposition.66,84

The studied Shu’ayb carbonate samples were characterized by
a slightly lower average value of Si/Al ratio (1.33) than the UCC
(4.33) and the post-Archaean Australian shale (PAAS, 3.3285).

Figure 16.Geochemical biomarker results of the extracted bitumen from the studied bituminous carbonate rock in the Ajloun area, showing (A) Pr/Ph
versus G/C30 and (B) G/C30 versus C35/C34 homohopene, indicating stratification and anoxic conditions of the water columns.
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This can be interpreted in terms of limited terrigenous supply
during enhanced carbonate deposition of the Shu’ayb
Formation. This is consistent with strong positive correlations
between SiO2 and Al2O3, as achieved from their R2 of 0.77
(Figure 5A).

Further, the terrestrial influx can be estimated by aluminum
(Al) and titanium (Ti) elements. Titanium (Ti) can be found in
heavy minerals such as rutile (TiO2) and ilmenite (FeTiO),
while aluminum (Al) is common in feldspars and clay.86 In this
case, the Ti/Al ratio is the most applicable proxy to reflect the
influence of terrestrial influx.87 In this study, the Ti/Al ratios are
below-average shale values (Ti/Al average shale = 0.046), ranging
from 0.02 to 0.04 (Table 1), due to the restriction in terrestrial

input in the study area. Therefore, the detrital mineral input
minimizes the effect of OM dilution, and therefore there was a
high accumulation of OM throughout the time the Shu’ayb
carbonate sediments were being deposited, as shown by the
higher TOC contents than the detrital influx proxies and their
Si/Al and Ti/Al ratios (Figure 6).

Further, the high Al/Al + Fe ratios between 0.87 and 0.89 are
consistent with the Ti/Al ratio and show a terrestrial source
because the Al/Al + Fe ratio of more than 0.4 indicates a
terrestrial source,88 reflecting a strong supply of nutrients from
terrestrial sources into the ocean.

In addition, Fe/Ca + Mg ratios were investigated to know the
approximate water depth, among which Ca and Mg are

Figure 17. Cross-plot of the P2O3 and TiO2 contents in the studied bituminous carbonate rock in the Ajloun area, showing weak correlation, and
indicates that the P was sourced from OM.

Figure 18. Paleoenvironmental model during deposition of the bituminous carbonate succession Upper Cretaceous Shu’ayb Formation.
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commonly precipitated in carbonate and mud in deep water,
while Fe, in an opposite way, can be found in terrigenous
clastics.89 Hence, the lower Fe/Ca + Mg ratios indicate a deeper
setting. Accordingly, the Fe/Ca + Mg ratio in the Shu’ayb
carbonate sediments has values of 0.02−0.03 (Table 2),
referring to deep-water setting during their deposition.

5.6. Depositional Model of Organic Carbon Accumu-
lation. Accumulation of organic-rich sediment within shallow
basins during late Cretaceous is affected by the complex
topographic relief of the basins.90,91 In this context, the organic
carbon accumulation in the studied bituminous carbonate
succession of the Upper Cretaceous Shu’ayb Formation is
controlled by different paleoenvironmental conditions and
ecologic processes during deposition, as shown in Figure 18.
This depositional model is characterized by low terrigenous
input in a shallow-to-deep open marine environment (Figure
18). The terrigenous material originated from eroded bedrocks
around the basin and was transported by freshwater input or
wind flow.92 In this case, fresh water flows toward the basin in
the humid seasons pouncing stratification of water column in an
estuarine system, where saline water trapped below the fresh
water due to the existence of highland areas (swells).93,94 In such
situation, nutrients could be supplied from the continent
through hydrologic cycles in humid and warm periods, and
thereby the high marine primary productivity and enhanced
riverine runoff in the basin likely induced enhanced water
column stratification conditions (Figure 18). Those trapped
water bodies were characterized by low oxygen content (Figure
18). This reduced bottom water condition, mainly anoxic,
triggered high concentrations of total sulfur and TOC contents
in the bituminous carbonate sediments of the Shu’ayb
Formation (Figure 13). Therefore, predominantly redox
conditions and water column stratification during the deposition
of sediments that formed the Late Cretaceous Shu’ayb sequence
in North Jordan triggered the enhanced preservation of organic
carbon (Figure 18) and thereby contribute to OM enrichment.

Additionally, limited terrigenous supply during enhanced
carbonate deposition of the Shu’ayb Formation provided
favorable mineralogical conditions with an enhanced mineral
surface area.95 This conclusion is derived based on the low
concentrations of terrestrial elements (i.e., SiO2 and TiO2) and
their Si/Al and Ti/Al ratios, as shown in Table 1. Thus, the
organic carbon-controlled processes during deposition of the
Shu’ayb Formation enhanced the production and preservation
versus limiting the dilution and decomposition of the available
labile OM.96

6. CONCLUSIONS
Fifteen bituminous carbonate-rich samples of the upper
Cretaceous Shu’ayb Formation taken from the Ajloun exposure
in the Wadi Ajloun, Northern Jordan, were systematically
analyzed. The OM input and the main sedimentary environ-
mental conditions were assessed based on mainly geochemical
results combined with microscopic examinations. The following
conclusions can be summarized as follows:

• The Shu’ayb carbonate facies was deposited under anoxic
marine environmental conditions with salinity stratifica-
tion of the water column, as demonstrated by biomarker
ratios, such as Pr/Ph, Pr/C17, Ph/C18, and gammacerane/
C30 hopane (G/C30) index, and high TOC and S contents
together with the high abundance of marine organisms
(i.e., lamalginite algae and foraminifera assemblages).

• Biomarker examinations together with carbon isotope
analysis also revealed that the OM in the Shu’ayb
bituminous carbonate rocks was derived from marine
organisms, primarily phytoplankton algae, along with low
amounts of terrestrial OM.

• The major elemental compositions show that the detrital
influx was low in an open water depth system, ranging
from deep shelf and slope to deep sea, with higher primary
marine bioproductivity during deposition of the Shu’ayb
bituminous carbonate rocks.

• The chemical index of alteration (CIA) values together
with the high abundance of warm-water plankton species
(i.e., Globigerinoides sp.) in the Shu’ayb bituminous
carbonate facies showed intense subaerial weathering
due to the hot and humid paleoclimatic conditions,
resulting in an increase in the nutrient level in the sea
surface, which caused the high bioproductivity of the
phytoplankton.

■ APPENDIX
Peak assignments for hydrocarbons in the gas chromatograms of
saturated fractions in the m/z 191 (I) and 217 (II) mass
fragmentograms (used for reference to explain Figure 8) are
given in Table A1.
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Table A1

peak no. compound abbreviation

(I) m/z 191
Ts 18α(H),22,29,30-trisnorneohopane Ts
Tm 17α(H),22,29,30-trisnorhopane Tm
29 17α,21β(H)-nor-hopane C29 hop
30 17α,21β(H)-hopane Hopane
30M 17 β,21α (H)-moretane C30Mor
31S 17α,21β(H)-homohopane (22S) C31(22S)
31R 17α,21β(H)-homohopane (22R) C31(22R)
32S 17α,21β(H)-homohopane (22S) C32(22S)
32R 17α,21β(H)-homohopane (22R) C32(22R)
33S 17α,21β(H)-homohopane (22S) C33(22S)
33R 17α,21β(H)-homohopane (22R) C33(22R)
34S 17α,21β(H)-homohopane (22S) C34(22S)
34R 17α,21β(H)-homohopane (22R) C34(22R)
(II) m/z 217
a 13β,17α(H)-diasteranes 20S diasteranes
b 13β,17α(H)-diasteranes 20R diasteranes
c 13α,17β(H)-diasteranes 20S diasteranes
d 13α,17β(H)-diasteranes 20R diasteranes
e 5α,14α(H), 17α(H)-steranes 20S ααα20S
f 5α,14β(H), 17β(H)-steranes 20R αββ20R
g 5α,14β(H), 17β(H)-steranes 20S αββ20S
h 5α,14α(H), 17α(H)-steranes 20R ααα20R
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