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Abstract
Spontaneous thought—mind wandering, daydreaming, and creative ideation—makes up most of everyday cognition. Is this idle thought, 
or does it serve an adaptive function? We test two hypotheses about the functions of spontaneous thought: First, spontaneous thought 
improves memory efficiency. Under this hypothesis, spontaneous thought should prioritize detailed, vivid episodic simulations. Second, 
spontaneous thought helps us achieve our goals. Under this hypothesis, spontaneous thought should prioritize content relevant to 
ongoing goal pursuits, or current concerns. We use natural language processing and machine learning to quantify the dynamics of 
thought in a large sample (N = 3,359) of think aloud data. Results suggest that spontaneous thought both supports memory 
optimization and keeps us focused on current concerns.
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Significance Statement

Spontaneous thought—the mind wandering, daydreaming, and creative ideation our mind defaults to—is a cornerstone of everyday 
cognition. Why do we devote so much time to spontaneous thought? Two longstanding hypotheses about the function of spontaneous 
thought propose it may serve to (i) optimize memory and (ii) keep the mind focused on ongoing goal pursuits. Spontaneous thought is 
notoriously difficult to capture empirically. Here, we use big data and natural language processing to test these hypotheses. Results 
suggest that the dynamics of spontaneous thought facilitate both memory optimization and a focus on goals. Additionally, we illus
trate how natural language processing can uncover the dynamics of spontaneous thought to address fundamental questions about 
the nature of thought.
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Introduction
People spend most of their mental lives thinking. Given the 
chance, the mind defaults to wandering through unbidden im
agination, memories, ideas, and daydreams (1–6). These thoughts 
are extremely common: Almost everyone daydreams at least once 
per day (7) and mind wandering makes up an estimated 25–47% of 
waking thought (8–12). Why do we spend so much time and cogni
tive resources thinking?

This freely flowing stream of thought is also known as spontan
eous thought. We define spontaneous thought as thought that is 
relatively free from deliberate constraints (13, 14), aligning with 
William James’ early descriptions of the stream of thought (15). 
This mode of thought has also been labeled stream of conscious
ness (16), resting state thought (17), idle thought (18), and uncon
strained thought (19), and includes specific types of thought, such 
as task-unrelated thought (20), stimulus-independent thought (1), 
and mind wandering (13, 21), as well as related constructs like cre
ative ideation (13) and rumination (22). It does not include highly 
deliberative or task-focused thoughts that are subject to strong 

cognitive control. Spontaneous thought, particularly mind wan
dering, is sometimes considered a failure of attention or executive 
function. However, spontaneous thought may, instead, serve an 
adaptive purpose that merits the vast amounts of cognitive re
sources and time spent on these thoughts.

Here, we quantify the dynamics of spontaneous thought to gain 
insight into its function. Specifically, we investigate two hypoth
eses about the function of spontaneous thought (14). These hy
potheses are informed by empirical and theoretical work on 
spontaneous thought and related constructs, as well as parallel 
investigations into constructs such as daydreaming, mind wan
dering, involuntary memory, and memory replay. First, spontan
eous thought may facilitate encoding new memories and 
semantic abstraction (23–28). This hypothesis derives from re
search showing that the neural dynamics of spontaneous thought 
resemble those of memory replay, a process optimized for 
memory consolidation (13, 29–31). Second, spontaneous thought 
may prepare people to act on their current concerns (32–34). 
This hypothesis derives from empirical research showing that 
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goal-relevant content is prioritized during mind wandering and 
daydreaming (33). We discuss each of these possibilities in turn.

Memory optimization hypothesis
Memory replay is the spontaneous reactivation of memory traces 
in the hippocampus. In humans, memory replay occurs during 
sleep and waking rest and helps to consolidate memory for new 
experiences (24, 25, 27–29, 35–40). Memory replay is effective at 
consolidating both episodic and semantic information, in part be
cause of its dynamics. During memory replay, memory traces are 
not reactivated in their original order and context (41–43). Instead, 
memory traces can be reactivated in novel sequences. Novel se
quences help decorrelate episodic memory patterns, reducing 
competition between similar memories (44). In these sequences, 
memories are reinstated multiple times in different contexts. 
This facilitates generalization into semantic knowledge (45). 
Thus, the dynamics of memory replay—where episodes are re
called in a somewhat random order and context—facilitates 
memory consolidation (46).

Spontaneous thought mirrors memory replay, suggesting that 
it, too, may facilitate memory consolidation. First, people default 
to engaging in spontaneous thought during rest, the same context 
in which people engage in memory replay (1, 47, 48). Second, the 
neural dynamics of spontaneous thought mirror the neural dy
namics of memory replay (13, 49–51). Third, the content of spon
taneous thought consists primarily of episodic events—up to 
60% by some experience sampling estimates (12, 26). These epi
sodic events include recollections of past episodes and recombi
nations of past episodes in the form of future or counterfactual 
simulation (21, 52–57).

Because of these parallels, prior theoretical work has proposed 
that spontaneous thought is an unconstrained memory process 
where memory traces are reactivated in novel and variable se
quences (14, 26). If so, spontaneous thought’s variability, repeti
tion, and pseudo-random sequencing may optimize semantic 
and episodic memory consolidation—just like memory replay 
(26). That said, this hypothesis has yet to be tested. Do episodic re
plays during spontaneous thought play any role in memory con
solidation, or does this reflect the idle wandering of an 
unconstrained mind? If this continuous replay and recombination 
of memories in the form of episodic simulation functions as mem
ory replay, this suggests that a key function of spontaneous 
thought is to optimize memory.

To test this possibility, we track episodic detail in spontaneous 
thought. Why episodic detail? Prior work shows that episodic de
tail is necessary both to decorrelate episodic memories and to op
timize semantic knowledge. While there are likely many other 
mechanisms to improve memory, here we use the link between 
these types of memory optimization and episodic detail as a proxy 
for memory optimization more generally. If memory optimization 
is a key function of spontaneous thought, then spontaneous 
thoughts with episodic details should be prioritized over more ab
stract or semantic thoughts. There is already some evidence that 
thought prioritizes episodic detail. Specifically, spontaneous 
thought typically centers on psychologically proximal content 
(e.g. recent experiences; (54, 58–60)), which contains more episod
ic detail than distal content (61–63). However, the possibility that 
thought dynamics prioritizes episodic detail has not been directly 
tested.

The overlap between spontaneous thought and memory replay 
suggests that the function of spontaneous thought may be to op
timize memory (14, 26). Here, we test this possibility by developing 

novel automated analysis techniques to assess the trajectory of 
spontaneous thought in terms of episodic detail.

Current concerns hypothesis
People often maintain many goals at one time. For example, I may 
be concurrently concerned with finishing the book on my night
stand, writing a lecture, and not catching a virus. If I was deliber
ately completing or planning for these goals, I would be engaging 
in deliberately constrained thought (13). If so, this would not be 
considered spontaneous thought. However, ongoing goals can 
also spontaneously pop up in one’s thoughts. For example, though 
you are deliberately trying to read this article, your mind may be 
wandering to thoughts about your own unfinished books or lec
tures. In this case, the content of these thoughts would be relevant 
to current concerns, but the thoughts would be unfolding spon
taneously, without deliberative constraints or cognitive control.

Much of the content of spontaneous thought indeed comprises 
ongoing goal pursuits or current concerns (33, 64, 65). On average, 
47% of thoughts are goal-relevant (66). People regularly report goal- 
relevant thoughts during rest (67) and mind wandering in daily life 
(9, 68). In fact, the same current concerns that occur in everyday 
thoughts, also surface in free association (69). Additionally, the fu
ture is a prevalent theme in spontaneous thought (52, 54). Cues 
heighten the likelihood that spontaneous thoughts will gravitate to
ward personal goals or planning the future (8). Thoughts reflect 
goal-relevant cues about twice as often as irrelevant cues (70), 
with important goals that people are highly committed to, have 
high incentive value, and require imminent or immediate action 
most likely to influence thought (71). Reminding participants of 
their ongoing goals, for example by making a to-do list, increases 
such goal-related future thinking even further (72, 73). The preva
lence of goal-relevant and future oriented thought led to a theory 
that mental content, both spontaneous and goal-directed (74), con
tinuously jumps from one goal-related topic to the next (64).

This emphasis on current concerns may reflect a key function 
of spontaneous thought: help pursue future goals. This focus 
can be adaptive in multiple ways. First, thoughts about current 
concerns serve as an ongoing reminder of overarching goals 
when we cannot directly engage with them. This may prepare 
us to act on current concerns when the opportunity arises (34, 
52, 75, 76). There is some empirical evidence for this: For instance, 
in one study, the extent to which people activated brain regions 
associated with thinking about the self during rest predicted sub
sequent performance on a self-referential processing task (77). 
Second, spontaneous thoughts may offer the mind time to de
velop creative solutions for goal-related problems (64), though 
empirical tests on the effect of idle thought on creativity have 
found mixed results (78).

Together, these findings suggest that spontaneous thought pre
pares us for goal-relevant action and problem-solving by focusing 
our minds on current concerns. If facilitating goal pursuit is a key 
function of spontaneous thought, then thoughts that address a cur
rent concern are more “valuable” than wholly undirected thoughts 
(64, 79). While prior studies have shown the prevalence of goal- 
related content in spontaneous thought, it is not yet clear if the dy
namics of spontaneous thought maximize current concerns-related 
content. Here, we test this possibility by investigating the trajectory 
of spontaneous thought in terms of relevance to a topic of peak con
cern at the time of data collection: the COVID-19 pandemic.

Quantifying the function of spontaneous thought
The current concerns and memory optimization hypotheses are 
not mutually exclusive. Consolidating new information can 
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facilitate effective future goal pursuits. For instance, when people 
have time for idle rest after listening to an emotional disclosure, 
they show better memory for the disclosure and greater social sup
port towards the speaker the next day (80). How can we determine 
whether either of these hypotheses captures the function of spon
taneous thought?

In prior theoretical work, we posed that spontaneous thought is 
an unconstrained memory process, where the content of spontan
eous thought consists of episodic simulation scaffolded by seman
tic memory. The mind traverses this memory structure based on 
drifting context representations that implement varying combina
tions of different types of associations (14). This conceptualization 
of spontaneous thought allows us to adapt computational methods 
and theories from research on memory to spontaneous thought.

Here, we demonstrate how these theoretical insights can be in
vestigated in practice. Specifically, we leverage the parallel between 
the dynamics of spontaneous thought and semantic fluency to test 
the function of spontaneous thought. Spontaneous thought has a 
clustered structure, with thoughts exploring a particular topic until 
it is time to jump to a new topic (16). The timing of these jumps can 
reveal the function of thought (14). If spontaneous thought serves 
some function, thoughts should jump when the current topic no 
longer effectively contributes to this function. They should then 
land on a new topic that helps achieve this function.

This same logic—that jumps reveal function—derives from work 
on semantic fluency tasks. In these tasks, participants are asked to 
list as many items in a certain category as possible. Responses to 
these prompts have a clustered structure. For example, when asked 
to name as many animals as possible, people may first list different 
kinds of pets, then farm animals, then aquatic animals, and so on. 
The timing for the jumps reveals something about the goal of the 
task and can be modeled using a spatial foraging model. In spatial 
foraging and semantic fluency, the goal is to maximize the number 
of items retrieved over time. Items form clusters in semantic or 
physical space. It starts out easy to search within a cluster, so peo
ple do so. But at some point, finding new items in the cluster be
comes harder. At that point, it’s time to jump to a new one (81). 
Thus, the timing of the topic jumps is tied to the rate of retrieval: 
people switch clusters when it takes too long to find a new item 
in the current cluster (82). Here, we apply this logic about semantic 
search to test the function of spontaneous thought.

If spontaneous thought is designed to optimize memory storage 
and facilitate learning, we should see these goals revealed through 
the timing of topic jumps. Since recalling and recombining episodic 
detail can help decorrelate episodic events and facilitate abstrac
tion, we focus on the amount of episodic detail in thought, as op
posed to more general semantic thought. If memory optimization 
is a goal of spontaneous thought, then thought jumps should priori
tize episodic detail. This should produce thought patterns where 
topic jumps occur when the level of episodic detail in a cluster 
dips too low. The first thought in a new topic should then contain 
a lot of episodic detail, with each subsequent thought decreasing 
in episodic detail until the next topic jump.

If spontaneous thought is designed to keep our minds focused 
on current concerns, then thought jumps should prioritize con
tent relevant to ongoing goal pursuits. This would produce a pat
tern where topic jumps occur when the level of goal relevance in a 
cluster dips too low. The first thought in a new topic should be 
highly goal-relevant, with each subsequent thought decreasing 
in goal-relevance until the next topic jump.

The current study examines the function of spontaneous 
thought by analyzing the timing of topic jumps in a large dataset 
of data on spontaneous thought, spoken aloud, or typed. We first 

implement a novel automated pipeline, using natural language 
processing and machine learning to individuate thoughts and de
marcate thought clusters. We then test the memory optimization 
hypothesis by examining if thought jumps prioritize episodic de
tails and the current concerns hypothesis by examining if thought 
jumps prioritize goal relevance. These dynamics can elucidate 
why we spend so much time and energy engaging in spontaneous 
thought.

Results
We collected 3,359 responses from 1,679 participants between April 
2020 and May 2021. To measure the dynamics of spontaneous 
thought, participants completed a Think Aloud task, where they 
narrated their stream of thought in real-time. While think-aloud 
protocols were initially used to study thought processes during 
tasks (83), these methods can also be used without any external 
task to study spontaneous thought (16, 17). Here, we gave partici
pants a choice between speaking into their microphone or typing 
their thoughts to maximize the accessibility of the study. Hence, 
we have both written and spoken “think aloud” data.

Prior work with think aloud data relied on human coders to in
dividuate thoughts and demarcate thought clusters (16). Here, we 
used automated natural language processing tools to process the 
think aloud data. First, audio was transcribed into text using 
OpenAI’s Whisper (84). Then, we split the text into individual units 
of thought by detecting independent clauses (85). Finally, we used 
a clustering algorithm to identify topic jumps (86).

We started by testing one hypothesized function of spontaneous 
thought: that it serves to optimize memory. To test this hypothesis, 
we used a pre-existing algorithm to quantify the level of episodic 
detail in each thought. This algorithm estimates each sentence’s 
episodic detail (vs. nonepisodic detail) (87). It was originally devel
oped to automate scoring of autobiographical memory interviews. 
It performs well compared to manual scoring in identifying episodic 
details. We applied the algorithm to quantify the proportion of epi
sodic details in each thought. Mixed linear models predicted episod
ic detail from thought position, controlling for repeated measures. 
We report standardized coefficients for each model.

Results supported the hypothesis that the dynamics of spon
taneous thought prioritize episodic detail (Fig. 1): there was a 
small but statistically significant effect of thought position on 
the amount of episodic detail in each thought, such that thoughts 
immediately after a topic jump had the highest level of episodic 
detail, and thoughts occurring later within a topic contained less 
episodic detail (β = −0.019, SE = 0.005, P < 0.001). When counting 
the position of thoughts until the next topic jump, we find the 
same pattern: the amount of episodic detail decreases leading 
up to a topic jump, with thoughts immediately preceding a topic 
jump showing the lowest level of episodic detail (β = −0.022, SE  
= 0.005, P < 0.001). Thus, the timing of topic jumps prioritizes epi
sodic detail, suggesting that memory optimization is a goal of 
spontaneous thought.

We next tested the second hypothesized function of spontan
eous thought: that it keeps us focused on current concerns. 
Since we did not collect data on participants’ idiosyncratic 
current concerns, we chose a universal concern for people during 
the data collection period: the COVID-19 pandemic. To assess 
pandemic-relevance, we created a dictionary of pandemic-related 
words to count the proportion of pandemic-related words in each 
unit of thought (see Supplementary methods). Mixed linear mod
els predicted pandemic-relevance from thought position, control
ling for repeated measures.
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Results partially supported the hypothesis that the dynamics of 
spontaneous thought prioritize current concerns (Fig. 2): there 
was a small but significant effect of thought position on the pro
portion of pandemic-related words in each thought, such that 
thoughts immediately after a topic jump had the highest level of 
pandemic-related words, and thoughts occurring later within a 
topic contained fewer pandemic-related words (β = −0.080, SE =  
0.005, P < 0.001). For thoughts leading up to a topic jump, the ob
served pattern was the opposite of what was expected. Rather 
than decrease until the jump, thoughts immediately before the 
jump showed a gradual, significant increase in pandemic-related 
content (β = 0.064, SE = 0.005, P < 0.001). These results are incon
sistent with the hypothesis that thought jumps occur to maximize 
a focus on current concerns. That said, the dynamics of spontan
eous thought are strongly shaped by current concerns.

Participants in our sample varied in their level of concern about 
the COVID-19 pandemic. The more a participant was concerned 
about COVID-19, the more they showed the pattern of thought de
scribed above (Fig. 3). There was a significant interaction between 
thought position and COVID-19 concern after the topic jump, such 
that participants with higher COVID-19 concern showed a steeper 

decrease in pandemic-related content after the jump (β = −0.034, 
SE = 0.014, P = 0.015). There was no significant interaction be
tween thought position and COVID-19 concern before the topic 
jump (β = 0.011, SE = 0.015, P = 0.469). We also found a significant 
main effect of COVID-19 concern, such that participants who 
were more concerned had more pandemic-related thoughts overall 
in both before (β = 0.039, SE = 0.011, P < 0.001) and after the topic 
jump (β = 0.043, SE = 0.008, P < 0.001). Finally, the main effects of 
thought position remained significant, with pandemic-related con
tent decreasing after the topic jump (β = −0.049, SE = 0.013, P <  
0.001) and increasing leading up to the topic jump (β = 0.042, SE =  
0.013, P < 0.001). Thus, concern about COVID-19 amplified the effect 
of thought position on pandemic-related words, further supporting 
the hypothesis that current concerns play a role in shaping the dy
namics of thought—albeit not in the same way as episodic detail.

Discussion
This study tracked the dynamics of spontaneous thoughts to gain 
insight into its function, using natural language processing of 
think aloud data. We demonstrate how natural language 

Fig. 1. Spontaneous thought jumps show evidence of optimizing memory storage. Episodic detail A) decreases before a topic jump, B) increases at the 
topic jump, and then decreases again after the jump.

Fig. 2. Spontaneous thought jumps show evidence of prioritizing goal-relevance. Current concerns-related content A) increases before a topic jump, then 
B) decreases after the jump.
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processing and insights from computational memory research 
can be applied to think aloud data to uncover the function of spon
taneous thought. We hypothesized that spontaneous thought 
functions to optimize memory and keep us primed to act on cur
rent concerns. We find support for both functions of spontaneous 
thought. When the current topic in thought no longer provides 
sufficient episodic detail for memory optimization, the mind 
jumps to a new topic with more available episodic detail. To pre
pare for goal-relevant action, this new topic will also be high in 
goal-relevance. This pattern of results suggests that the function 
of spontaneous thought is multifaceted: spontaneous thought pri
oritizes both episodic detail and current concerns.

These results join a growing body of work showing the import
ance of spontaneous thought for memory optimization. 
Activating episodic memory traces out of their original order can 
facilitate efficient memory storage and can help optimize seman
tic memory (26). Previous research has established that the con
tent of spontaneous thought is largely episodic (12, 21, 52, 55, 
57) and that spontaneous thought can facilitate memory consoli
dation (26, 27, 37). Here, we show that the dynamics of spontan
eous thought indeed appear to be optimized to support this 
function. Future work could more closely examine the mecha
nisms of memory optimization during spontaneous thought by 
examining the dynamics of episodic detail in thought, how they 
relate to a specific recent experience, and contribute to subse
quent recall.

We also find clear evidence that spontaneous thought is 
shaped by current concerns, albeit in an unexpected way. 
Specifically, instead of thought jumps occurring when current 
concerns dipped below a threshold, they occurred when current 
concerns were at a maximum. This pattern is most pronounced 
for participants who report the highest level of current concerns. 
Although current concerns clearly impact the dynamics of spon
taneous thought, this pattern is inconsistent with our hypothesis. 
One possible reason why current concern content increases pre
ceding a topic jump is that salient content may capture people’s 
attention, encouraging them to think more about that content 
(32). That is, these stimuli may serve as attractor states, which 
can affect which portion of memory space that thoughts explore 
(14). Negatively valenced and anxiety-inducing topics, in particu
lar, may encourage patterns of thought with this rumination-like 

dynamic, where thoughts repeatedly return to the same topic. 
That said, this study only measured the dynamics around a single, 
anxiety-inducing current concern: COVID-19. Thus, we cannot 
distinguish between the possibility that the dynamics of thought 
inherently prioritize all current concerns in this unexpected 
way, and the possibility that COVID-19 or features of this concern 
(e.g. anxiety) uniquely impact spontaneous thought in this way. 
We look forward to future work that takes a more individualized 
approach to more fully understand how the dynamics of spontan
eous thought reflect a broader range of idiosyncratic current con
cerns, and individual differences in ruminative tendencies.

This study applied state-of-the-art tools in natural language 
processing and machine learning techniques to automate ana
lyses of a large think-aloud dataset. Think-aloud data typically re
quires human coders to quantify the data. This approach would 
have been prohibitively labor-intensive and expensive, given the 
size of our dataset. Our automated approach for both sentence 
parsing and hierarchical clustering tools matched the reliability 
of human coders. That said, reliability remained moderate for 
both human and automated coders, suggesting that there is 
room for improvement in how we define individual units of 
thought and topic jumps—both conceptually and algorithmically. 
Additionally, the effect sizes were very small, likely in part be
cause we used very short think aloud samples and natural lan
guage processing tools originally devised for longer, more 
structured text. Future work should endeavor to improve the ac
curacy and precision of these tools. Nevertheless, our automated 
tools allowed us to process a large amount of data with enough ac
curacy to capture small but practically significant variance in the 
dynamics of spontaneous thought, consistent with patterns pre
dicted in prior theoretical work (14). Despite the imperfect meth
ods, this study demonstrates that think aloud data combined 
with modern natural language processing tools can offer new in
sights into the contents and dynamics of spontaneous thought, 
even in largescale datasets.

Applying insights from semantic foraging models allows us to 
identify variables that describe the dynamics of thought. These 
variables can be used in more formal models. In spatial and se
mantic foraging, there is a computationally optimal 
patch-switching threshold that maximizes the rate of retrieval. 
Future work can apply this theoretically optimal threshold to 

Fig. 3. The more important the goal is to participants, the more it is prioritized in spontaneous thought. Participants with high concern about COVID-19 
show the strongest evidence that current concerns-related content A) increases most before the topic jump and B) decreases most after the topic jump. 
The data were binned into low, medium, and high scoring thirds for visualization purposes. Statistical analyses used the raw scores of 0–6.
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episodic detail in spontaneous thought and examine how devia
tions from the optimal threshold affect thought patterns. For in
stance, if the threshold is too low, thoughts will rapidly jump 
from patch to patch, yielding disjointed, racing thoughts. On the 
other hand, if the threshold is set too high, thoughts will stay in 
one patch for a long time, leading to more repetitive, ruminative 
thoughts. The analysis techniques developed here highlight the 
value of quantifying this patch-switching threshold and open up 
the possibility of quantifying new metrics of the dynamics of 
spontaneous thought, including the semantic distance between 
thoughts and topics, thought speed, prevalence of topics, and af
fective dynamics. Tracking individual differences in these varia
bles may explain individual differences in creative thought (88– 
90), or thought distortions in mental health disorders (13, 91–93), 
opening up future insights into otherwise elusive aspects of the 
dynamics of spontaneous thought.

Spontaneous thought makes up most of our daily cognition 
during wakefulness and dreaming. Why do we think so much? 
Natural language processing and insights from computational 
models of memory can make this elusive question empirically 
tractable. Here, we tested two hypotheses on why we devote so 
many cognitive resources to spontaneous thought: spontaneous 
thought helps optimize memory, and spontaneous thought keeps 
us focused on ongoing goal pursuits. Novel methods applied to a 
large dataset indicate that the dynamics of spontaneous thought 
support both functions. This shows that natural language pro
cessing can bridge the gap between big theoretical questions 
and empirical investigation of spontaneous thought. 
Additionally, results suggest that when we let our minds wander, 
thoughts are far from random or idle. Instead, they follow a pat
tern that optimizes memory function and keeps us aligned with 
our goals.

Materials and methods
Participants
We collected 3,359 responses from 1,679 participants (mean age =  
39.8, range [19.0–79.0], 15.9% Asian/Asian American, 14.1% Black, 
7.0% Latinx, 1.0% Native American, 65.7% White, 56.6% women, 
and 1.3% genderqueer/nonbinary/other) in three separate data 
collections between April 2020 and May 2021. Informed consent 
was obtained from all participants. The study was approved by 
the Princeton University Institutional Review Board. This study 
was conducted as part of a larger data collection effort. 
Participants completed up to 9 measures not included in this 
study, including surveys on the social environment and (social) 
well-being. Findings from other measures in the survey are avail
able elsewhere (94).

Data collection 1
In the first data collection, participants were recruited through 
email lists at Princeton University and on social media. These par
ticipants volunteered their time and could participate as many 
times as they wanted, at least 5 days apart (n = 371; responses =  
532).

Data collection 2
The second data collection occurred through the Center for 
Decision Research at the University of Chicago Booth School of 
Business. Participants received $4 each time they participated 
and were invited to participate twice, in April 2020 and May 
2020 (n = 285; responses = 488).

Data collection 3
Participants in the final data collection were recruited through 
Prolific Academic (www.prolific.co) and received $4 for their par
ticipation. The first wave was collected in May 2020, and the 
same participants were invited again in June 2020 and April 
2021 (n = 1023; total responses = 2311). In wave 2, 831 participants 
returned; in wave 3, 477 participants returned. These participants 
were a representative sample matched to U.S. census values for 
sex, age, and ethnicity.

Totals and exclusions
In every data collection, participants completed the study online on 
their own devices (mobile, tablet, or computer). For this study, we 
only included participants who spoke or wrote between 50 and 
500 words in the Think Aloud task (see below; excluded n = 425). 
For those who provided audio recordings, we excluded participants 
whose audio consisted of at least 75% silence (n = 14) or who had 
poor audio quality operationalized as a speech-to-reverberation 
modulation energy ratio below 0.67 (n = 2). We then conducted 
manual inspections of all Think Aloud data and excluded low qual
ity responses (n = 15), including non-English text, gibberish, copy- 
pasted instructions, cop-outs (e.g. writing “I’m not comfortable 
sharing my thoughts” over and over), and cases where the tran
scription picked up background noise from TVs or multiple speak
ers instead of the participant (n = 5). After exclusions, 1,524 
participants provided 2,901 responses (Princeton: n = 331, re
sponses = 506; Chicago: n = 248, responses = 414; Prolific: n = 945, 
responses = 2,016).

Measuring spontaneous thought
To measure the dynamics of spontaneous thought, participants 
completed a Think Aloud task, as the first task presented during 
a more extensive data collection effort (94). During Think Aloud 
tasks, participants are asked to narrate their stream of thought 
in real-time. While think-aloud protocols were initially used to 
study thought processes during tasks (83), these methods can 
also be used without any external task to study spontaneous 
thought (16, 17).

In this study, participants were first told that they would record 
a short audio clip and received instructions on testing their micro
phones. After successful testing, participants were given the fol
lowing task instructions: 

“For 2 minutes, please report whatever you can on your stream of 

thought. Your report may include (but is not limited to) descrip

tions of: images, conversations, thoughts, sensations, feelings, 

memories of past experiences, thought or images of future experi

ences. Simply say whatever is going through your mind from mo

ment to moment. Report your thoughts and feelings as they come 

to you. Try to talk continuously during the entire time. Don’t worry 

about grammar or complete sentences. If your thoughts or feel

ings recur over and over, simply say them over and over.

Remember that we are interested in your saying any and all 

thoughts and feelings that come to you no matter how silly or per

sonal you think they may be.”

Next, participants saw a screen with a reminder to report their 
thoughts and feelings as they came to them and a record button. 
Upon pressing record, a progress bar appeared to indicate how 
much time was left in the task. The recording was stopped auto
matically after 2 min.
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Participants could opt out of audio recording and type on their 
keyboards instead. Participants who opted out of audio recording 
saw a screen with similar instructions and a textbox in which they 
could type their thoughts. Instructions asked participants to type 
their thoughts and feelings as they came to them. Participants 
were also informed that only the latest portion of their response 
would be visible to them to allow them to focus on their current 
thoughts. The textbox only showed the most recent 100 charac
ters. After the 2 min were up, a “next” button became active, 
and the participants could leave the task.

Out of 3,208 included responses, 819 were audio recordings, 
and 2,389 were written responses. On average, audio recordings 
contained 242.73 words (SD = 79.08), and written responses con
tained 98.15 words (SD = 49.74).

Quantifying spontaneous thought dynamics
To quantify the dynamics of spontaneous thought, we first con
ducted preprocessing on the think-aloud audio recordings to tran
scribe the text and then split the text into individual units of 
thought. Finally, we grouped the individual thoughts into topics. 
Previous research has accomplished each of these steps using hu
man coders to split think aloud data into individual thoughts and 
identify where topic jumps occur (16). We developed an analysis 
pipeline to replicate this procedure using automated natural lan
guage processing techniques to facilitate the processing of large 
datasets. In this pipeline, we build upon Sripada and Taxali’s 
(2020) manual method by following their definitions of units of 
thought and topic jumps in order to identify their natural lan
guage equivalents.

Identifying units of thought
All audio recordings were transcribed into text using Whisper 
(https://openai.com/research/whisper; (84)), an open source neur
al net for automated speech recognition. On a subset of the data, 
data collection 1, the audio was also transcribed using Temi 
(www.temi.com), an automated transcription service. Three re
search assistants edited the Temi transcripts for accuracy. We 
used these transcripts as a ground truth to assess the quality of 
the Whisper transcription and found that the word error rate 
was low (8%), confirming that the Whisper model provides accur
ate transcription in our data.

We then split each transcript and written think-aloud response 
into units of thought using the following automated process: We 
used a sentence parser to break each transcript into sentences 
and then identify coordinating conjunctions in each sentence 
(85). If a verb accompanied a coordinating conjunction, we consid
ered this an independent clause. This method considers each in
dependent clause a separate unit of thought.

To test the accuracy of this automated method, we compared 
the results of this method to the units identified by human coders. 
For this validation, human coders split 132 transcripts into units 
of thought following Sripada and Taxali’s (16) definition of a unit 
of thought as the minimal unit of text that can stand on its own 
as a thought. In many cases, coders could use grammatical rules 
to identify units of thought by splitting the transcripts into senten
ces and then into independent clauses. In some instances, de
pendent clauses or partial sentences were separate units of 
thought if they expressed a complete and contentful thought. 
Two coders processed each transcript. To compare units across 
the human coders and automated method, we used the SegEval 
Python package to calculate inter-rater reliability (Fleiss’ kappa) 
based on boundary similarity (95). Human coders showed 

moderate inter-rater reliability (Fleiss’ kappa = 0.58). Human 
coders and the automated version showed comparable inter-rater 
reliability (Fleiss’ kappa = 0.60). This suggests that the automated 
sentence parser performs comparably to human coders. While 
the automated method does not have as much nuance in identify
ing units of thought as human coders, it performed very well. 
Therefore, we used the automated solution to identify units of 
thought in our analyses.

Identifying topic jumps
We defined a topic jump as any significant switch in time, place, 
and/or situation (16). Sripada and Taxali (16) showed that a hier
archical clustering algorithm could identify topic jumps with 
above-chance accuracy. Therefore, we used Scikit-learn in 
Python to implement hierarchical clustering (86) to identify which 
topic each unit of thought belonged to. On average, participants 
produced 10.82 thoughts (SD = 7.78) in 5.6 topics (SD = 4.31), 
with an average of 3.04 thoughts per topic (SD = 1.63).

To test the accuracy of this automated method, we compared 
the results of this method to the units identified by human coders 
on a subset of 91 transcripts. To compare topic jump coding, we 
again used the SegEval Python package to calculate inter-rater re
liability (Fleiss’ kappa) based on boundary similarity (95). Here, we 
find that the inter-rater reliability of human coders is 0.41; inter- 
rater reliability for the human coders and the automated solution 
was comparable, at 0.30. While the inter-rater reliability is fair to 
moderate, even for just the human raters, the automated solution 
does not perform notably worse than the human coders, suggest
ing that the automated solution is a viable method of replacing 
human coders to identify topic jumps.

Quantifying episodic detail and current concerns 
content
If the function of spontaneous thought is to optimize memory ef
ficiency, we expect the dynamics of spontaneous thought to pri
oritize episodic detail. This means that topic switches should 
occur once thoughts on the current topic contain insufficient epi
sodic detail. To measure the amount of episodic detail in each 
thought, we use an automated scoring tool initially designed for 
autobiographical interview narratives (87). This software uses a 
fine-tuned language model to process sentences. Within each sen
tence, this software identifies the number of episodic details (i.e. 
internal details) and the number of nonepisodic details (i.e. exter
nal details). When applied to the units of thought in our dataset, 
this yields a proportion of episodic detail for each unit of thought 
(no. of episodic details/total no. of details). If spontaneous thought 
prioritizes episodic detail, we expect that the first thought after a 
topic switch has the most episodic detail, and the amount of epi
sodic detail decreases with each subsequent thought.

Similarly, if the function of spontaneous thought is to prepare 
us to act according to current concerns, we expect the dynamics 
of thought to prioritize content related to current concerns. This 
means that topic switches should occur once thoughts on the cur
rent topic contain insufficient current concerns-related content. 
Since we did not collect data on participants’ current concerns, 
we chose a universal concern for people during the data collection 
period: the COVID-19 pandemic. While this was likely a current 
concern for every participant in our sample, we also asked partic
ipants to indicate how concerned they were about COVID-19 on a 
7-point scale. To assess pandemic-related content, we developed 
a dictionary of pandemic-related words. Using this dictionary, we 
counted the proportion of pandemic-related words in each unit of 
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thought. If spontaneous thought prioritizes current concerns, we 
expect that the first thought after a topic switch would have the 
highest proportion of pandemic-related words, and the proportion 
of pandemic-related words would decrease with each subsequent 
thought. We expect this effect to be stronger for participants who 
are more concerned about COVID-19.

We tested these hypotheses using mixed linear models of epi
sodic detail and pandemic-related words, respectively. These 
models contained a fixed effect for the position of thought within 
a topic, with 0 being the topic switch, 1 being the thought after the 
topic switch, and so on. The models also included random inter
cepts for data collection and participant. We did not include ran
dom slopes to reduce the complexity of the models and avoid 
overfitting and convergence issues. We added a second model to 
test how concern about COVID-19 affects current concern-related 
content. This model contained fixed effects for the position of 
thought within a topic, concern about COVID-19, and their inter
action, and random intercepts for data collection and participant.
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