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Summary

Purpose of review: The underlying molecular mechanisms that direct stem cell differentiation 

into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product 

of the combinatorial effect of individual factors operating within a coordinated regulatory network. 

Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in 

defining stem cell fate during differentiation and the critical role of protein isoforms in this 

process.

Recent findings: We review recent experimental and computational approaches that 

characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome 

and proteome they mediate during differentiation. Such approaches include long-read RNA 

sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-

based CRISPR, which could make possible high-throughput isoform screening. Collectively, these 

developments enable systems-level profiling of factors contributing to cell state.
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Summary: Overall, gene and splice regulatory networks are important in defining cell state. The 

emerging high-throughput systems-level approaches will characterize the gene regulatory network 

components necessary in driving stem cell differentiation.
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Stem cells as a powerful system for studying development and disease

Stem cells differentiate into diverse cells - Waddington landscape and molecular patterns

Stem cells can differentiate into any cell type in the body. Initially, human embryos were 

used to generate embryonic stem cells (hESCs) that are derived from the inner cell mass 

(ICM) of the blastocyst [1]. Such cells are pluripotent, with the ability to differentiate 

into any cell of the body given the proper genetic or exogenous factors. Another source 

of stem cells are terminally differentiated somatic cells, which can be reprogrammed into 

induced pluripotent cells (iPSCs) by addition of four key transcription factors (TFs)—OCT4, 

SOX2, c-MYC and KLF4, as shown in the landmark experiment in the Yamanaka lab [2]. 

iPSCS are largely indistinguishable from embryo-derived hESCs in terms of their genetic, 

molecular, and phenotypic properties, permitting widespread application of these cells for 

disease modeling without the ethical issues of human embryo use [3,4].

Stem cells can model the transition from a pluripotent to a differentiated state, which is 

critical for development of specialized cell types and tissues. Stem cell potency exists 

in a continuum, with successive cell divisions correlating with narrower differentiation 

potentials. Such transitions can be thought of as a series of cellular states, which has been 

analogized by Conrad Waddington as a marble (the “cell”) traveling down a hilly terrain to 

arrive at a position of the energetically most favorable cellular attractor state (the terminally 

“differentiated cell”) [5]. Cell states are reflected by global patterns of gene expression, 

especially transcript and protein molecular expression. Tracking such coordinated molecular 

expression changes in these interim steps of differentiation can provide insight into the 

underlying regulatory network logic associated with these cell states, the relationship of 

which is a critical question for the stem cell field [6,7].

Stem cells are tractable models to link molecular variation to development

Stem cell models provide a portal to study otherwise inaccessible aspects of in vivo human 

development, particularly at the genetic and molecular level. Protocols are now available 

to direct differentiation of stem cells into hundreds of cell types [8,9]. For example, 

in cardiovascular development, stem cells can be differentiated into arterial and venous 

endothelial cells subtypes [10,11], and hematopoietic development have well characterized 

models [12]. And, it has been shown that hESCs can differentiate into epicardial cells that 

graft onto damaged heart tissue for repair [13]. More recently, going beyond the constraint 

of monolayer 2D cell cultures, 3D organoid cultures have been developed for a series of 

organ types that better recapitulate in vivo phenomena such as cell-cell interactions and 

soluble factor gradients [14].
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In addition to hESCs, human iPSCs (hiPSCs) can also be differentiated into several different 

cell types and are widely used to understand underpinnings of development. For example, 

in the heart, both hECs and hiPSCs can be differentiated into several different cell types 

including endothelial cells, endocardial cells, and cardiomyocytes to define molecular 

drivers of cardiovascular development[15].These differentiated cells can then be cocultured 

to study the communication between these cells that build up the heart. Furthermore, iPSCs 

obtained from patients are excellent tools to determine the mechanisms responsible for 

disease pathogenesis as well as identifying developmental defects that give rise to these 

complex disease phenotypes. Stem cells also allow temporal analyses of molecular and 

cellular events that occur during development. Genome edited hiPSCs or hESCs carrying 

patient specific mutations are used to model cell specific defects that give rise to human 

diseases well as to perform screens of compounds or drugs for treatment of disease 

complications[15]. Both hESC and hiPSC mediated stem cell model systems are utilized 

to identify transcriptional regulatory networks necessary for development and function[16]. 

With advancements in RNA sequencing and computational methods, post-transcriptional 

regulatory networks necessary for stem cell differentiation are becoming more appreciated.

Tracing the expression changes of factors associated with differentiation temporally can 

indicate links between genetic factors and the downstream developmental pathways they 

regulate [17,18]. Though not fully recapitulating in vivo complexity, the journey a stem 

cell takes during in vitro differentiation at least partially recapitulates molecular changes 

occurring during development and can provide a tractable experimental system with human 

relevance. The practical benefits include the ability to culture cells in vitro to generate 

sufficient material for high-throughput molecular assays and biochemical and genetic 

screens. The benefit of human relevance arises from the fact that human stem cells should 

best recapitulate the repertoire of transcript and protein molecular forms (e.g., isoforms, 

proteoforms) that are primate or human-specific. Though many genes are conserved between 

human and model organisms, the molecular details of gene products, such as splicing 

patterns, tend to diverge greatly [19].

The generation of certain cell types is possible by addition of individual soluble factors or 

transcriptional regulators [16,20]. In large part this knowledge arose from trial and error or 

small-scale screens, guided by simple morphogenic or gene expression patterning [21,22], 

rather than a fundamental understanding of the underlying gene regulatory network that 

governs cell behavior. Even such factors operate within an interconnected and complex 

gene regulatory network; and, therefore, an incomplete picture remains of the underlying 

molecular logic and critical factors that direct differentiation of stem cells into fully 

functional, mature cells[23]. The field of stem cell systems biology aims to complement 

focused functional studies, through paradigms that merge high-throughput datasets and 

computational models.

Gene regulatory networks - TFs mediate pluripotency and differentiation

One type of network that plays a critical role in cell fate decisions are gene regulatory 

networks (GRNs). A GRN is represented by the set of active transcription factors (TFs) that 

bind to and regulate their target genes. TFs comprise about 10% of all protein-coding genes 

Mehlferber et al. Page 3

Curr Stem Cell Rep. Author manuscript; available in PMC 2024 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[24]. TFs can serve as an activator that promotes transcription of the gene or a repressor 

that inhibits, and thus lowers gene transcription. Within a network representation, TFs can be 

modeled as nodes, from which one or more directed edges point to target genes. The edge 

has a sign, depending on the activating (+) or repressive (−) function of the TF [25].

TFs networks are characterized by biochemical or genome-wide techniques [26]. The 

specific DNA sequences to which a TF binds can be assayed using high-throughput 

approaches[24] such as systematic evolution of ligands by exponential enrichment (SELEX)

[24,27], protein binding microarrays (PBMs)[28], or microfluidic chip-based mechanically 

induced trapping of molecular interactions (MITOMI) [29]. Cell-type specific TF binding 

within a cellular context can be inferred genome-wide using approaches such as DNAse-

Seq[30] or ATAC-Seq[31]. TF binding can be directly mapped to genomic sites with 

approaches such as Chip-Seq[32] or Cut&Run[33].

TFs as drivers of stem cell fate - GRN knowledge to guide stem cell engineering

TFs can play an outsize role in influencing stem cell fate by modulating gene expression 

patterns in differentiating cells [34]. To accomplish this in stem cell differentiation, TFs are 

thought to concurrently repress pluripotent genes and to allow activation of lineage-specific 

genes [16]. The potent effects of TFs is evident by the fact that OCT4, c-MYC, KLF4 and 

SOX2 form a core network that can reprogram a somatic cell to an iPSC [2]. Just one or 

a few TFs can, solely, convert cells to certain lineages. A quintessential example is MyoD, 

which can convert somatic cells into muscle cells [35]. Many other lineage defining TFs 

exist across the differentiation spectrum, such as ETV2, which is necessary and sufficient for 

converting mesodermal precursors to primordial endothelial cells [36].

About 1,564 TFs have been annotated [37], but for many their role in driving cell fate 

decisions remain uncharacterized [38]. Recently, this has been tested across most human 

TFs experimentally [37]. A study employed a library of all human TF open reading frame 

(ORF) clones to test the role of individual TF expression in differentiating cells [37]. 

Surprisingly, 241 of the 1,564 TFs tested resulted in a differentiation phenotype across 

biological replicates. More recently, an even more comprehensive library of human TFs that 

included all RefSeq annotated ~3,500 TF isoforms were overexpressed in a population of 

stem cells and, using single cell RNA-seq as a readout—each TFs was profiled in terms 

of its ability to drive diverse cell-type-specific gene expression programs [39]. For a subset 

of TFs, the effect of multiple TFs on cell fate were tested, showing both cooperative and 

antagonistic relationships and reflecting the combinatorial nature of TF activities.

Cellular gene expression is the product of the timing and location of the collective activities 

of all TFs in a cell. The correlation between TF activity—most commonly, mRNA levels 

as a proxy—and expression of target genes, either experimentally or through inference via 

co-expression, is the basis for inferring links between TFs and their downstream targets [40]. 

These correlations guide computational predictions of TFs responsible for determining cell 

fates. For example, approaches such as CellNet[41] and Mogrify[42] leverage knowledge 

of TFs and their downstream targets and pathways responsible for promoting differentiation 

transitions in order to nominate TFs that would be ideal factors for cell engineering [40,43].
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Regulation beyond transcription - alternative splicing regulatory networks

GRNs and the resulting transcriptional output is significantly affected through the process 

of alternative splicing (AS) [44]. During AS, intronic regions are excised from nascent 

mRNA while the remaining exon coding regions are ligated together to form distinct mRNA 

isoforms. Such isoforms can greatly expand the protein functional diversity of the cell 

[45,46]. The first large-scale RNA-seq datasets of human tissues have revealed that 95% of 

human genes undergo AS[47], with many tissue-specific AS expression patterns [48].

Splice regulatory networks - the central role of splicing factors

AS is controlled by the splicing regulatory networks (SRN) operative in a cell. The 

workhorse of SRNs is the spliceosome, a protein machine comprises over 200 proteins 

[49] and five ribonuclear proteins (U1, U2, U4/U6 and U5) [50,51]. The process of 

splicing unfolds via the sequential binding of small nuclear ribonucleoproteins (snRNPs) 

on the pre-mRNA, which eventually catalyze the joining of particular exon junctions [49]. 

The activity of the spliceosome is regulated by a repertoire of splice factors (SFs), a 

subfamily of approximately 356[52] RNA binding proteins (RBPs) that bind to sites on 

pre-mRNA and interacts with components of the spliceosome to enhance or inhibit splicing 

reactions at certain exons [53–55]. Families of SF exist, such as heterogeneous nuclear 

ribonucleoproteins (hnRNPs), which tend to inhibit (i.e., silence) splicing [56,57], and 

serine and arginine rich proteins (SRs), which tend to enhance splicing [51], although the 

regulatory activity of SFs can be highly dependent on context and position of binding within 

the pre-mRNA [58]. Many annotated SF functions have been produced by hypothesis-driven 

studies, and, more recently, systematic efforts, such as through the Encyclopedia of DNA 

Elements (ENCODE) project have mapped the functional and biophysical networks of 80 

SFs in two human cell lines [52].

The emerging role of SFs in mediating pluripotency and differentiation

Just as with TFs, SFs can also act as master regulators of cell fate decisions during stem 

cell differentiation acting through SRNs [59,60]. For example, SRSF2 promotes the AS of 

exon 9 of the NUMB gene, creating an isoform of NUMB that specifically governs NOTCH 
[61], and thus inducing endothelial cell progenitor cell specification [61]. Muscleblind-like 

splicing factor (MBNL1) and RNA Binding Fox-2 (RBFOX2) alternatively splice targets 

that drive iPSCs to mesoderm transitions [62]. RBPs ESP1, ESPR2, RBFOX2 and QKI 
coordinate an isoform switch that promotes tissue remodeling from a mesenchymal to 

epithelial state for kidney development [63]. And, RNA binding motif protein 24 (Rbm24) 

drives cardiac differentiation programs in human and mouse by AS of genes related 

to cytoskeletal proteins and ATPase components that promote cardiac development [64]. 

Splicing regulator QKI is essential to establish splicing networks that control contractile and 

structural genes in the heart.[65] The repression of PTBP1, another splicing regulator, can 

convert cardiac fibroblasts into cardiomyocytes or fibroblasts into neuronal cells, indicating 

its critical role in cell differentiation. [66,67] PTBP1 influences transcriptional networks 

by regulating transcription factor PBX1 during neuronal differentiation.[68] RBFOX2 is 

necessary for establishing splicing regulatory networks required for heart and neuronal 
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development.[69] Overall these examples highlight how SF can serve as master regulators of 

cellular fate, similar to TFs.

SF networks can be characterized by experimental methods that link RBPs 

to the target isoforms they regulate. There are several different approaches 

that include RNA Immunoprecipitation (RIP)[70], and enhanced crosslinking and 

immunoprecipitation (eCLIP)[71]. Photoactivatable-Ribonucleoside-Enhanced Crosslinking 

and Immunoprecipitation (PAR-CLIP)[72] One of the most commonly used approaches 

is CLIP-seq, which links SF to their binding sites within their respective RNA targets 

transcriptome-wide is crosslinking and immunoprecipitation followed by RNA-sequencing, 

or CLIP-seq [73,74]. Here, RBPs are subjected to UV irradiation, which cross-links RBPs 

to the RNA at the site to which they bind. The RBPs, which remain covalently bound to 

the RNA target, are enriched as an RNA-protein complex, and the population of bound 

RNA is deeply sequenced and subsequently aligned to the genome to depict locations of the 

bound RBPs [74], revealing the positions across pre-mRNA and mRNA wherein the RBPs 

are bound, and presumably active, in a given condition or sample. Another method maps 

functional relationships between SFs and their targets by experimentally modulating RBP 

concentrations, such as through siRNA knockdown or overexpression plasmids, followed by 

measurements of splicing using RNA-seq [52].

Splice factors as regulators of the regulators - TF and SF isoforms

Among the many types of genes that splicing can target, the most marked effects are likely 

through alternative splicing of potent regulators of stem cell fate. Alternative splicing of 

such regulators could generate isoforms of the same gene with variable activities - from loss 

of function to gain in new functions [75]. In other words, splicing can have outsize effects on 

stem cell fate by “regulating the regulators”.

Splicing influences GRNs by producing TF isoforms that differentially regulate cell fate

A continuum of functional relationships between TF isoforms of the same gene can occur, 

from isoforms with attenuated, opposite, or tandem functions. The levels and relative 

stoichiometries of such TF isoforms are directly influenced by AS, and thus AS can 

influence gene regulatory networks by modifying TF activities through splicing [76,77].

AS can modulate TF functions by production of a sub-functional isoform. For example, AS 

modulates the activities of OCT4. OCT4 produces at least three major isoforms (OCT4A, 

OCT4B and OCT4B1)[78,79]. OCT4A is responsible for establishing pluripotency. In 

contrast, an isoform switch to OCT4B, a sub-functional form of OCT4, results in inhibition 

of stem cell self-renewal, but may be involved in responses to cell stress [78]. The 

differences in isoform function may be due to differential inclusion of localization signals 

in which a nuclear localization signal in OCT4A is absent in OCT4B, reducing its nuclear 

residence and thus transcriptional activity [80].

AS can modulate TF function by producing an isoform with opposite function. For example, 

splicing can alter the specificity of the forkhead transcription factor (FOXP1) where one 

isoform promotes pluripotency by directly stimulating expression of the Yamanaka factors, 
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while another isoform is predominantly expressed in differentiated cells and represses 

pluripotency genes [81].

And, lastly, AS can modulate TF function in a way in which there is a division of 

labor between multiple TF isoforms of the same gene. An example can be found in 

SALL4, a member of the spat-like gene family [82]. SALL4 interacts with both OCT4 

and NANOG to regulate pluripotency networks. SALL4 produces two isoforms, SALL4A 

and SALL4B, which collaborate to maintain pluripotency networks [83]. SALL4A represses 

genes associated with differentiation while SALL4B promotes pluripotent gene expression 

[84]. Interestingly, expression of SALL4B alone is not sufficient to promote the pluripotent 

state [83].

Analogously to how SFs can modulate activity of TFs, in a similar vein, SFs themselves 

may also act as upon themselves to modulate their own splicing [60]. Indeed, a pervasive 

mechanism of SF regulation is a negative feedback loop in which a SF binds to its own 

pre-mRNA which leads to nonsense-mediated decay products. While further studies work 

to elucidate these mechanisms as it relates to differentiation, negative regulation has clearly 

been demonstrated to affect 10–30% of mammalian genes [60], and may play an important 

role in stem cell SRNs. GRNs and SRNs likely work in concert within stem cells to regulate 

pathways of pluripotency or differentiation (Figure 1).

Characterization of the transcriptome at isoform-resolution

GRN and SRN programs can influence transcriptome expression. For characterization of 

the stem cell transcriptome, early efforts employed mid-throughput real-time quantitative 

PCR (RT-qPCR)[85] assays to quantify pre-selected isoforms panels [79]. More recently, 

short-read RNA-sequencing (SR RNA-seq) has enabled facile characterization of thousands 

of annotated and novel splice junctions and exon expression associated with stem cell 

phenotypes [86–88]. However, the short length of RNA-seq reads limit observation of the 

entire unambiguous full-length isoform [89,90].

These limitations are addressed with long-read (LR) sequencing platforms, such as through 

Pacific Biosciences Inc. (PacBio) or Oxford Nanopore Technologies (ONT) [91–94]. In 

the decade following their introduction, the throughput, affordability, and accuracy of LR 

sequencing was lower than SR, but with the steady evolution of LR sequencing systems in 

terms of the chemistries, instrumentation, and computational pipelines (e.g., PacBio’s Revio 

[92], ONT’s iSeq100 [95]), accurate transcriptome sequences will likely become accessible 

at a large depth and breadth. With this higher depth, single cell LR (scLR) methods are 

being developed for both ONT and PacBio platforms. With ONT as a readout, Barcode 

identification from Long-reads for AnalyZing single-cell gene Expression (BLAZE) relies 

on barcodes from ONT long-reads to profile isoforms at single-cell resolution [96]. PacBio 

has also reached the throughput needed for scLR through development of multiplexed 

arrays sequencing (MAS-ISO-seq), which uses a concatenation approach to ligate multipole 

cDNAs into large single molecules that is then sequenced [97]. To infer the functional 

interrelatedness of isoforms from scLR data, new analysis pipelines have been developed, 
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such as acorde, which analyzes co-expression networks of correlated isoform abundances 

[98].

Transcriptome and splicing regulation are an intertwined process

AS is co-transcriptional, and thus splicing and transcriptional biochemical processes work 

in concert within an epigenetic context to drive transcriptional outputs during differentiation 

[99–101]. Chromatin state has a large influence on splicing [100,102]. Two models have 

been proposed to describe how chromatin affects splicing outcomes: the kinetic and 

recruitment model. The kinetic model relates RNA polymerase II transcriptional speed with 

splice status. “Slow” Pol II increases the time with which an SF is exposed or could bind 

their cognate RNA binding sites, and thus promotes exon inclusion. The recruitment model 

focuses on the ability for components such as Pol II C-terminal tail or histone tails to 

mediate interaction-driven recruitment of SFs onto the nascent pre-mRNA which in turn 

affects AS [103,104]. Beyond the influence of chromatin and splicing, the biochemical 

relationships of splicing and transcription are surprisingly intertwined. TFs can bind to and 

regulate nascent RNA, influencing not only gene expression, but potentially RNA processing 

such as splicing [101,105,106]. SFs, on the other hand, can influence transcriptional 

regulation. For example, RBM20, through splicing, regulates genes necessary for heart 

development [107].

Not only are the biochemical mechanisms of transcription and splicing intertwined, but 

components of the transcriptional (TFs, gene targets) and splicing (SFs, splice targets) 

networks feed into each other and are involved in cross-regulatory logic, in sometimes 

unexpected ways. The transcription factor OCT4 upregulates the splice factor SFRS2, 

which regulates the splicing of methyl-CpG-binding protein, MBD2, whose isoforms play 

opposing roles in reprogramming to pluripotency [108]. Upregulation of SFRS2 increases 

levels of an isoform of MBD2 (MBD2c), which binds to the promoter of OCT4 to 

reinforce the pluripotency core network. Interestingly, loss of either OCT4 or SFRS2 
activity leads to product of the other isoform of MBD2 (MBD2a), which also binds to the 

promoter of OCT4, but has a different C-terminal domain that silences OCT4 expression by 

recruiting the Nucleosome Remodeling and Deacetylation complex (NuRD) [108]. SRSF2 
does not just regulate MBD2, but can also change the activity of the transcription factor 

FOXP1, whose isoforms are nearly opposite in their induced stem cell phenotypes; one 

isoform of FOXP1 activate genes that promote pluripotency and the other isoform promotes 

differentiation, a splicing switch that involves exonic changes to the FOXP1 DNA binding 

domain [81]. Notably, TFs with zinc finger domains can also bind RNA. Zinc finger 

domains allow binding to both DNA and RNA. It has been shown that transcription factor 

GATA4 can bind RNA and regulate alternative splicing networks in the heart.[109]

The functional output of the transcriptome - the stem cell proteome

In large part, the functional effect of the transcriptome manifests through the proteome, 

making identification of protein expression within the cell equally important. Indeed, 

transcript and protein abundances are not always highly correlated, with this relationship 

being affected by several factors including co- and post-translational layers of regulation 
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[110,111]. Given the importance of splicing networks in stem cell differentiation, 

approaches to directly measure their functional outputs, or protein isoforms, in stem cells are 

critical [112,113].

Mass-spectrometry(MS)-based proteomics is a powerful technique for comprehensive 

general proteome characterization of stem cell states [114–116]. MS has been used to 

track dynamic changes of proteins over stem cell differentiation, which may not correlate 

with transcriptional changes. An early work on transcript and protein levels in hESCs 

demonstrated that up to 50% of changes in protein expression do not have corresponding 

transcript changes, although some of this non-correlation is attributable to technical 

variability of the first generation MS instruments [117]. The value of proteomics for 

discovering important stem cell factors continues to be demonstrated. In a study of young 

and adult mouse HSCs, a module of proteins were specifically expressed in young mouse 

HSCs, uncorrelated to the transcript levels [118,119]. Multiplexed isobaric labeling, now a 

standard approach, allows for measuring protein expression along many more differentiation 

timepoints [120]. Newer thermal profiling approaches coupled with MS can even assay 

intrinsic protein stability, and regulated destabilization during early differentiation, such as 

the ribosomal machinery that exhibits higher stability during differentiation [120].

Though general protein content from genes is readily measured, an ongoing challenge 

remains the characterization of the final output of gene and splicing regulatory networks: the 

proteome at isoform resolution. MS characterization of protein isoforms have been applied 

to histone isoforms and isoforms in mesenchymal stem cells [121,122]. Technical challenges 

of isoform detection remain, though. In bottom-up MS, proteins are proteolytically 

digested into short peptides—few peptides uniquely map to an isoform [123], and such 

peptides are under sampled due to technical issues (MS ionization, charge, etc. [58]). 

New proteogenomic approaches [90,124–126] can enhance protein detection accuracy and 

coverage by leveraging matched long-read RNA-seq data to generate a sample specific 

database of protein isoforms used for MS searching [127], which can provide direct protein 

level evidence of stable isoform expression [128].

Emerging scalable strategies to causally link isoforms to stem cell phenotypes

Given the critical nature of SRNs in driving cell fates, determining the functional role of 

their downstream protein isoform products is critical, such as through experimentally testing 

the effect of knocking out or overexpressing an individual isoform on stem cell phenotypes. 

Isoforms can be “knocked down” using short interfering RNAs (siRNA) that are designed 

against regions specific for the target isoform mRNA [129,130]. This approach has been 

used to modulate splicing patterns of isoforms in cancer cells to functionally decouple gene 

expression patterns from the individual role of isoforms in driving cell phenotype [131]

To further modulate isoform expression, morpholino oligonucleotides can be used, which 

are RNA sequences designed to be complementary to the target sequences of RNA. 

Upon morpholino binding, spliceosome assembly or translation is inhibited through steric 

hindrance [132,133]. And, the Type II CRISPR-based system Cas13 demonstrates the ability 

to knock-down RNA isoforms with high specificity and efficiency, with potential to design 

gRNAs against isoform-specific regions [134,135]. The CRISPR-Cas9 system has been 
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engineered to modulate expression of individual exons through the paired guide RNAs for 

alternative exon removal (pgFARM) to enable functional testing of individual exons that 

may be part of AS pathways [136]. Further application of the CRISPR system has been 

extended to the CRISPR (Artificial Splicing Factors (CASFx) system which provides the 

ability to induce AS events onto target regions, to mimic and functionally characterize 

specific splice isoforms [137].

For similar experimental goals, isoforms can be over-expressed to understand the 

contribution an isoform has in driving cell fate. Currently, large-scale overexpression 

screens have been applied to TFs by using a strong promoter to profile individual TF 

isoforms driving stem cell differentiation[39]. Creation of “ORFeome” libraries have been 

created to functionally describe and characterize human isoforms [48]. However, large-scale 

overexpression screens to functionally interrogate the role of isoforms in driving stem cell 

differentiation have yet to be performed, but similar methods could be applied to elucidate 

the greater role of isoforms in driving stem cell fate. These screens could complement 

massively parallel reporter assays for screening candidate functional exonic or cryptic splice 

variants associated with stem cell mediated traits[138,139]. A range of splicing effects 

could be evaluated including, intron retention, exon exclusion, 5’ or 3’ UTR usage. More 

recent high-content cell imaging assays could be combined with these molecular functional 

screens[140]. By comparing different molecular splicing effects with gene expression and 

protein abundances and linking these to stem cell phenotypes, we expect these assays to 

dissect the complex architecture for a range of diseases such as cancers, cardiovascular 

disease, and autoimmune diseases.

Unresolved questions in the field and future directions

Stem cells are powerful model systems that mirror the processes of human development. 

Methods to date have focused on linking transcript expression signatures to stem cell 

phenotype, but emerging methods that combine multiple facets of regulation, such as 

transcriptional and splicing networks during stem cell differentiation should capture 

important regulatory programs previously missed. The interrelatedness of transcriptional 

and splicing networks, during biochemical regulation, as well as between their network 

components, during stem cell differentiation necessitates a multi-faceted approach to 

understand.
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Figure 1. 
Demonstration of gene regulatory networks and splice regulatory networks
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