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Abstract

1. Analyses of genetic variation typically assume that rare variants within a population 

are inherited from a single common ancestral event identity-by-descent (IBD). 

However, there are genetic and technical processes through which rare variants in 

population genetic data may deviate from this simple evolutionary model, including 

recurrent mutations, gene conversions and genotyping error. All these processes can 

decrease the expected length of shared background haplotype surrounding a rare 

variant if that variant was inherited from a single event descending from a common 

ancestor. No method exists to computationally infer rare variants inconsistent with 

this simple model–denoted here as ‘IBD-inconsistent’–using unphased population 

sequencing data.

2. We hypothesized that the difference in shared haplotype background length can 

distinguish variants consistent and inconsistent with this simple IBD transmission 
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population sequencing data without pedigree information. We implemented a Bayesian 

hierarchical model and used Gibbs sampling to estimate the posterior probability of 

IBD state for rare variants, using simulated recurrent mutations to demonstrate that 

our approach accurately distinguishes rare variants consistent and inconsistent with a 

simple IBD inheritance model.

3. Applying our method to whole-genome sequencing data from 3,621 human individuals 

in the UK10K consortium, we found that IBD-inconsistent variants correlated with 

higher local mutation rates and genomic features like replication timing. Using a 

heuristic to categorize IBD-inconsistent variants as gene conversions, we found that 

potential gene conversions had expected properties such as enriched local GC content.

4. By identifying IBD-inconsistent variants, we can better understand the spectrum of 

recent mutations in human populations, a source of genetic variation driving evolution 

and a key factor in understanding recent demographic history.
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1 | BACKGROUND

Population genetics inference studies typically invoke a simple origin and transmission of 

alleles at polymorphic sites segregating in a population, that is, a single mutational event 

from which alleles, when subsequently transmitted to the next generation, are passed on 

faithfully and directly from parent to offspring. These assumptions are mathematically 

useful, as an allele state shared by sampled chromosomes can be traced to an originating 

mutation event.

Large-scale population data suggest that these assumptions are reasonable on average but not 

universally. One example is the frequency of recurrent mutations, which has been studied 

at length in population genetics (e.g. Haldane, 1933; Wright, 1931, 1937). In the Exome 

Aggregation Consortium, Lek et al. noted a marked depletion of singleton CpG transitions 

relative to other mutation types (Lek et al., 2016). This observation could be explained by 

the presence of recurrent mutations saturating these highly mutable sites in this large sample, 

resulting in two or more sampled individuals segregating identical-by-state alleles at CpG 

sites. Beyond this, there are other types of population phenomena (e.g. gene conversion) 

but also technical artefacts (e.g. genotyping error) that can create alleles that appear in 

the same state but whose origin and genealogy is more complex. We refer to the cases 

of alleles segregating at a polymorphic site that do not descend from a simple model of 

identity-by-descent (IBD) as ‘IBD-inconsistent’ events.

Estimating the frequency and identifying specific examples of IBD-inconsistent variants is 

important to improve statistical analyses of population genetic data and infer mechanisms. 

For example, distinguishing recurrent mutations from variants with single event mutational 

origins is important for understanding the causes of variation in germline mutation rates 

and for population genetic methods that make inferences based on the observed number of 
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variants in a population. Many population genetics methods use the site frequency spectrum 

(SFS) to infer the demographic history of a sample (Bhaskar et al., 2015; Excoffier et al., 

2013; Gutenkunst et al., 2009; Jouganous et al., 2017; Lukic & Hey, 2012), approaches 

which generally assume an infinite sites model with no recurrent mutations (Harpak et al., 

2016). This could impact the accuracy of demographic parameter inference. Recent work 

has described the SFS allowing for recurrent mutations but relies on observed recurrent 

mutations detectable as tri-allelic sites, not those in the same allele state (Jenkins et al., 

2014; Jenkins & Song, 2011; Ragsdale et al., 2016). Finally, the magnitude of purifying 

selection may be underestimated if the frequencies of rare variants are overestimated due to 

undetected recurrent mutation.

Below, we present a computational approach to infer the presence of an IBD-inconsistent 

variant at a genomic site. The key idea underlying our approach is to use genetic variation 

linked to rare variants to distinguish alleles carried at that variant position as consistent or 

inconsistent with our model for IBD. In our model, rare variants inherited IBD are flanked 

by a shared haplotype on all chromosomes carrying the variant (i.e. an IBD segment) as 

all segregating alleles derive from a recent ancestral mutation. If the variant arose recently, 

recombination will have had little time to shorten this shared segment. Thus, the length 

of the IBD segment shared across carriers is inversely related to the age of the variant 

(Haldane, 1919; Mathieson & McVean, 2014). In contrast, alleles that are IBD-inconsistent 

could occur on a random haplotype background; thus, we expect that their local time to 

the most recent common ancestor (TMRCA) will be older than an IBD variant of the same 

frequency. Leveraging this relationship, we can infer rare variants that segregate alleles 

similar in state with haplotype lengths inconsistent with simple transmission. Thus, rare 

variants that fall on the short end of the distribution of shared IBD segment lengths are older 

than expected and we explore the possible causes of these IBD-inconsistent variants (e.g. 

recurrent mutation, non-crossover gene conversion, proximity to a region of extremely high 

local recombination rate and/or genotyping errors).

While previous efforts have leveraged IBD tracts to infer mutation and gene conversion 

rates (Palamara et al., 2015), as well as to estimate allele ages (Albers & McVean, 2020; 

Mathieson & McVean, 2014; Palamara et al., 2012; Platt et al., 2019), we are not aware 

of any previous method designed to specifically identify IBD-inconsistent variants events 

at specific genomic positions across the entire genome. Such a method could be applied 

to flag potentially erroneous rare variant genotype calls in large-scale sequencing datasets. 

We implement a Bayesian hierarchical model to identify IBD-inconsistent rare variants, 

using population genetic simulations to assess its precision and accuracy. We then apply our 

approach to sequencing data of 3,621 individuals from the UK10K dataset, and partition 

high-confidence IBD-inconsistent rare variants as those likely to be recurrent mutations or 

gene conversions.
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2 | A BAYESIAN HIERARCHICAL MODEL TO IDENTIFY RARE GENETIC 

VARIANTS INCONSISTENT WITH IBD

We hypothesized that the expected difference in the TMCRA between IBD and non-IBD 

allele pairs can distinguish between these two states. While the TMRCA of a genetic variant 

is not directly observable, it can be estimated by the length of the haplotype shared by 

carriers of the variant. As our purpose here is to distinguish between IBD consistency 

and inconsistency of alleles at rare variant sites, there will be few if any linked mutations 

more recent than the focal variant. Thus, we rely solely on the recombination clock for 

inference. The distance to the nearest recombination event on either side of a genetic 

variant between a pair of alleles can be modelled as exponentially distributed with rate 

proportional to the TMRCA (Mathieson & McVean, 2014; Palamara et al., 2012). The 

expected difference in the TMRCA between a rare variant segregating with IBD alleles and 

a variant position with non-IBD mutations translates into IBD alleles having longer expected 

distances to the nearest recombination event compared to IBD-inconsistent alleles of the 

same allele frequency (Supplementary Figure S1). Recent methods have inferred the age of 

alleles in large-scale population datasets by leveraging this relationship between haplotype 

background and the TMRCA (Albers & McVean, 2020; Palamara et al., 2012; Platt et al., 

2019) and by constructing local genealogies (Kelleher et al., 2019; Speidel et al., 2019). 

However, these approaches require known haplotypic phase and do not explicitly attempt 

to identify IBD-inconsistent variants. Existing approaches to identify recurrent mutations 

rely on family relationships or assume that variants present at very low frequencies in 

distantly related populations are recurrent without explicitly identifying IBD-inconsistent 

variants (e.g. Pagnier et al., 1984; The 1000 Genomes Project Consortium, 2012). Thus, our 

goal was to develop an approach to identify IBD-inconsistent variants that scales to large, 

whole-genome population sequencing studies with thousands of individuals.

While recombination breakpoints cannot be directly observed in population sequencing 

data, patterns of genetic variation can provide an estimate of the location of these events 

without haplotype phase being known. Our method utilizes unphased diploid genotypes 

to estimate the recombination distances on either side of a pair of alleles. With diploid 

genotypes for a pair of individuals each carrying a focal allele, one can measure the obligate 
recombination distance: the genetic distance to the first opposite homozygote genotype 

between the two individuals (Figure 1A; Hudson & Kaplan, 1985). No genealogy without 

recombination is compatible with the observed genotypes of these two sites, and thus we 

assume a recombination event has occurred between them (Mathieson & McVean, 2014). 

Thus, the obligate recombination distance gives an upper bound for the IBD segment length 

around the target variant.

We considered a Bayesian hierarchical model for the pairwise recombination distances from 

a sample of variants of a given allele count, illustrated in Figure 1B. We denote each 

i-th variant’s IBD-consistent or IBD-inconsistent state with parameter ki, and modelled the 

sampled variants as a finite mixture of IBD-consistent ki = 1 or IBD-inconsistent (ki > 1, 

with each possible partition of alleles for an IBD-inconsistent variant given a different value 

of k) with mixture proportions π. For example, we model an IBD-inconsistent variant of 
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allele count = 4 as one of two possible partitions: a singleton and an IBD tripleton (1:3), or 

two IBD doubletons (2:2). Each variant of allele count = A has n = A
2  allele pairs. While 

partitions of more than two groups (e.g. 2:1:1) are possible, we model only two groups, 

as simulations suggest this simplified approach identifies both the simple and complex 

partitions (Supplementary Table S1). The TMRCA, denoted by t, for each allele pair n was 

sampled from a Gamma distribution with shape parameter α and rate parameter β, with 

one Gamma distribution used to model t for IBD-consistent allele pairs jn = 1  and one for 

IBD-inconsistent allele pairs jn = 2 . We chose Gamma distributions to model the TMRCA 

due to the availability of a conjugate prior as well as the fact that the Gamma distribution 

models the TMRCA of a pair sequences given the mutation rate, number of pairwise 

differences and sequence length in the coalescent (Hein et al., 2005). For IBD-inconsistent 

allele pairs, we estimated α and β from multiallelic sites, and for IBD allele pairs we fixed α
and performed sampling for β over a range of possible values for α. We modelled the left and 

right recombination distances (dL, dR) for each allele pair using an exponential distribution 

with rate proportional to t. We used Gibbs sampling to sample from the marginal posterior 

density of each parameter, as we could estimate these densities from the full conditional 

distributions. We outline these expressions below.

2.1 | Mixture proportions (π)
Using a multinomial likelihood for the probability of each variant i’s assignment as IBD 

(ki = 1) or IBD-inconsistent ki > 1, with the possible values of ki depending on allele count) 

based on mixture proportions π, we used the Dirichlet distribution as the conjugate prior 

to obtain the posterior probability of π given the observed ki assignments. The likelihood 

function is

P ki ∣ π ∼ Multinomial(1, π) .

(1)

We used a Dirichlet prior for π:

P [π] ∼ Dirichlet(δ) .

(2)

The resulting posterior probability follows a Dirichlet distribution, with K representing the 

vector of variant assignments ki:

P π ∣ K ∼ Dirichlet(δ + K) .

(3)
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2.2 | TMRCA (t)
The likelihood of the pairwise recombination distance (d; could be left or right, dL, dR) to one 

side of a variant (in centiMorgans), given the TMRCA t scaled by genetic distance, follows 

an exponential distribution (Palamara et al., 2012):

P d ∣ t ∼ Exponential(t) .

(4)

We used a Gamma distribution for the prior of t, the TMRCA for each allele pair, dependent 

on the assignment jm for allele pair m as IBD-consistent jm = 1  or IBD-inconsistent jm = 2 :

P t ∣ jm ∼ Γ αj, βj .

(5)

The resulting posterior is also Gamma distributed, with n representing the number of allele 

pairs and D the vector of allele pair distances d:

P t ∣ D ∼ Γ αj + n, βj + ∑b = 1
n db .

(6)

We determined that for a range of α values, fixing α and sampling β from the posterior did 

not affect the performance of our approach (Supplementary Methods), allowing us to use the 

conjugate priors for a Gamma distribution with shape parameter (α) and rate parameter (β), 
which is a second Gamma distribution:

P βj ∼ Γ(α, β .

(7)

The posterior for β is also Gamma, with T  representing a vector of length w of the TMRCA 

estimates for t:

P βj ∣ T , αj ∼ Γ α + nαj, β + ∑
b = 1

w
tb .

(8)

2.3 | Full conditional distributions

To sample from the posterior for each unknown parameter, we derived the full conditional 

distributions, ignoring conditionally independent terms. In each iteration of the Gibbs 

sampler, we sample each parameter from its full conditional distribution, conditioned on 

the current values of all other parameters. The sampling algorithm is described in the 

Supplementary Methods.
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π represents a vector of mixture proportions of K (the vector of assignments ki), with p
representing the possible assignments of ki and J the vector of allele pair assignments jm:

f(π ∣ D, K, J , T , α, β, α, β) = f(π ∣ K) ∝ f(K ∣ π)f(π)

= Diricℎlet δ + ∑
y ∈ p

l {K = y} ,

(9)

β, rate parameter of TMRCA distributions:

f(βj ∣ D, K, J , T , π, αj; α, β) = f(βj ∣ T , αj, α, β) = Γ α + nαj, β + ∑
b = 1

w
tb ,

(10)

ti, the TMRCA for variant i, with Di representing the subset of allele pair distances and Ji

representing the subset of allele pair assignments for variant i:

f ti ∣ Di, ki, Ji, π, αj, βj, α, β = f ti ∣ Di, ki, αj, βj ∝ f Di ∣ ti f ti ∣ ki
= Exp Di; ti Γ ti; αjβj ,

(11)

ki, variant label for variant i (k = 1: IBD-consistent; k > 1: IBD-inconsistent), with δ
representing the vector of prior estimates for proportions of ki:

f(ki ∣ Di, Ji, ti, π, αj, βj, α, β) ∝ f(Di, Ji, ti, π, αj, βj, α, β ∣ ki)f(ki)
= f(Di ∣ ti, Ji, ki)f(ti ∣ ki)f(ki) = Exp(Di; ti)Γ(ti; αj, βj)

δki
∑δ ,

(12)

jm, the partition assignments for allele pairs from IBD-inconsistent variants, modelled as 

a Multinomial distribution with equal prior probabilities for all q permutations of possible 

assignments:

f(jm ∣ Di, ki, ti, π, αj, βj, α, β) ∝ f(Di, ki, ti, π, αj, βj, α, β ∣ jm)f(jm) ∝ f(Di ∣ ti, jm, ki)f(ti ∣ ki)f(jm)
= Exp(Di; ti)Γ(ti; αj, βj)1

q .

(13)

3 | RESULTS

3.1 | Application to simulated recurrent mutations

To evaluate our approach, we applied it to simulated genetic data which included 

recurrent mutations identical by state (and thus, inconsistent with our IBD model). Using 

SLiM (Haller & Messer, 2017), we generated genomic segments of length 10 Mb with 
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uniform mutation and recombination rates (μ = 2.5 × 10−8 mutations per site per generation, 

r = 1 × 10−8 events per site per generation), without selection, following a European 

demographic model (Bhaskar et al., 2015) and sample size of 3,621 diploids (the size of the 

UK10K dataset analysed subsequently). We measured the pairwise obligate recombination 

distances of recurrent and non-recurrent mutation sites with allele count ≤ 10 for a 2 Mb
window in the middle of each simulated 10 Mb segment, reporting the number of recurrent 

mutations (Supplementary Figure S2). We applied our method to the obligate recombination 

distances from these simulations, calculating the posterior probability of a variant being 

IBD-inconsistent as the fraction of posterior samples with k > 1 (Supplementary Figure 

S3). We evaluated the ability of this posterior estimate to distinguish between recurrent 

and non-recurrent mutations. Receiver operating characteristic (ROC) curves in Figure 

2 show the relationship between true- and false-positive rates for allele counts 2–10 

(Supplementary Table S2). The precision and recall of our approach depends on the fraction 

of variants that are IBD-inconsistent (Figure 2), with higher recurrent fractions having 

superior performance.

We next performed a battery of sensitivity studies, simulating population genomic features 

known to influence patterns of genetic variation that could impact robustness of our 

estimates. First, we simulated genomic segments including genes and deleterious mutations 

to test the effect of background selection on our approach (Methods). We observed that 

background selection had little impact on the power of our approach (Supplementary Figure 

S4; Table S2). We suspect that the recent ages of rare variants (Supplementary Figure S5) 

cause the difference in recombination distances of recurrent vs. non-recurrent mutations to 

not be strongly altered by the presence of weak negative selection.

Next, we considered variable recombination rates, sampling from a human recombination 

map (Methods). At allele count = 2, the area under the ROC curve (AUC) was greater for 

the variable recombination map than the uniform map (Supplementary Table S2), though 

performance was worse for variable recombination rates at the lowest end of false-positive 

rates (Supplementary Figure S6A). For all larger allele counts tested, power was reduced 

in simulations with variable recombination maps relative to uniform maps (Supplementary 

Figure S6A and Table S2). Increasing the sample size to 10,000 diploids with a variable 

recombination map demonstrated that the power to identify recurrent variants was similar 

between sample sizes for allele count = 2, but improved for all larger allele counts tested 

(Supplementary Figure S6B; Table S2).

3.2 | Comparison to variant age estimates to identify IBD-inconsistent variants

IBD-inconsistent variants could potentially be identified as age estimate outliers within 

each allele frequency class from methods that estimate variant ages using large scale 

genome-wide sequencing data (Albers & McVean, 2020; Platt et al., 2019). To evaluate 

the utility of these approaches to identify IBD-inconsistent variants, we estimated the ages 

of simulated variants using runtc (Platt et al., 2019; Methods). We used these age estimates 

to potentially identify recurrent mutations, by sliding an age estimate threshold and calling 

variants older than the threshold as IBD-inconsistent. We plot the performance of this 

approach in Supplementary Figure S7. We find that the age estimates have limited power 
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to identify IBD-inconsistent recurrent mutation events, and that runtc’s performance at this 

task (Supplementary Table S3)–a task the method was not explicitly designed for–performs 

poorly compared to our Bayesian hierarchical approach (Supplementary Table S2).

3.3 | Application of Bayesian hierarchical model to UK10K sequencing data

We applied our method to identify IBD-inconsistent variants in whole-genome sequencing 

data in 3,621 individuals from the UK10K project (Methods; The UK10K Consortium, 

2015). We measured the obligate recombination distance for biallelic and multiallelic single 

nucleotide variants that passed the UK10K quality filters, focusing on variants of allele 

count ≤ 5 based on performance of our method in simulations.

We applied our approach to a mixture of 80% biallelic and 20% multiallelic sites to use 

multiallelic sites as a positive control for IBD-inconsistent mutations. We compared the 

empirical cumulative distribution of posterior probabilities for multiallelic and biallelic sites, 

and as expected we observed that multiallelic sites had higher posterior probabilities of 

IBD-inconsistency (Supplementary Figure S8). We used these distributions to determine the 

threshold for posterior probabilities we denote as ‘IBD-inconsistent’ used in downstream 

analyses. Here, we focus on biallelic variants with allele counts between 2 and 5 (inclusive).

3.4 | IBD-inconsistent variants correlate with local sequence context

To assess the accuracy of our IBD-inconsistent variant calls, we took advantage of the 

relationship between local sequence context and mutation rate (Aggarwala & Voight, 

2016). Under a Poisson model of mutation, sequence contexts with a higher mutation 

rate should have a higher probability of recurrent mutation relative to other contexts. If 

IBD-inconsistent variant calls reflect largely recurrent mutations, we would expect to see a 

correlation between the fraction of IBD-inconsistent variants and the mutability of sequence 

contexts. Using sequence-context estimated polymorphism probabilities calculated from the 

UK10K dataset, we calculated an expected fraction of recurrent variants for each 5 base-pair 

nucleotide (5-mer) sequence context window and allele count (Methods).

Across all 5-mer sequence contexts, we observed a significant correlation between 

expected and observed fractions of IBD-inconsistent calls (Pearson’s correlation coefficient 

ρ = 0.81, p < 10−100 for allele count = 2; Figure 3; Supplementary Tables S4 and S5). The 

observed fraction of sites called IBD-inconsistent was higher than expected for non‐CpG T
contexts, and lower than expected for CpG T contexts (Figure 3; Supplementary Tables 

S4 and S5). Within CpG T contexts, we also observed a significant correlation between 

expected and observed fractions ρ = 0.76, p = 1.6 × 10−13 for allele count = 2), though for 

all contexts calls were fewer than expected (Supplementary Figure S9; Tables S4 and 

S5). Within non‐CpG T contexts, the correlation between expected and observed was 

significant for all allele counts except for variants of allele count = 5, which had the 

smallest sample size (ρ = 0.31, p = 2.6 × 10−33 for allele count = 2; Supplementary Figure 

S10; Tables S4 and S5). These results suggest that at sequence contexts with relatively 

lower polymorphism probabilities, there was a higher rate of IBD-inconsistent calls. 
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Non‐CpG T  contexts represent 82% of the polymorphic sites tested, but 68% of sites called 

IBD-inconsistent.

We next assessed whether IBD-inconsistent variants were localized to specific sequence 

contexts or dispersed proportionally to the polymorphism probabilities of larger sequence 

contexts. We compared polymorphism probabilities estimated from IBD-variants to 

probabilities derived from allele counts 2–5 IBD-inconsistent variants in 7-mer sequence 

context models. Due to the small sample size of some 7-mer windows, we employed a 

dynamic programming algorithm to only consider contexts in our models where at least 

100 mutations and 20,000 instances of the context were present in the dataset. For contexts 

where either criterion fails, the algorithm uses the next largest nucleotide window where 

both criteria are satisfied (Methods). Probabilities from IBD-consistent and inconsistent 

variants were strongly rank correlated (Spearman’s correlation = 0.93, < 10−100) but with 

a concerted shift towards IBD compared to IBD-inconsistent polymorphisms for the most 

mutable mutation types, CpG T and A G (Figure 4). These observations suggest that 

there is a global shift proportional to the underlying mutability of each context which is not 

localized to any specific 7-mer contexts.

3.5 | Additional genomic annotations correlated with IBD-inconsistent variants

To infer genomic features correlated with IBD-inconsistent variants, we performed a logistic 

regression with IBD-consistent/inconsistent calls for each variant as the response variable 

(6,763,324 sites; with 665,340 called IBD-inconsistent). In separate regressions for each 

allele count, we included 7-mer polymorphism probabilities, background selection, GC 

content, replication timing, local recombination rate, distance to a recombination hotspot, 

germline CpG methylation levels, the variant calling quality measure VQSLOD and read 

depth as predictors. We transformed the values of each annotation to z-scores and report 

the odds ratios and 95% confidence interval for each annotation in Figure 5 (Supplementary 

Table S6). All annotations were significantly associated with the outcome (multiple logistic 

regression coefficient p < 1 × 10−10). We also performed regressions with CpG T sites only 

(Supplementary Figure S11, Table S6). Below, we highlight the annotations included as 

predictors, our prior hypotheses about their relationships with IBD-inconsistent rare variants, 

and the results of the regression models.

3.5.1 | Polymorphism probability—As shown above, polymorphism probability was 

strongly positively correlated with IBD-inconsistent status. As previous work has shown 

that a 7-mer model explains additional variation in genetic variation over a 5-mer model 

(Aggarwala & Voight, 2016), we find that a 7-mer polymorphism probability calculated 

in UK10K in the logistic regression model was associated with our IBD-inconsistent calls 

(multiple regression coefficient = 0.19, p < 10−100 for variants of allele count = 2).

3.5.2 | GC content—GC content varies across the human genome, and is correlated with 

gene content, repetitive elements, DNA methylation, recombination rates and substitution 

probabilities (Arndt et al., 2005). In our regression model, increased local GC content 
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(measured at a 1 kb scale) was associated with increased probability IBD-inconsistency 

(multiple regression coefficient = 0.04, p = 1.6 × 10−39 for variants of allele count = 2).

3.5.3 | Replication timing—Later replication timing has been linked to higher rates of 

de novo mutation in the human genome, specifically in the offspring of relatively younger 

fathers (Francioli et al., 2015). Our regression model with replication timing estimates 

(Koren et al., 2012) was consistent with these results, with variants in late replicating 

regions significantly more likely to be called as recurrent (multiple regression coefficient 

= − 0.15, p < 10−100 for variants of allele count = 2.

3.5.4 | Background selection—We included B-values (McVicker et al., 2009), a 

measure of background selection, or purifying selection due to linkage with deleterious 

alleles, with lower B-values indicative of stronger background selection. We expected that 

increased background selection would be associated with increased recurrent mutation, as 

linkage to deleterious alleles would result in variants being removed from the population 

and thus present at lower frequencies. Recurrent mutations would then be more likely to be 

present as they effectively shift the SFS towards more rare alleles. Our results are consistent 

with this expectation, with an odds ratio less than one for B-values (multiple regression 

coefficient = − 0.12, p < 10−100 for variants of allele count = 2). This relationship could also 

potentially be caused by older IBD variants maintained at low frequencies due to negative 

selection being identified as IBD-inconsistent.

3.5.5 | Local recombination rate and distance to recombination hotspots—
We observed that both an increased local recombination rate and a shorter distance to a 

recombination hotspot were correlated with a lower probability of a site being called as 

recurrent (multiple regression coefficient = − 0.17, p < 10−100 for local recombination rate 

for variants of allele count = 2).

3.5.6 | Methylation levels at CpG sites—Spontaneous deamination of 5-

methylcytosine at CpG sites results in a substantial increase in C-to-T transition mutations. 

We included CpG methylation levels measured in testes and ovaries in our model, expecting 

that CpG sites with higher methylation levels are more likely to spontaneously deaminate, 

increasing mutation rates generally and thus increase recurrent mutation probabilities. 

Methylation levels in testes and ovaries were correlated (Pearson’s ρ = 0.27, p < 2 × 10−16), 

but we note that increased methylation in both tissue types independently predicted 

an increased posterior probability of a variant being IBD-inconsistent (e.g., ovarian 

CpG methylation levels: multiple regression coefficient = 0.03, p < 9.4 × 10−19; testes CpG 

methylation levels: multiple regression coefficient = 0.04, p < 1.0 × 10−28; both for variants 

with allele count = 2).

3.5.7 | VQSLOD and read depth—We observed a significant relationship between 

sequencing quality, measured both by read depth and variant quality score, and 

the probability of a site being IBD-inconsistent (multiple regression coefficient 

= − 0.07, p < 10−100 for read depth of variants of allele count = 2). Under a simple model 
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for genotyping error, where errors are distributed randomly (without respect to haplotype), 

this result suggests that our approach also identifies some number of genotyping errors in 

regions of low read depth or sequencing quality.

3.6 | IBD-inconsistent calls and gene conversion events

As non-crossover gene conversions are thought to be more frequent than de novo mutations 

in the human genome (Halldorsson et al., 2016), we expect that a subset of our IBD-

inconsistent variant calls reflect gene conversion events. After a non-crossover gene 

conversion event encompassing a rare variant, the copied allele resides on the existing 

haplotype background of the acceptor chromosome, which may reduce the surrounding 

shared IBD segment. We devised a heuristic to identify likely gene conversions, based on 

the intuition that two IBD-inconsistent variants in close physical proximity in the same 

individuals are more likely to reflect variants copied along a gene conversion tract, rather 

than two independent recurrent point mutations. If a gene conversion tract contains only a 

single rare variant, this signature would be indistinguishable from a recurrent point mutation 

with our approach. However, if a gene conversion contained no rare variants, it would not be 

identified in our analysis as a potential recurrent mutation or gene conversion.

Limiting our results to tracts < 1 kb with two or more IBD-inconsistent variants present in 

the same individuals, we identified 42,203 variants within 18,971 putative gene conversion 

tracts, representing 6.3% of IBD-inconsistent variants (Supplementary Figure S12). We 

performed logistic regression with all IBD-inconsistent variants labelled as potential gene 

conversions or not as the outcome, and the genomic annotations listed above as predictor 

variables (Figure 6, Supplementary Table S7). We additionally included the posterior 

probability of a variant being IBD-inconsistent as a predictor variable. Compared to IBD-

inconsistent variants not in putative gene conversion tracts, these variants were associated 

with lower polymorphism probability, higher variant quality score, increased posterior 

probability of being IBD-inconsistent, smaller distance to a recombination hotspot and lower 

recombination rate. We also observed a GC bias in putative gene conversion variants, as 

measured by the fraction of variants containing an A C/T G or A G/T C mutation 

(37% in putative gene conversions vs. 27% in all other IBD-inconsistent variants; Fisher’s 

exact test p < 10−100).

3.7 | Rescaling the site frequency spectrum with IBD-inconsistent mutations

With our set of high-confidence IBD-inconsistent variants, we rescaled the SFS for very 

rare variants. Considering the power of our approach on simulated data, we plot the original 

and rescaled SFS for variants with allele count < 5 in (Figure 7a; Methods). Rescaling the 

SFS resulted in a 3% increase in the fraction of singleton variants, from 46.6% to 49.6%. 

As expected, most of this shift is due to the relatively large fraction of CpG T variants 

that were called as IBD-inconsistent (Figure 7b). For CpG T variants alone, the fraction of 

singleton variants increased from 43.6% to 49.9%. We note that this rescaling is incomplete, 

as we identified IBD-inconsistent variants at only allele counts 2 to 5, which represent 38% 

of the non-singleton variants in the UK10K dataset.
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4 | DISCUSSION

We describe a novel approach designed to identify variants inconsistent with IBD 

transmission of alleles using whole-genome sequencing data, leveraging the expected 

difference in the obligate recombination distance between rare alleles transmitted under 

a simple IBD transmission model, relative to those with more complex patterns of 

inheritance. Our approach uses a Bayesian hierarchical model and Gibbs sampling to 

jointly infer the TMRCA distributions of these two scenarios and identify variants with 

a high posterior probability of being IBD-inconsistent. In simulated data, we find that the 

posterior probabilities of IBD-inconsistency can discriminate between recurrent mutation 

and non-recurrent mutational events up to allele count 5 in a population sample of 3,621 

individuals.

Our approach assumes that we lack phase assignment of the rare allele to the maternally 

or paternally inherited chromosome. If we had true phase information, we could more 

accurately measure recombination breakpoints, potentially improving the performance of 

our method by eliminating the measurement error caused using the obligate recombination 

distance. We assumed a single, exponentially growing population, though extensions to rare 

variants shared by multiple populations may be possible. In the scenario of a very rare 

variant present in two populations, the null hypothesis may be recurrence rather than single 

mutational event, especially at hypermutable sites, but would need to model migration. 

Simulations modelling this scenario would be required to test the applicability of our 

approach to variants shared across populations. We assume a ‘star-shaped’ genealogy for 

IBD rare variants, though in the true genealogy of an IBD variant, the TMRCA for some 

allele pairs could be much more recent than the clade TMRCA for variants with allele count 

> 2. This assumption reduced the complexity of our model and sped up computation, but 

future work could model this variation in TMRCA across allele pairs. We did not model 

the effect of genotyping error on our estimate of the shared haplotype length between pairs 

of rare alleles. These errors could result in underestimation of shared haplotype length and 

potentially false calls of truly IBD variants as IBD-inconsistent. Future work could explicitly 

model and investigate the impact of these errors on our approach. We also focused on 

inference of IBD-inconsistent variants for allele counts of 5 or less, as the performance of 

our method decreases with increasing allele count. Our simulations with a larger sample size 

of 10,000 (versus 3,621) confirmed that increasing sample size provides a boost in power 

for variants of a given allele count. Thus, we expect that applying our method to even larger 

sequencing datasets will improve its performance.

The negative correlation we observed between local recombination rate and the probability 

of a site being called IBD-inconsistent suggests that our method is confounded by local 

recombination rate. In simulated data, we observed that we had lower power to identify 

recurrent mutations when there was a variable recombination rate. We also note that we 

found a significant relationship between sequencing quality, measured by read depth and 

variant quality score, and the probability of a site being called IBD-inconsistent. The 

signature of an IBD-inconsistent variant used here could also be that of a genotyping error, 

as genotyping errors also may occur on any random haplotype background in a population. 

This could be a potential application of our method. Our current recommendation is 
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to remove variants of low quality until this relationship is not significant. However, 

distinguishing genotyping errors from true non-IBD variants remains an important problem. 

Additionally, though we heuristically identified a number of likely gene conversions, this 

approach can only identify gene conversions encompassing at least two rare variants, a small 

fraction of true gene conversion events.

5 | MATERIALS AND METHODS

5.1 | Forward genetic simulations with SLiM

We used the software program SLiM version 2.5 (Haller & Messer, 2017), to simulate 

genetic data following a European demographic model (Bhaskar et al., 2015): an ancestral 

population size of 10,000 (burn-in of 100,000 generations); a population bottleneck to 200 

individuals at generation 200; population size rebounds to 10,000; a second bottleneck to 

500 individuals at generation 4280; population size rebounds to 5800 ; exponential growth 

starting at generation 4870 at 3.89% per generation; random sampling of 3,621 individuals 

at generation 5000. SLiM simulations had a uniform rate of 2.5 × 10−8 mutations per base 

pair per generation. We identified recurrent mutations as base positions with two or more 

mutations in the SliM output. We performed 1000 simulations with uniform recombination 

rate of 1 × 10−8 events per base pair per generation, and an additional 500 simulations with 

selection or variable recombination rate.

For simulations with selection, we generated 10 Mb genomic segments using a recipe from 

the SLiM manual (Haller & Messer, 2017): (1) sample non-coding region; (2) sample exon; 

(3) sample intron and exon pairs in a loop with 20% probability of stopping after each pair; 

(4) repeat steps 1–3 while chromosome length < 10 Mb; and (5) sample final non-coding 

region. Exonic mutations were synonymous or non-synonymous at a ratio of 1:2.31, and 

10% of non-synonymous mutations were neutral. Deleterious non-synonymous mutation 

selection coefficients were sampled from a Gamma distribution with mean = − 0.03 and 

shape parameter = 0.207. Exon lengths were sampled from a Lognormal distribution with 

mean = log(50) and standard deviation = log(2). Non-coding regions were neutral and their 

lengths were sampled from a uniform distribution between 100 and 5000. Intronic mutations 

were neutral and intron lengths were sampled from a Lognormal distribution with mean 

= log(100) and standard deviation = log(1.5).

For each simulation with a variable recombination map, we randomly sampled a 10 Mb
segment from chromosome 2 of the 1000 Genomes Project CEU genetic map (The 1000 

Genomes Project Consortium, 2012) and used the given recombination rates for the 

simulated segment. All other parameters for the variable recombination simulations were 

as described above with no selection.

5.2 | UK10K dataset

We applied our method to identify IBD-inconsistent mutations in whole-genome sequencing 

data in 3,621 individuals from the UK10K project (The UK10K Consortium, 2015). 

These individuals were sequenced to average depth 7 ×, passed the UK10K project quality 

control filters, and come from the ALSPAC and TWINSUK studies. We measured the 
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recombination distance for biallelic and multiallelic single nucleotide variants that passed 

the UK10K quality filters that were present at allele count ≤ 10 in these individuals.

5.3 | Measuring the obligate recombination distance

For simulated data, we generated diploid genotypes by randomly combining pairs of haploid 

genomes and calculated the recombination distances for variants within the central 2 Mb of 

each 10 Mb genomic segment. In both simulated and UK10K data, we measured the obligate 

recombination distances for variants with allele count ≤ 10 and all carriers as heterozygotes. 

For each pair of carriers, we identified the nearest variant upstream and downstream with 

opposite homozygote genotype (Figure 1A). We then converted the physical distance to a 

genetic distance using a genetic map. For UK10K, we used the 1KG Project CEU genetic 

map (The 1000 Genomes Project Consortium, 2012).

5.4 | Applying the Bayesian hierarchical model

To apply our model to simulated or UK10K recombination distances, we first estimated 

the β parameter for IBD-inconsistent variants from multiallelic sites. Using Gibbs sampling 

on non-IBD allele pairs from multiallelic variants, we used a simplified version of the 

hierarchical model which sampled the TMRCA for each allele pair and the β parameter 

in each Gibbs iteration. We repeated this procedure to estimate β for a range of α values 

from multiallelic sites’ recombination distances. To test whether the choice of α affected 

our ability to discriminate IBD-consistent and IBD-inconsistent variants, we applied the 

model with different IBD-inconsistent α/β values to UK1OK variants on chromosome 22. 

The posterior estimates of k were highly correlated across values of α (α = 20 vs . α = 40, 

Supplementary Table S8). When applying the full model to data, we used α = 10 for IBD 

allele pairs, with α = 40 and the corresponding value of β inferred from multiallelic sites 

(β = 0.0859) for non-IBD allele pairs. We ran 10,000 iterations of the Gibbs sampler for 

each run of the model, thinned the chains until autocorrelation was below 0.01, and assessed 

convergence of the chains by comparing the thinned samples from the first and second half 

of the chain via a Wilcoxon rank-sum test. A chain was determined to have converged if the 

Wilcoxon test p-value was > 0.05.

We parallelized the application of our model by breaking down the genome into 10 Mb
segments, rather than including all variants of a given allele count in a single run of the 

Gibbs sampler. To test the effect of the number of variants included in a Gibbs sampling 

run, we applied the model to 10 Mb segments on chromosome 22 and to all variants on 

chromosome 22 together. For smaller allele counts with thousands of variants in each 

segment, we observed no effect, but for larger allele counts we did see an effect of applying 

the model to small numbers of variants. Thus, for allele counts > 5, we grouped segments 

together until at least 1000 variants were included in each run of the model.

5.5 | Variant age estimation with runtc

We obtained the runtc software to perform age estimation (see URLs) (Platt et al., 2019). 

The output from 100 simulations from SLiM with uniform recombination and mutation 
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rates was converted to VCF format, and then runtc was applied to the vcf files with the 

commands: k-range 2 10, rec 1e-8, mut 2.5e-8.

5.6 | Area under the ROC curve

For all ROC curves from simulated data, we calculated the AUC as, for all possible pairs 

of one IBD and one recurrent variant, the percent of pairs with the recurrent variant with 

a higher value of the statistic being evaluated. For each AUC, we calculated a confidence 

interval by generating 10,000 bootstrap samples of 5,000 variants (with the same ratio of 

IBD:recurrent variants as the simulated sample). We then sorted the 10,000 AUC estimates 

and took the 2.5th and 97.5th percentiles to get a 95% confidence interval.

5.7 | Calculating an expected fraction of recurrent mutations from polymorphism 
probabilities

As a proxy for the mutation rate, we estimated the polymorphism probability for 5-mer 

sequence contexts (i.e. two bases up and downstream of the focal base) as the fraction 

of sites with that context that were variable in the UK10K dataset. These polymorphism 

probabilities were highly correlated with those calculated previously with the 1000 

Genomes dataset (Aggarwala & Voight, 2016) (Pearson’s correlation = 0.99, p < 10−100, 

Supplementary Table S5).

To predict the fraction of sites that should be called recurrent based on sequence context 

polymorphism probabilities, we used a simple Poisson model of mutation. With the 

polymorphism probability for a context as the Poisson rate parameter λ and the number 

of mutations at a site H, the probability of a recurrent mutation is the probability of two or 

more mutations at a site:

P recurrent mutation = P H ≥ 2 = 1 − e−λ − λe−λ .

(14)

As we are only considering sites where there has been at least one mutation event, that is, 

polymorphic sites, the probability of a recurrent mutation at a site is then:

P H ≥ 2 ∣ H ≥ 1 = P H ≥ 2
P H ≥ 1 .

(15)

We calculated this probability for each 5-mer sequence context. We then calculated the 

expected fraction by scaling the overall fraction of sites called IBD-inconsistent by each 

context’s probability of a recurrent mutation, relative to all the other contexts.

URLS
runtc software: https://github.com/jaredgk/runtc
B statistic: http://www.phrap.org/othersoftware.html
Recombination maps: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates, https://
github.com/auton1/Campbell_et_al
GEO access for methylation accessions GSM1010980 (ovary), and GSM1127119 (testis): https://www.ncbi.nlm.nih.gov/geo/
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We used 5-mer sequence contexts for this analysis so that we would have a reasonable 

number of variants classified as IBD or not for each sequence context. For the regression 

models to predict IBD-inconsistent variants using multiple genomic annotations, we used 7-

mer sequence contexts, as there is significant mutation rate variation beyond 5-mer contexts 

(Aggarwala & Voight, 2016).

5.8 | Identifying putative gene conversions

Within the set of variants called as IBD-inconsistent, we called putative gene conversion 

tracts that contained 2 or more variants that were (1) present in the same individuals, (2) at 

the same allele count and (3) within 1 kb of each other.

5.9 | Estimating polymorphism probabilities from IBD-consistent and inconsistent 
variants

Variants with allele count between 2 and 5 were combined and then separated into two 

groups according to IBD status. All putative gene conversion variants were removed. 

The IBD-inconsistent variant group was down-sampled to match the sample size of the 

IBD variant group, and then both groups were normalized to the overall polymorphism 

probability. Polymorphism probabilities for each group were then separately modelled up to 

a 7-mer sequence context size. For each model, an inclusion criterion was set, requiring a 

minimum sample size of 20,000 genomic instances and 100 total mutations across all three 

possible mutation types (e.g. A C, A T, A G). If either criterion was not met, a smaller 

context window was considered instead and again tested given these specifications. The 

nested relationship of contexts was leveraged to yield the final model, containing a subset 

possible 7-mer contexts and a collection of smaller window sizes.

5.10 | Genomic annotation datasets

We used the B statistic (McVicker et al., 2009) to measure background selection, which 

estimates the proportion of neutral variation in a region. VQSLOD and read depth were 

extracted from the UK10K VCF files. We used a recombination rate map estimated for 

Europeans from the 1000 Genomes Project, downloaded from the below given URL 

(The 1000 Genomes Project Consortium, 2012). We used human recombination hotspots 

identified in the HapMap project (The International Hapmap Consortium, 2007), and 

downloaded from the below given URL. Replication timing data were obtained from Koren 

et al. (2012). CpG methylation levels were downloaded from using accession numbers 

GSM1010980 (ovary), and GSM1127119 (testis). URLs for downloaded sites are provided 

below (see URLs).

5.11 | Rescaling the SFS with IBD-inconsistent mutations

Starting with the SFS calculated from all UK10K biallelic sites included in our study, for 

allele counts 2–5 for CpG − > T and all other mutation types we calculated the fraction 

called as IBD-inconsistent. We then divided this fraction by the power of our method, 

estimated by the percent of multiallelic sites identified as IBD-inconsistent at the chosen 

posterior threshold. From this fraction of IBD-inconsistent sites for the two mutation types, 

we apportioned the IBD-inconsistent mutations into lower allele counts based on the relative 
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frequency of allele counts 1–5. For example, to determine what fraction of IBD-inconsistent 

4-ton variants would be assigned partition 1:3 vs. 2:2, we used the relative frequencies:

f1:3 = f1f3
f1f3 + f2f2

; f2:2 = f2f2
f1f3 + f2f2

,

Where f1:3 is the relative frequency of the 1:3 partition, and f1 is the frequency of singletons 

in the original SFS. In the rescaled SFS, the number of singletons increased by the number 

of variants of allele count 2–5 that were identified with partition 1:(n – 1); the number of 

doubletons decreased by the number of doubletons that were identified as IBD-inconsistent, 

and increased by the number of variants of allele count 3–5 that had partition 2:(n − 2) and so 

on through allele count 4. Allele count 5 was excluded from the rescaled SFS plots because 

we did not identify IBD-inconsistent variants at allele counts greater than 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Description of the EVICORD model. (a) Measuring the obligate recombination distance 

with unphased diploid genotypes. The orange dot represents the focal variant and blue 

dots additional variants present in these two individuals. Each individual A and B has two 

chromosomes (dashed lines), and the red boxes highlight the nearest opposite homozygote 

genotypes. The purple lines highlight the extent of the shared haplotype of the chromosomes 

carrying the focal variant. The boxes at the bottom illustrate these two individual’s 

diploid genotypes. (b) The generative model underlying our Bayesian hierarchical model 
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to distinguish identity-by-descent (IBD)-consistent and inconsistent variants. Step 1: Each 

variant i is assigned as IBD (ki = 1) or non-IBD (ki > 1 . Each variant has n allele pairs, 

calculated from its allele count (ac). Step 2: If the variant is IBD ki = 1 , all allele pairs 1…n
are also IBD jm = 1 . If the variant is non-IBD, depending on the non-IBD partition there are 

q possible permutations of assignments jm, each of which are equally likely. Step 3: For an 

IBD variant, a single time to the most recent common ancestor (TMRCA) tj = 1  is sampled. 

If the variant is non-IBD, a TMRCA for the non-IBD allele pairs is sampled (tj = 2), and 

potentially a TMRCA for one or more IBD sub-clades tj = 1) depending on allele count and 

partition. Step 4: for each allele pair, recombination distances to the left and right dL, dR  are 

sampled independently.
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FIGURE 2. 
Power of EVICORD using simulated data. (a) Precision-recall plots and (b) ROC plots 

for the Bayesian hierarchical model applied to distinguish recurrent and identity-by-descent 

(IBD) variants in simulated data. In (a), each panel represents the application to variants of 

a given allele count (AC). The precision-recall relationship depends on the fraction of true 

positives (‘Fraction recurrent’) in the simulated sample of variants. In (b), the dashed line 

represents the identity line.
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FIGURE 3. 
Calibration of EVICORD detected rates of identity-by-descent (IBD)-inconsistent calls 

in UK10K data. The expected and observed fraction of sites called IBD-inconsistent for 

UK10K variants, for allele counts (AC) 2–5. Each dot represents a 5-mer sequence context. 

Dot colours represent whether the sequence context is a CpG context (blue) or not (light 

green). The expected fraction was calculated from each sequence context’s polymorphism 

probability. The solid black line is a linear regression line for all sequence contexts, and the 

dotted line is the identity line.
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FIGURE 4. 
7-mer sequence context polymorphism probabilities for sites called identity-by-descent 

(IBD)-inconsistent vs. IBD-consistent for UK10K variants. Each dot represents the 

polymorphism probability estimated for each 7-mer sequence context using our dynamic 

programming algorithm. The dashed blue line represents the expected polymorphism 

probabilities under a model of no differences between IBD-consistent and inconsistent 

variants. Polymorphism probabilities were strongly rank correlated (Spearman’s correlation 

= 0.93, p < 10−100).
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FIGURE 5. 
Correlations between genomic annotations and identity-by-descent (IBD)-inconsistent 

variant calls. Depicted are summaries of multiple logistic regression models of genomic 

annotations (predictor variables) vs. IBD-inconsistent variant calls (outcome) for all variant 

sites, grouped by allele count. Dot colours represent allele count, and a separate regression 

was run for variants of each allele count. Each dot’s position denotes its regression 

coefficient estimate, with error bars representing the estimate ±1.96*standard error. The 

vertical dashed line represents a coefficient estimate of zero. Hotspot distance: physical 

distance to nearest recombination hotspot z-score; Recombination rate: local recombination 

rate z-score; B score: McVicker’s B statistic z-score; Replication timing: replication timing 

z-score; GC content: local GC content z-score; Methylation (ovary): ovary CpG methylation 

z-score; Methylation (testes): testes CpG methylation z-score; Read depth: read depth z-

score; VQSLOD: variant quality z-score.
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FIGURE 6. 
Correlations between genomic annotations and putative calls of gene conversion events. 

Results of a logistic regression using genomic annotations to distinguish putative gene 

conversions from other identity-by-descent (IBD)-inconsistent variants in UK10K data. 

Separate regressions were performed for variants of each allele count. The annotation 

of variants’ probability of being IBD-inconsistent for allele count = 5 was left off to 

improve the visualization (Estimate: −7.0; 95% CI: − 16.4 to2.4). Dot colours represent 

allele count. Each dot’s position denotes its regression coefficient estimate, with error 

bars representing the 95% confidence interval (estimate ±1.96*standard error). The vertical 

dashed line represents a regression coefficient estimate of zero. Hotspot distance: physical 

distance to nearest recombination hotspot z-score; Recombination rate: local recombination 

rate z-score; B score: McVicker’s B statistic z-score; Replication timing: replication timing 

z-score; GC content: local GC content z-score; Methylation (ovary): ovary CpG methylation 

z-score; Methylation (testes): testes CpG methylation z-score; Read depth: read depth 

z-score; VQSLOD: variant quality z-score; Probability non-IBD: posterior probability of 

variant being IBD-inconsistent.
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FIGURE 7. 
Rescaling the site frequency spectrum (SFS) with identity-by-descent (IBD)-inconsistent 

calls. Shown here are the UK10K SFS for variants of allele count < 5, before and after 

rescaling to incorporate IBD-inconsistent variants. (a) The original and rescaled SFS for all 

variants. (b) The original and rescaled SFS for CpG T variants only.
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