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Abstract

Directed evolution facilitates enzyme engineering via iterative rounds of mutagenesis. Despite the 

wide applications of high-throughput screening, building “smart libraries” to effectively identify 

beneficial variants remains a major challenge in the community. Here, we developed a new 

computational directed evolution protocol based on EnzyHTP, a software we have previously 

reported to automate enzyme modeling. To enhance the throughput efficiency, we implemented 

an adaptive resource allocation strategy that dynamically allocates different types of computing 

resources (e.g., GPU/CPU) based on the specific need of an enzyme modeling sub-task in 

the workflow. We implemented the strategy as a Python library and tested the library using 

fluoroacetate dehalogenase as a model enzyme. The results show that comparing to fixed resource 

allocation where both CPU and GPU are on-call for use during the entire workflow, applying 

adaptive resource allocation can save 87% CPU hours and 14% GPU hours. Furthermore, we 

constructed a computational directed evolution protocol under the framework of adaptive resource 

allocation. The workflow was tested against two rounds of mutational screening in the directed 
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evolution experiments of Kemp eliminase (KE07) with a total of 184 mutants. Using folding 

stability and electrostatic stabilization energy as computational readout, we identified all four 

experimentally-observed target variants. Enabled by the workflow, the entire computation task 

(i.e., 18.4 μs MD and 18,400 QM single point calculations) completes in three days of wall clock 

time using ~30 GPUs and ~1000 CPUs.

Graphical Abstract

1. Introduction

Directed evolution has been widely employed to expand and enhance enzymes’ catalytic 

capability via iterative rounds of screening and selecting of enzyme variants.1, 2 Despite 

significant achievements in enzyme engineering, directed evolution faces big challenges in 

screening because of the enormously large combinatorial mutational space. Specifically, 

due to unknown sequence-function relationship, each round of screening may take 

substantial cost of time and resource. The outcome from the screening is also uncertain. 

Although high-throughput screening techniques have been used to facilitate directed 

evolution,3 designing readout for the function of enzyme mutants is highly case dependent. 

To accelerate the process of mutational screening, computational strategies have been 

employed to mechanistically infer beneficial mutations,4–8 identify hotspots,9–11 reveal 

structure/sequence-function relationships12–15, and build data-driven models for predictive 

biocatalysis.16 These foundational efforts significantly broaden the scope of which 

functional enzyme variants can be understood, predicted and designed, but how to build 

a general-purpose virtual screening platform for biocatalyst discovery remains an open 

question.
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Previously, our lab developed EnzyHTP17 as a high-throughput enzyme modeling tool 

to automate the entire life cycle of enzyme modeling, including structural preparation, 

mutagenesis, molecular dynamic (MD), and quantum mechanics (QM) calculations. Enabled 

by EnzyHTP, here we further developed a computational directed evolution protocol that 

enables hundreds of mutants to be virtually screened based on their stability and capability 

of stabilizing the breaking bond in the rate-limiting transition state. Notably, prior to our 

work, the Kamerlin lab has pioneered the development of software, CADEE,18 for semi-

automatic screening of enzyme variants. CADEE specializes in free energy calculations 

using empirical valence-bond (EVB), which is different from the current work that 

emphasizes the construction of a generic computational enzyme engineering platform.

Central to the new development and implementation is an adaptive resource allocation 

strategy that accelerates the high-throughput computation via dynamically requesting and 

distributing computing nodes for each sub-task in the high-throughput modeling workflow. 

Here, resource allocation refers to the process of managing different types of computing 

resources (e.g., CPU or GPU) for different tasks (e.g., QM or MD simulations). In high-

performance computing (HPC) clusters, large amount of computing resources can be wasted 

if a fixed number of CPU and GPU nodes are requested based on the resource need of 

the most computationally demanding sub-tasks. Besides resource waste, the fixed allocation 

scheme can also significantly delay the completion of the entire workflow.

The strategy of adaptive resource allocation was implemented as a Python application 

programming interface, known as adaptive resource manager (ARMer). Based on 

EnzyHTP,17 we benchmarked the resource and time consumption of ARMer against fixed 

resource allocation scheme in the task of modeling fluoroacetate dehalogenase (FAcD)19–23. 

Furthermore, we constructed a computational directed evolution protocol to help screen 

for rate-enhancing enzyme mutants. We tested the workflow for two rounds of directed 

evolution screening of Kemp eliminase variants. Enabled by adaptive resource allocation, 

the computational directed evolution protocol offers a tool for accelerating the process of 

screening and selecting beneficial enzyme variants for biocatalytic uses.

2. Design and Implementation

2a. The computational directed evolution protocol.

We constructed the computational directed evolution protocol using modular Python 

functions in EnzyHTP (Figure 1, also see scripts Supporting Information.zip). The protocol 

was designed to consist of four steps. First, the workflow converts a list of user-provided 

starting variants into structural models using the structural preparation module. The file 

format of these structural models is compatible with the downstream molecular simulations. 

Second, for each starting variant, the workflow randomly generates a certain number of 

mutants (defined by the user) using the mutation engine to form the mutant library for 

the subsequent computational screening. Third, the workflow computes the thermostability 

score for all mutants in a high-throughput fashion using cartesian_ddg in Rosetta.24, 25 This 

interface has recently been added in EnzyHTP (see details in the Supporting Information, 

Text S5). The workflow filters out 80% of the mutants that are predicted to be thermally 

unstable relative to the wild type (i.e., positive thermostability score) in this step. Fourth, 
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the workflow calculates electrostatic stabilization energy, Gelec,12, 26, 27 for mutants that 

passed the thermostability filter via performing one set of 100 ns MD simulation in 

AMBER28 (detailed in Text S7, Supporting Information) and QM single-point calculations 

(i.e., PBE1PBE/def2-SVP) in Gaussian 1629 using 100 snapshots evenly extracted from the 

MD trajectory. Specifically, the Gelec is derived from the dot product between the reacting 

bond dipole (by wavefunction analysis30) and the electric field strength of the enzyme 

(calculate by Coulomb’s law with MM charges, See the Supporting Information, Text S8 for 

details). Finally, the mutants are ranked based on the values of activity index (i.e., Gelec). 

Notably, completing the four steps concludes one round of computational directed evolution. 

A certain number of mutants (defined by the user) can be used as starting variants to 

initiate a new round of directed evolution. Notably, to systematically test the computational 

throughput capability of the protocol, we modified the fourth step by conducting the MD 

and QM simulations for all mutants including those that are determined to be thermally 

unstable in the third step. In practice, to achieve resource efficiency, we recommend users 

conduct these molecular simulations solely on stable mutants.

2b. Adaptive resource manager (ARMer).

To properly manage resource allocations for computational screening tasks, the adaptive 

resource allocation strategy employs a “workflow script” that runs a single-CPU thread to 

manage sub-tasks for the entire high-throughput workflow. Using commands implemented 

in the ARMer Python library, the workflow script configures, submits, and monitors new 

jobs in HPC clusters that pertain to the actual need of computing resources in a sub-task 

of the workflow. This is in sharp contrast to the fixed resource allocation scheme where 

maximal computing resources are requested.

The ARMer Python library consists of two classes: the Job class and HPC class (Supporting 

Information, Figure S1). The Job class (called ClusterJob in the code) defines properties and 

functions that are associated with job configuration, submission, and dynamic monitoring 

of job completion (Figure 2). The HPC class (subclasses of ClusterInterface in the code) 

supports the Job class with properties and functions to mediate shell input/output in user’s 

local HPC where ARMer is deployed. This “plug-in” interface design allows easy support 

for any new HPC. Similar to subprocess.run in the Python standard library, ARMer library 

enables the “workflow script” to run shell commands on other computational nodes – these 

commands are wrapped in the job scripts in the HPC clusters (see more discussion in the 

Supporting Information, Figure S1 and Text S1).

With the job object instantiated, a job script for the required task can be generated 

(Supporting Information, Figure S3) and then submitted by the submit() method (Figure 

2 and Supporting Information, Figure S2). Notably, the format of the job script, the 

submission commands, and other HPC-dependent information are obtained from the HPC 

class object that is instantiated and passed to the cluster argument described above. Once 

the job has been submitted, a job ID is added to the object by the function. By tracing 

the job ID, the “workflow script” can monitor the status of a job object in the queue, and 

mediate the status by killing, holding, or releasing the job (Figure 2). Notably, the capability 

of dynamically monitoring the job completion status is vital to high-throughput modeling 
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workflow. This is because the workflow involves multiple different types of simulation 

sub-tasks that must be sequentially operated.

Two methods have been implemented to achieve dynamic monitoring – they are: 

wait_to_end()and wait_to_array_end() method. The wait_to_end() method checks the status 

of a job in the job queue with a certain period of time (i.e., every 30 seconds) and exits 

upon the detection of messages that indicate job completion, error, or cancellation. The 

wait_to_array_end() method takes multiple job objects and submits them in one job array. 

Similarly, the method monitors the status of all jobs in the array regularly, and dynamically 

append new jobs to the array up to the maximal capacity (i.e., array size).

Implementation of ARMer in EnzyHTP enables an if_cluster_job option for all 

computationally insensitive functions (like MD, QM and free energy calculation). With this 

option turned on, the computational directed evolution protocol described in the Section 2a 

can achieve adaptive resource allocation.

3. Results and Discussion

3a. Test of adaptive resource allocation using fluoroacetate dehalogenase.

We employed fluoroacetate dehalogenase (FAcD)19–23 as a model system and conducted a 

high-throughput workflow of enzyme simulations using EnzyHTP.17 The workflow consists 

of four sequential sub-tasks, namely, 1) mutant structure construction, 2) 100 ns MD 

simulation, 3) 100 QM cluster calculation, and 4) post-analysis. (See details in Supporting 

Information Text S2 Notably, the model system and workflow have been applied in our 

previous work to test the throughput capability of EnzyHTP.17 However, unlike the previous 

workflow that samples 100 variants with minimalist resource cost, the current workflow 

only tests one enzyme variant (i.e, K83D, Supporting Information, Figure S4) with MD 

and QM simulations set up to meet resource demand in actual computational research 

(Supporting Information.zip).

We benchmarked the resource and time consumption of the workflow for two strategies: 

fixed resource allocation versus adaptive resource allocation, on our local HPC at Vanderbilt, 

i.e., advanced computing center for research and education (ACCRE). Using fixed resource 

allocation, all computing resources (i.e., 1 GPU and 8 CPU) involved in the workflow are 

requested by a single submission script in one shot. Figure 3 shows the simulation type, 

time cost (i.e., vertical axis), and resource demand (i.e., GPU in orange and CPU in blue) 

associated with each sub-task in the workflow. Both CPU and GPU are requested for the 

entire workflow (Figure 3). However, resource waste is observed. Specifically, in the ~14 

hours of MD simulation, only one GPU is used but the CPUs are primarily in idle mode 

(time-waste: ~8×14 = ~112 CPU hours); in the 3 hours of QM calculations, CPUs are used 

but the GPU is not (time-waste: 3 GPU hours). In the minimization and post-analysis sub-

tasks, CPU and GPU are also not exploited, albeit the resource cost is trivial. Apparently, 

with fixed resource allocation, the collective resource waste is significant.

Using adaptive resource allocation, a 96-hour wall-clock time, single CPU job is submitted 

that operates a Python “workflow script” to allocate resources for sequential sub-tasks 
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involved in the workflow (Figure 4). The “workflow script” manages the sub-tasks using 

commands implemented in the ARMer library (detailed in the Design and Implementation 

section). Compared to fixed allocation strategy that directly executes sub-tasks using the 

allocated CPU or GPU, this workflow script configures resource-demanding sub-tasks (i.e., 

need >1 CPU or ≥1 GPU) in a new job script and then submits the job to the queue (i.e., 

setting if_cluster_job = ‘True’ in the code).

In the MD simulation sub-task, the workflow script configures shell commands that run 

AMBER28 simulations in a job script along with the GPU request and environment settings. 

The workflow script then submits the MD job and regularly monitors the completion status 

of the job. After confirming the completion of MD, the workflow script will continue 

operating the QM calculation sub-task in the workflow. Since the 100 QM calculations are 

independent, the workflow script can submit multiple QM jobs (8 CPU each) simultaneously 

to the job array so that they can run in parallel up to the size limit of job array (i.e., 25 

jobs) in local HPC cluster (Figure 4). New jobs will be submitted once the “workflow 

script” detects open slots on the array (see discussion of parallel computing using Python 

subprocess module, Supporting Information Text S3). With an array size of 25 jobs, one 

would expect an ideal time acceleration by a factor of 25 given the ideal condition of no 

job queueing time (i.e., ~2.4 hours as compared to 60 hours with all job running serially). 

Overall, with adaptive resource allocation, the resource waste can be minimized.

We compared the computational cost (Supporting Information, Figure S5) and wall clock 

time (Supporting Information, Figure S6) for different sub-tasks of the workflow using 

fixed resource allocation (in red) versus adaptive resource allocation (in green) on ACCRE. 

In contrast, fixed resource allocation involves 14% resource waste in GPU-based MD 

simulation and 87% in CPU-based QM calculations, while adaptive resource allocation 

makes full use of these computing resources in every sub-task of the workflow (Supporting 

Information, Figure S5). For wall clock time, both strategies differ most significantly in 

the QM calculation sub-task (Supporting Information, Figure S6). Enabled by parallel 

submission of individual QM jobs to a job array (i.e., 25 jobs per array), adaptive resource 

allocation strategy completes 100 QM calculations by 0.35 hours. With fixed resource 

allocation (i.e., 8 CPUs), the calculations are completed by 2.8 hours. With larger QM 

system size and higher theory level, the QM resource consumption will be more significant. 

As such, the waste of resource and time for fixed resource allocation is expected to inflate.

With new jobs generated, submitted, and monitored on the fly by adaptive resource 

allocation strategy, the resource waste observed by fixed resource allocation is no long 

expected because resources are requested and distributed based on the need of individual 

sub-task in the workflow. We should note that one potential caveat of adaptive resource 

allocation strategy is the time spent for queueing. In our test, the total amount of time spent 

for job queueing is about 12 minutes, which is relatively trivial. On extremely crowded 

HPC, we assume job queueing time to be much longer. The fixed resource allocation scheme 

suffers less from the queueing, but the overall cost of time and resource is substantial.

Besides being resource-efficient, adaptive resource allocation scheme also prevents conflict 

of software environment setting. Under the adaptive resource allocation scheme, the 
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workflow script can customize specific environment setting based on the requirement of 

an individual job. In contrast, the fixed resource allocation scheme will have to load all 

environmental variables in the beginning of the submission job, which can cause conflict for 

different software as the workflow proceeds.

3b. Test of the computational directed evolution protocol.

We employed Kemp eliminase KE07 as the model enzyme (originally designed by 

Röthlisberger et al.31) to test the computational directed evolution protocol for its ability 

to predict experimentally-observed rate-enhancing KE07 mutants in two rounds of directed 

evolution experiments. KE07 was selected for three reasons. First, the crystal structure 

of KE07 has been determined (PDB code: 2RKX31), which provides a reliable structural 

template to generate structural models for mutants. Second, the lead variants associated 

with each round of KE07 screening in directed evolution have been reported.32 This 

provides reference data to examine the predictive capability of the computational protocol. 

Third, KE07 is known to involve a general acid-base mechanism – the substrate 5-

nitrobenzisoxazole is deprotonated by a nearby carboxylate (side chain of Glu or Asp) to 

form 2-hydroxy-5-nitrobenzonitrile via one single transition state.31 The relatively simple 

mechanistic picture reduces the complexity of having to consider the variation of the rate-

limiting step upon mutation. A detailed protocol for structural preparation of KE07-substrate 

complex is described in the Supporting Information, Text S6.

We selected two out of seven continuous rounds of directed evolution (i.e., round 5 and 6) 

that leads to the identification of KE0731. Both rounds use error-prone PCR for mutagenesis. 

Experimentally, round 5 starts from six KE07 variants from the previous round and conducts 

error-prone PCR with 1±1 mutations per mutant. Twelve active variants (only two were 

reported, Figure 5) from round 5 were filtered into round 6 for error-prone PCR with 3±1 

mutations per mutant. This results in twenty active variants (only two were reported, Figure 

5) that go into round 7.

Based on the experimental protocol, we set up a computational workflow of directed 

evolution, aiming to test whether we are able to distinguish the experimentally-observed 

target variants from a bunch of randomly-generated mutations through the in silico screening 

protocol (Figure 5). Specifically, for round 5, the workflow uses an identical set of variants 

as the experimental directed evolution protocol (i.e., six starting variants), builds a library of 

sixty mutants with single amino acid substitution through generating ten random mutants for 

each starting variant, computes thermostability score and electrostatic stabilization energy 

for each mutant by MD and QM simulations, and selects twelve top-ranked mutants with 

stable fold and strong electric field to promote deprotonation in the rate-limiting transition 

state (Figure 5). These twelve mutants (same number as the experimental setup) are used as 

starting variants to initiate the round 6. For round 6, random triple mutations are generated 

with ten mutants for each starting variant to form a library of 120 mutants. This round of 

screening results in twenty top-ranked mutants (same number as the experimental setup). 

For each round, we manually added the two experimentally observed target variants in 

the mutant library (i.e., 62 and 122 mutants in total for round 5 and 6, respectively) and 

test whether these two mutants can be filtered in as the top-ranked mutants based on the 
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computational scoring of protein thermostability and electrostatic stabilization energy (i.e., 

Gelec). By statistics, the chance of observing the target variants among a group of randomly 

selected mutants is 3.5% for round 5, 2.5% for round 6, and 0.091% for both round 5 

and round 6 (Supporting Information, Text S10), which presents a challenging test to the 

predictive capability of the computational directed evolution protocol.

Figure 5 shows the outcome of each screening stage of the computational directed evolution 

protocol. In the mutant library of round 5 (i.e., 62 mutants), the thermostability scores vary 

from −6.4 to 56.3 Rosetta energy unit (REU) with a standard deviation of 17.3 REU; 16 

mutants are predicted to be more stable than the wild-type (i.e., negative thermostability 

score) and 46 less stable (i.e., positive thermostability score). For screening, we defined 

the “stable” mutants (labeled in white, Figure 5) to consist of all mutants that are more 

stable than the KE07 wild-type (i.e., 16 mutants) plus 20% of the top-ranked mutants with 

a positive thermostability score (i.e., 10 mutants). We allowed for a slight magnitude of 

stability dropping because the loss of stability might be a potential trade-off for catalytic 

enhancement. Notably, the empirical cutoff value used here was defined prior to the 

computation and used consistently for both round 5 and round 6. Among the 26 stable 

mutants, the Gelec values vary from 0.5 to 3.1 kcal/mol with a standard deviation of 0.6 

kcal/mol; the 12 mutants with top-ranked Gelec values were sent for screening in round 6. 

Throughout round 5, both experimentally-observed target mutants are found in the final list.

In the mutant library of round 6 (i.e., 122 mutants), the thermostability scores vary from 

−12.5 REU to 68.3 REU with a standard deviation of 13.9 REU. Using the same screening 

strategy as described for round 5, the workflow identifies 34 stable mutants. Among the 

stable mutants, Gelec values vary from −0.4 kcal/mol to 2.5 kcal/mol with a standard 

deviation of 0.6 kcal/mol. Based on the ranking of Gelec values, we selected the top 20 

mutants, in which both target mutants are included.

Using the computational directed evolution protocol, all four experimentally observed 

beneficial mutations were identified two continuous rounds of mutagenesis. The hit rate 

is significantly higher than that derived from random sampling. (The chance is 0.091%) 

Accelerated by ARMer, the entire workflow finishes in 3 days with ~30 GPUs and ~1,000 

CPUs (See hardware specifications in Supporting Information, Text S9). This corresponds 

to a total of 18.4 μs MD and 18,400 QM single point calculations, which includes 

Gelec calculation of all mutants. Under the same technical configuration, if MD and QM 

calculations are conducted only on thermostable mutants, the computational workflow is 

projected to complete in one single day.

3c. Limitation and future development of the computational directed evolution protocol.

The computational directed evolution protocol, which was demonstrated in the enzyme 

engineering of Kemp Eliminase KE07, offers a groundwork for in silico construction of 

physics-inspired smart libraries for protein engineering. Below, we discuss the limitation 

of this proof-of-concept protocol, along with future plans and ongoing efforts towards its 

refinement.
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1. The mutation engine.—The current algorithm for mutant structure construction 

involves the integration of tLEaP and MM minimization as described in the EnzyHTP 

paper.17 This method relies on molecular dynamics equilibration to fix artifacts introduced 

in the model construction step and to sample different sidechain conformations (rotamers). 

In rare situations, the approach has been found to fail when the generated conformations 

involve unphysical interactions that cannot be resolved by molecular dynamics equilibration, 

such as a structure in which the lysine side chain penetrate through the aromatic ring 

of tryptophan.17 To develop a more robust mutation engine for the next generation 

of EnzyHTP, we are in the process of testing different strategies for mutant structure 

construction, including sidechain rotamer library,33, 34 Monte Carlo Markov Chain (MCMC) 

search,24, 25, 35 and deep learning-based methods.36, 37

2. The algorithm for constructing “smart” mutation library.—To mimic error-

prone PCR, the current protocol employs the strategy of random single amino acid 

substitution to generate KE07 mutants. However, in real-life applications, the random 

mutagenesis algorithm is ineffective in identifying beneficial mutations due to the large 

mutational landscape for protein engineering. In addition, the high computational cost of 

classical modeling and quantum chemistry simulation impedes the ability of computational 

screening to match the scale of experimental ultra-throughput screening (i.e., >106 per 

week). As such, an urgent need is to develop new algorithms for constructing smart mutation 

libraries. Instead of searching for beneficial mutations on a broader sequence space, a 

more reasonable approach would be to use scientific hypotheses to guide the search of 

mutation hotspots that involve a higher likelihood for functional enhancement. The guiding 

hypotheses could be the optimization of electric field strength and distribution, the active 

site configuration and dynamics, the mediation of global protein flexibility, and so on. 

Furthermore, developing machine learning models that can dynamically formulate specific 

guiding hypotheses for enzyme engineering based on initial molecular simulation data is 

an active area of focus in our ongoing refinement of the computational directed evolution 

protocol.

3. The MD sampling scheme.—The current conformational sampling scheme adopts 

one set of 100 ns MD run for each mutant. The time length used here is longer than the 

MD simulations performed in the previous study of Kiss et al. (i.e., 20 ns).38 As such, 

we calculated the Gelec values of mutants using only the first 50 ns out of each 100 ns 

simulation (Supporting Information, Table S2). We tested the correlation of the rankings of 

Gelec values before and after the trajectory truncation. The Spearman correlation coefficient 

of both rankings is 0.89 and 0.89 for R5 and R6 mutants, respectively. This shows 

that conformational sampling with a shorter MD run works reasonably well in selecting 

beneficial mutants for the Kemp eliminase system. This also helps save substantial amount 

of GPU resources during the computational screening protocol. An ongoing implementation 

in our group involves the replacement of single 100 ns MD run by multiple replicas of 

shorter MD runs. This strategy has been shown to increase the efficiency of conformational 

sampling for computing functional descriptors as screening readouts.27, 39, 40 Nonetheless, 

the successful use of shorter MD sampling critically depends on the assumption that the 

system doesn’t undergo significant conformational changes. While this might be true for 
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enzyme mutants with minimal structural differences from the wild type, it may not be the 

case for mutants that exhibit local misfolding or activate various conformational states.

4. The mutant structure and substrate-binding configurations.—In the current 

protocol, mutant structures are directly predicted from the reference structure. This process 

uses the mutation engine in EnzyHTP that relies on AMBER tLEaP to generate and 

optimize the predicted structure. The reference structure is obtained from the KE07 WT 

crystal structure (PDB code: 2RKX) with the substrate docked in the active site. To 

investigate the reliability of this approach, we predicted mutant structures for two KE 

mutants, I7D and N224D, and compared these structures with a mutant crystal structure that 

contains both mutations (PDB ID: 3IIO).32 Notably, both mutations have been reported to 

change local hydrogen bonding interactions in the active site.32 The goal is to investigate 

whether the hydrogen bonding patterns observed in the mutant crystal structure can be 

reflected in our protocol. We found that the predicted mutant structures of I7D and N224D 

using the mutation generation engine involve a different active site hydrogen bonding 

pattern from the crystal structure. Specifically, the predicted structure of I7D shows a 

hydrogen bonding interaction between K222 and E101, which is different from the mutant 

crystal structure where the hydrogen bond forms between K222 and D7. The predicted 

structure of N224D does not involve a hydrogen bond between D224 and H201 which 

presents in the mutant crystal structure (Supporting Information, Figure S7A). These results 

show that the mutation generation engine fails to predict the active site hydrogen bond 

network of a mutant when its pattern differs from that of the wild-type reference structure. 

However, for both I7D and N224D mutants, despite using the predicted mutant structure as a 

starting point, the MD equilibration reproduces the hydrogen bonding network configuration 

observed from the mutant crystal structure (Supporting Information, Figure S7B). This result 

shows that the mutation-equilibration approach has the capability of informing the impact of 

mutation on the active-site conformational states for the mutant structures. The change the 

H-bonding network in the active site caused by I7D and N224D mutations are reproduced 

through the MD equilibration.

A complex scenario in mutant structure involves the emergence of multiple active site 

configurations that bind to the substrate differently. Hong et al. discovered that some 

mutations of KE07 introduced in rounds 5 and 6 create two more substrate binding 

configurations, namely configuration B and C (with respect to the native state, configuration 

A). Configurations B and C are believed to contribute to the enhancement of the catalytic 

efficiency.41 These configurations mainly differ by the conformations of W50 sidechain that 

is in pi-stacking with the substrate (Supporting Information, Figure S8A). In this work, 

all generated mutant structures bind to the substrate only in the form of configuration 

A. To investigate whether configurations B and C can be sampled through 100 ns MD, 

we collected representative snapshots along the MD trajectories for four experimentally 

observed mutants and all top-ranking mutants identified in the protocol, and then performed 

clustering analysis using the RMSD values of the active site residues, including E101, 

W50, Y128, and the substrate (the snapshots can be found under representative_structures/, 

Supporting Information.zip). The results show that only configuration A is sampled in the 

MD trajectories, and configurations B and C are not observed (Supporting Information, 
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Figure S8B and Figure S9). This is likely caused by the fact that the distance between the 

substrate and E101 is constrained in the MD simulation, making it energetically difficult to 

flip the W50 sidechain and sample alternative configurations. This highlights the importance 

of considering alternative substrate binding configurations in the design protocol. An 

ongoing development in our lab is to implement a reactive conformation docking algorithm 

in EnzyHTP, which is expected to enable high-throughput docking between different mutant 

conformers and the substrate.

5. The scoring function.—The current protocol only employs Gelec as the score 

function for reactivity assessment. The Gelec value of a mutant reflects the stabilization 

of enzyme interior electric field on a reacting dipole, which presumably accounts for 

the contribution of an enzyme mutant in decreasing the active energy or enthalpy of the 

chemical reaction (See details in Supporting Information, Text S8). However, the value 

does not inform the impact of mutation on activation entropy – a major factor that affects 

the catalytic efficiency. For example, in the KE07 system, R6_72 involves a weaker 

electrostatic stabilization effect than R5_11 (i.e., a higher Gelec value by 0.65 kcal/mol), 

which is qualitatively consistent with the experimental observation that R6_72 has a higher 

activation energy by about 2 kcal/mol.41 However, R5_11 was observed to involve a greater 

pre-exponential factor than R6_72. The favorable activation entropy in R5_11 overrides the 

enthalpic difference and leads to a lower free activation barrier than R6_72. This example 

highlights the importance of accounting for entropic effects in reactivity assessment. An 

ongoing effort in our lab aims to design a scoring function that reflects the impact of 

mutation on activation entropy. We believe that incorporating the entropic scoring in the 

protocol will further improve the computational accuracy and reliability.

6. The reaction mechanism.—The model enzyme, Kemp eliminase, has a well-

established mechanism that involves one single rate-limiting step, i.e., substrate C–H 

deprotonation. As such, the directed evolution workflow tested here only focused on the 

engineering of enzyme interior electric field to stabilize the deprotonation step through 

mutagenesis. In real-life applications, a mutation may shift the rate-limiting step or 

even change the reaction mechanism entirely. For example, hydrolases typically involve 

a competition between the nucleophilic step and the covalent intermediate dissociation 

step.42 De novo designed Diels–Alderases involve the dilemma between transition state 

stabilization versus product inhibition, same as the artificial enzymes derived from catalytic 

antibody.43 Consequently, the future development of computational directed evolution 

workflow needs to simultaneously consider the impact of mutation on multiple rate-limiting 

steps. The key challenge is how to build a computationally efficient score function that 

evaluates activation barriers of multiple elementary steps. Electronic structure calculations 

provide a promising strategy because of its capability of locating transition states and 

predicting free energy barriers, but these methods fall short in computational efficiency 

when used for virtual screening. In addition, the selection of QM theories also introduce 

uncertainty in the prediction. To address the challenge, new scoring functions should be 

designed that augment first principle modeling with machine learning models trained from 

experimental kinetics data.
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7. The generality of the protocol.—Though only demonstrated for the mutational 

screening of KE07, the computational directed evolution protocol is generalizable to other 

enzyme targets, because the mutation generation engine, molecular modeling engine, and 

functional assessment module are independent from the specific application. Compared to 

experimental screening that needs to associate enzyme activity to cell growth, color change, 

or spectroscopic readout, the computational protocol is facile to adapt. However, we should 

note that the scoring functions used for functional assessment might be subject to change 

for different enzymes. Specifically, although electrostatic stabilization energy used for KE07 

is a general descriptor correlated with enzyme activity, locating the specific reacting bond 

dipole, along which Gelec value should be computed, can become a non-trivial question 

for reactions involving rearrangement of multiple bonds. In addition, entropic effects 

can substantially influence substrate binding and chemical activation. For engineering 

industrial enzymes (e.g., amylases, lipases, etc.), one also needs to implement descriptors 

that represent the impact of mutations on optimal catalytic temperature and solubility in 

nonaqueous solutions. Consequently, developing a comprehensive set of scoring functions 

that predict desired enzyme properties in silico, is pivotal to advancing towards a more 

automated computational enzyme engineering process.

4. Conclusion

We designed a computational directed evolution protocol based on EnzyHTP. Through 

iterative rounds of screening, the workflow can generate random mutations and identify 

mutants with enhanced catalytic functions. To accelerate the throughput capability, we 

developed a Python library, ARMer, to adaptively allocate resources for computational 

sub-tasks in a high-throughput molecular modeling workflow in HPC clusters. The ARMer 

Python library consists of two classes: the Job class that defines variables and functions for 

job configuration, submission, and monitoring; the HPC class that supports the Job class to 

mediate external input/output in HPC clusters and users can easily customize a subclass for 

their local HPC clusters (Supporting Information, Text S1). Using commands implemented 

in ARMer, a “workflow script” can run on a single CPU thread to generate, submit, and 

monitor new jobs that call external software to execute sub-tasks.

To test the efficiency, we employed ARMer to manage the sub-tasks in the enzyme modeling 

workflow for FAcD using EnzyHTP. The sub-tasks include enzyme mutant structure 

construction, 100 ns MD simulation, 100 QM calculations, and electronic structure analysis. 

We compared the consumption of time and resource between two allocation strategies: fixed 

resource allocation versus adaptive resource allocation. Fixed resource allocation involves 

significant resource waste: in the 14 hours of MD simulation, only one GPU is used but 

the CPUs are primarily in idle mode (time-waste: 8x14 = 112 CPU hours); in the 3 hours 

of QM calculations, CPUs are used but the GPU is not (time-waste: 3 GPU hours). In 

contrast, the adaptive resource allocation makes full use of both computing resources in the 

corresponding sub-tasks of the workflow. Moreover, ARMer allows parallel submission of 

multiple smaller computational jobs in a job array and provides customized environment 

settings for each software used in the workflow.
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Enabled by ARMer and EnzyHTP, we constructed the computational directed evolution 

protocol and tested it against two continuous rounds of experimental directed evolution 

for Kemp eliminase, KE07. Using the workflow, we successfully reproduced all four 

experimentally observed target mutants in 3 days with a total of 18.4 μs MD and 18,400 

QM single point calculations by ~30 GPUs and ~1000 CPUs. Under the same technical 

configuration, the computational workflow is estimated to complete in one single day if 

molecular simulations are conducted only on thermostable mutants. This speed allows the 

in-silico screening of >1000 mutants in a week. Compared to experimental ultra-throughput 

screening (e.g., >106 mutants per week), the computational workflow has a special 

advantage of informing molecular details of enzyme dynamics and electronic structures, 

guiding the development of scientific hypotheses or data-driven models for optimization of 

mutants. In addition, the functional readout is also much easier to set up in a computational 

workflow for reactions whose outcomes cannot be detected by colorimetry and fluorimetry 

or associated with cell growth. Therefore, the computational directed evolution protocol 

holds promise to accelerate the process of enzyme engineering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The design architecture of computational directed evolution protocol. Each black dot 

represents an enzyme variant.
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Figure 2. 
Variables and functions for job configuration, submission, and dynamic monitoring defined 

in the Job class.
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Figure 3. 
The high-throughput workflow of FAcD modeling using fixed resource allocation strategy, 

in which 1 GPU (in orange) and 8 CPUs (in blue) are requested in the beginning of the 

workflow. The type of modeling sub-tasks, time cost, and resource consumption are noted 

on the Figure.
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Figure 4. 
The high-throughput workflow of FAcD modeling using adaptive resource allocation 

strategy, in which a “workflow script” the runs on a single-CPU thread operates the 

modeling sub-tasks (i.e., mutation, MD, and QM) by configuring, submitting, and 

monitoring new job scripts. The MD job requests 1 GPU (in orange) and each QM job 

8 CPUs (in blue). To submit and run individual QM calculations in parallel, a job array 

with a size of 25 is employed. The type of modeling sub-tasks, time cost, and resource 

consumption are noted on the Figure.
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Figure 5. 
The computational protocol for two rounds of directed evolution. Round 5 and 6 out of 

the seven rounds of experimental directed evolution of Kemp eliminase are used in the 

test. Specific stages of the workflow are shown on the bottom axis from left to right. The 

results of each stage are listed above the axis. Specific information about each mutant is 

listed in the Supporting Information, Table S1. The modeling results of thermostability 

and electrostatic stabilization energy (i.e., Gelec) are represented as color-coded blocks next 

to the mutants. For the thermostability score, the thermally stable and unstable mutants 

are shown in white and red, respectively. For Gelec, a color gradient scheme from darker 

green to white is applied, where darker green refers to stronger electric field with greater 

capability of stabilizing the bond cleavage. The same color scale is applied for both R5 

and R6. “Green check” or “red cross” represents the successful or failed inclusion of an 
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experimentally-observed target mutant in a screening stage. The 6 starting variants are 

derived from the experimental work of Röthlisberger et al.31
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