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Abstract
Motivation: High-throughput screens (HTS) provide a powerful tool to decipher the causal effects of chemical and genetic perturbations on cancer 
cell lines. Their ability to evaluate a wide spectrum of interventions, from single drugs to intricate drug combinations and CRISPR-interference, has 
established them as an invaluable resource for the development of novel therapeutic approaches. Nevertheless, the combinatorial complexity of 
potential interventions makes a comprehensive exploration intractable. Hence, prioritizing interventions for further experimental investigation 
becomes of utmost importance.
Results: We propose CODEX (COunterfactual Deep learning for the in silico EXploration of cancer cell line perturbations) as a general framework for 
the causal modeling of HTS data, linking perturbations to their downstream consequences. CODEX relies on a stringent causal modeling strategy 
based on counterfactual reasoning. As such, CODEX predicts drug-specific cellular responses, comprising cell survival and molecular alterations, and 
facilitates the in silico exploration of drug combinations. This is achieved for both bulk and single-cell HTS. We further show that CODEX provides a 
rationale to explore complex genetic modifications from CRISPR-interference in silico in single cells.
Availability and implementation: Our implementation of CODEX is publicly available at https://github.com/sschrod/CODEX. All data used in 
this article are publicly available.

1 Introduction
Large-scale perturbation experiments in human cancer cell 
lines offer a powerful approach to connect genetic or chemi
cal interventions with downstream effects. Such high- 
throughput screens (HTS) aid the identification of new drug 
compounds and more effective cancer treatments, and pro
vide a way to study genomic susceptibilities in cancer (Ling 
et al. 2018).

This motivated several data collections and technical 
advancements. The Genomics of Drug Sensitivity in Cancer 
(GDSC) database (Iorio et al. 2016) provides response meas
urements of 1001 cancer cell lines to 265 anticancer drugs. In 
comparison to individual drugs, drug combinations can have 
increased efficacy, and reduced toxicity and adverse side 
effects as a consequence of reduced dosages (Al-Lazikani 
et al. 2012, Csermely et al. 2013). This motivated drug com
bination databases such as DrugComb (Zagidullin et al. 
2019), gathering data of more than 700 000 drug combina
tions for more than 8000 unique compounds. Investigated 
downstream effects are not limited to measures of drug re
sponse. The Connectivity Map (Subramanian et al. 2017) 
offers more than 3 000 000 perturbed gene expression pro
files using the L1000 technology (measuring the expression 
of 978 genes) (https://clue.io/), containing diverse genetic 
(shRNA, CRISPR, and overexpression), chemical, and physi
ological perturbations. Advances in barcoding strategies 

enabled bulk RNA sequencing at comparatively low costs 
(Bush et al. 2017, Ye et al. 2018) and allowed the generation 
of perturbation profiles without restricting the gene space 
[see, e.g. PANACEA (Douglass et al. 2022)]. A further essen
tial development are high-throughput single-cell perturbation 
screens, providing measurements of perturbed transcriptomes 
of individual cells for diverse interventions. For instance, Sci- 
Plex was used to screen cancer cell lines exposed to different 
compounds and dosages at single-cell resolution (Srivatsan 
et al. 2020). Genetic perturbations on a single-cell level were 
approached by Perturb-Seq, which uses barcoding techniques 
and CRISPR interference to perform genome-scale perturba
tion screens covering more than 1000 gene knockouts on 
RPE-1 and K562 cells (Replogle et al. 2022). Further, 
Norman et al. (2019) explored the effects of 131 two-gene 
knockouts on K562 cells. Even though more than 100 000 
single cells are recorded, only a small fraction of the combi
natorial space could be experimentally covered, highlighting 
the need for computational approaches to infer novel drug 
combination effects and guide experimental studies.

The outlined resources differ with respect to the employed 
techniques, and the investigated downstream effects and 
interventions. However, different data types typically require 
tailored solutions. For instance, drug sensitivity predictions 
in cell lines were addressed in an NCI-DREAM challenge 
(Costello et al. 2014) and identified a Bayesian multitask 
multiple kernel learning approach to perform best. 
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Subsequent methods built on this idea and additionally 
addressed the model adaptation to real tumor specimens to 
provide treatment response predictions in individual patients 
(Sharifi-Noghabi et al. 2021, He et al. 2022). The prediction 
of drug synergies was pioneered by DeepSynergy (Preuer 
et al. 2018). DeepSynergy predicts drug synergisms from cell- 
line transcriptomic data in combination with features repre
senting compound structures. Drug response predictions in 
single cells were addressed by the Compositional 
Perturbation Autoencoder (CPA) (Lotfollahi et al. 2023), 
which also addressed drug combinations, by perturbing the 
latent representation of a Variational Autoencoder (VAE). 
The prediction of unseen genetic interventions and combina
tions thereof was addressed by GEARS (Roohani et al. 
2023). GEARS utilizes Graph Neural Networks (GNNs) to 
incorporate prior knowledge of gene-gene relationships into 
the model architecture. The generative approach, however, 
limits applications to a specific cell type. In summary, all out
lined approaches are tailored to the problem at hand, even 
though they describe the common problem of predicting 
causal consequences of a specified intervention.

The inference of many causal actions necessitates counterfac
tual reasoning. For instance, in a typical clinical trial, patient 
outcome is recorded for a treated and a control group. By com
paring the outcomes of both groups, the average treatment ef
fect can be derived. However, a treatment that is beneficial on 
average may not be helpful for every individual patient. The 
computational challenge in predicting individual patients’ treat
ment responses arises from the fact that patients’ outcomes can 
only be observed for the specific treatment they received, not for 
the alternative treatments they did not receive (here, the control) 
(Rubin 1974). Consequently, algorithms cannot directly learn 
rules for selecting the “better” treatment for each patient. 
Instead, they must infer the alternative, or “counterfactual,” 
outcomes in order to adequately assess the treatment’s relative 
benefit. In HTS, alternative interventions can be observed, as
suming that cultures of the same cell line can be considered as 
technical replicates. Nevertheless, it is impractical to test every 
possible intervention, especially for combinations of interven
tions; the combinatorial complexity makes a comprehensive ex
ploration intractable. Thus, in silico approaches become 
necessary to prioritize interventions for further experimental 
investigations. To address this task, we will build on counterfac
tual machine learning approaches to extrapolate the space of 
interventions to the yet unseen “counterfactual” perturbations 
and cell lines.

Counterfactual deep-learning (DL) approaches turned out to 
be particularly promising due to their enormous flexibility. The 
typical strategy is to construct networks which facilitate joint 
representation learning across all investigated interventions, and 
to account for treatment specific effects via dedicated network 
branches (Johansson et al. 2016, Shalit et al. 2017, Yao et al. 
2018, Schrod et al. 2023). In the context of HTS data, molecu
lar information is first aggregated in a treatment-agnostic man
ner to encode features of unperturbed control cells, and then, 
separated into treatment-specific representations to capture the 
treatment underlying molecular mechanisms. Note that a dedi
cated representation has to be trained for each intervention or 
intervention combination, and as such, downstream effects of 
novel combinations cannot be inferred. Alternative approaches 
that only consider the intervention as a predictor variable typi
cally capture only average treatment effects and may overlook 
individual treatment effects. This can be explicitly seen from the 

comparison of an ordinary regression model, which uses a treat
ment variable, and a T-learner, which consists of a set of indi
vidual treatment-specific models (Shalit et al. 2017, Schrod 
et al. 2023). Notably, most recent counterfactual DL 
approaches also take into account potential treatment selection 
biases as might be present in observational studies, for which 
regularization techniques for distributional balancing are used 
or adversarial learning techniques (Johansson et al. 2016, Shalit 
et al. 2017, Yao et al. 2018, Yoon et al. 2018, Schrod et al. 
2022). Confounding effects due to treatment biases, however, 
might be of less relevance in the context of HTS, where inter
ventions are a priori unbiased.

Here, we will introduce CODEX (COunterfactual Deep 
learning for the in silico EXploration of cancer cell line per
turbations), which builds on counterfactual DL approaches 
to provide a general framework to model HTS data. In con
trast to existing counterfactual DL approaches, CODEX 
facilitates the prediction of unseen perturbation combinations 
by learning from individually applied interventions and com
plementary combinations. CODEX can account for nonlinear 
combinatorial effects and can incorporate prior knowledge 
about gene-gene relationships, such as provided by Gene 
Ontologies (GO). We demonstrate that CODEX can extrapo
late the space of interventions to new cell lines and new treat
ment combinations, and via prior knowledge even to 
completely unseen perturbations and combinations thereof. 
This is illustrated for both bulk and single-cell transcriptom
ics data, and for the predictions of drug responses and per
turbed gene-expression profiles.

2 Materials and methods
2.1 CODEX
2.1.1 Model architecture
The CODEX approach (Fig. 1) is based on deep neural net
work architectures for counterfactual reasoning (Johansson 
et al. 2016, Shalit et al. 2017, Yoon et al. 2018, Schrod et al. 
2022). Let xi represent a vector of unperturbed molecular 
features that characterizes a bulk cell line specimen i, or, in 
the context of single-cell HTS, an unperturbed single cell i. 
Throughout our analyses, gene expression levels are used as 
input features, but in principle, any omics data could be used. 
Note, however, that transcriptomics data are most readily 

Figure 1. CODEX architecture used for causal representation learning: an 
unperturbed profile X is transformed to map the effect of specific 
interventions T, which might be associated with a dosage D, to the 
perturbed outcome Y. The unperturbed state is first encoded in a latent 
state e, which is passed through the respective treatment specific 
representations ft. Treatment combinations are naturally incorporated by 
simultaneously propagating profiles through respective treatment arms. 
Further, if dosage specific interventions are used, the dosage is 
incorporated as input variable to the intervention specific layers. Finally, 
the individual effects are aggregated and combined by a shared decoder d 
to model the perturbed outcome.
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available and have been shown to be most relevant for drug 
sensitivity predictions (Costello et al. 2014). Further, let the 
vector ti ¼ ðt1

i ; . . . ; tK
i Þ represent the perturbations applied in 

experiment i, where each element tk
i 2 0; 1 indicates whether 

intervention k was applied (1) or not 0. Thus, ti encodes the 
complete set of perturbations applied in experiment i. In case 
of chemical interventions, an additional vector di ¼

ðd1
i ; . . . ;dK

i Þ encodes drug dosages, respectively. The predic
tion target will be denoted as yi 2 Y, which can be any vari
able or set of variables characterizing the outcome of the 
perturbation, such as measures of drug efficacy (Costello 
et al. 2014), drug synergies (Preuer et al. 2018), as well as 
perturbation profiles (Lotfollahi et al. 2023, Roohani et al. 
2023). Thus, CODEX requires the triplet of input informa
tion consisting of a control (the unperturbed transcriptome), 
the intervention (potentially associated with dosages), and 
the recorded downstream effects.

Causal inference models such as (Shalit et al. 2017) do not 
incorporate the action as a covariate but rather as a structural 
parameter to train intervention specific data representations. 
CODEX builds on this concept. Specifically, we first train a 
latent shared embedding of the initial state e : X! Rd to re
duce the dimensionality of the problem and to construct 
prediction-relevant features. This embedding is, then, passed 
through intervention specific layers (a mapping fk : Rd ! Rd) 
to account for the molecular downstream effects induced by 
intervention k. Importantly, we do not introduce individual 
representations for combinations of treatments. While this 
would be a direct adaptation of counterfactual DL models 
like those of (Shalit et al. 2017), it would significantly inflate 
the parameter space and hinder the inference of unseen com
binations. This is because each treatment combination would 
require observations to train the respective network branch 
and to facilitate any kind of predictions, making existing 
causal inference models impracticable for complex HTS data. 
Thus, we pass the latent variables e(X) through a set of active 
network branches corresponding to the respective single 
interventions. Subsequently, they are passed through addi
tional joint layers—a decoder d : Rd ! Y—to reconstruct the 
downstream effects. In case of multiple simultaneously ap
plied interventions, the corresponding latent representations 
are aggregated before the combinatorial effect is deciphered 
by the decoder. One should note that, even though the effects 
are linearly aggregated on a latent state of the model, the de
coder naturally captures nonlinear combinatorial effects. In 
summary, the CODEX mapping reads: 

ŷi ¼ d
XK

j¼1

tðjÞi fjðeðxiÞÞ

0

@

1

A; (1) 

which implicitly sums all active treatment branches associated 
with nonzero coefficients tðjÞi . Note that inactive treatment 
branches tðjÞi ¼ 0 are not explicitly evaluated to save computa
tional resources.

2.1.2 CODEX for drug-synergy prediction
CODEX is a general architecture to model causal effects and 
their combinations, and as such, enables predictions of di
verse outcome measures. In this work, we focus on the pre
diction of drug synergies and the reconstruction of perturbed 
gene expression profiles. Drug synergies are commonly 
expressed in terms of synergy scores Y 2 R, which quantify 

the difference between experimentally tested response surfa
ces and theoretical models combining individual treatments 
naively, such as Loewe Additivity (Loewe 1953) or Bliss inde
pendence (Bliss 1939). In this work, we focus on the Zero 
Interaction Potency (ZIP) score, which takes advantage of 
both the Loewe Additivity and the Bliss independence model 
(Yadav et al. 2015). To model drug synergies via CODEX, 
we map the decoder to a Mean Squared Error (MSE) loss 

min
Θ

1
N

X

i

ðŷi − yiÞ
2
; (2) 

where the parameter space is given by Θ ¼ ½θe; θft ; θd�. The 
applied interventions are implicit in Equation (1). The full 
model architecture and the hyper-parameter search space are 
given in the Supplementary Materials.

2.1.3 CODEX for the prediction of single-cell perturba
tion profiles
Synergy scores are summary statistics of potentially complex 
molecular downstream effects. In recent years, downstream 
effects have become increasingly available in terms of per
turbed transcriptomes in both bulks and single cells 
(Subramanian et al. 2017). We focus on the latter with yi ¼

ðyi1; . . . ; yipÞ 2 Rp corresponding to a perturbed transcrip
tome with yij representing the expression of gene j in cell i. 
Let zi ¼

PK
j¼1 tðjÞi fjðeðxiÞÞ, which is the linear combination of 

the latent variables representing active treatment branches in 
cell i. CODEX then uses a Gaussian loss which quantifies the 
accuracy of predictions of yi together with respective 
gene variances, 

min
Θ

X

i;j

1=2 logðdσ2ðziÞjÞþ
ðdμðziÞ− yiÞ

2
j

dσ2ðziÞj

 !

; (3) 

where dμðziÞj maps to the mean expression of gene j and 
dσ2ðziÞj infers the variance of the estimates, given the respec
tive treatment or treatment combination. We further imposed 
that dσ2ðziÞj is larger than ɛ ¼ 10−6 to increase numeri
cal stability.

2.1.4 CODEX for the prediction of drug dosage effects
Different drug dosages add to the combinatorial complexity 
of intervention experiments and can introduce complex non
linear dependencies. In principle, dosage effects can be incor
porated into CODEX via different treatment branches. This, 
however, would prohibit the extrapolation to unseen drug 
dosages and would substantially increase model complexity. 
Therefore, rather than introducing additional dose represen
tations, CODEX incorporates dosage information as an addi
tional categorical feature dk

i which adds to the first layer of 
each treatment specific branch k (Fig. 1).

2.1.5 CODEX for the prediction of unobserved perturbations
CODEX infers a distinct model branch for each individual 
perturbation, effectively reducing the number of model repre
sentations to the number of distinct perturbations. However, 
it does not require that those perturbations were indepen
dently observed. Rather, the training data can comprise per
turbations observed in combinations. Consequently, each 
combination adds information to decipher the individual 
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model branches. We make use of this feature and introduce a 
weighting scheme to share information among perturbations.

We illustrate this concept for CRISPR interference screens, 
where the individual perturbations correspond to silenced 
genes. In this case, we use gene similarities derived by 
(Roohani et al. 2023), which aggregate information from GO 
(Gene Ontology Consortium 2004). The basic idea is to com
pute the Jaccard index between a pair of genes j,j0 as 

J j;j0 ¼
jNj\Nj0 j

jNj[Nj0 j
, where Nu is the set of pathways containing 

gene u. This is the fraction of shared pathways between 
two genes.

Consider an unobserved gene knockout of gene j0. Then, 
we can construct the treatment proxy model by setting 

tðjÞi ¼ CJ j;j0 , where C is determined by normalization 

C ¼
PK

j¼1 tðjÞi . In the case of single unobserved perturbations, 
the proxy vector is used as is, otherwise, respective proxy vec
tors and observed treatment vectors are added up. For in
stance, let ð1; 0;0; 0;0Þ be a treatment vector, where the 
observed interventions are indicated by the 1 at the first posi
tion. Further, let ð0; 0:4;0:35; 0:25;0Þ be a normalized proxy 
treatment vector, determined as outlined. Then, we evaluated 
CODEX with the sum of both, ti ¼ ð1; 0:4;0:35; 0:25;0Þ. 
Thus, in summary, CODEX passes the data through treat
ment branches which likely resemble the unobserved pertur
bation. It is noteworthy that the proposed weighting scheme 
is one specific choice to incorporate prior knowledge to share 
information among perturbations. Other, viable options 
could rely, e.g. on measurements of protein–protein interac
tions or sequential similarity.

For more details about the implementation and the used 
network architecture refer to the Supplementary Materials.

2.2 Competing methods
2.2.1 Algorithms for drug-synergy predictions in cell lines
We compared CODEX to

� TreeCombo (Janizek et al. 2018), which is a tree-based 
approach using Extreme Gradient Boosting (XGBoost), 

� DeepSynergy (Preuer et al. 2018), a dense feed forward 
neural network to predict synergy scores, 

� MatchMaker (Kuru et al. 2022), which is inspired by 
DeepSynergy but additionally splits the network into two 
parts representing the two different interventions, and 

� MARSY (El Khili et al. 2023), which uses a drug-drug 
representation network combined with the latent repre
sentation learner of DeepSynergy. 

In contrast to CODEX, the competing models additionally 
use chemical drug encodings as input.

2.2.2 Algorithms for the prediction of post- 
perturbation profiles
We compared CODEX to:

� Random Baseline: in line with Lotfollahi et al. (2023), we 
implemented a random baseline to assess the relative ben
efit of CODEX in the context of dosage extrapolations. 

� Linear baseline: we implemented a linear baseline which 
simply averages the downstream predictions of individual 
perturbations to predict the effect of perturbation 
combinations. 

� Gene Regulatory Network (GRN): GRN, as implemented 
by Roohani et al. (2023), infers a GRN to linearly propa
gate the effect of gene perturbations. 

� Compositional Autoencoder (CPA) (Lotfollahi et al. 2023): 
CPA is based on a Variational Autoencoder (VAE) architec
ture trained to encode both control and perturbation pro
files. It encodes different perturbations and dosages in a 
latent space. This space is made indistinguishable with re
spect to the different interventions using an adversarial dis
criminator. Downstream effects are predicted by (1) 
encoding control cells and (2) decoding them with respective 
interventions activated in the latent space. 

� Graph-Enhanced gene Activation and Repression 
Simulator (GEARS) (Roohani et al. 2023): GEARS is a 
generative approach assuming a single type of cell. It uses 
two separate Graph Neural Networks (GNNs) to encode 
additional prior knowledge about gene–gene relationships 
and perturbation relationships. The first GNN embeds 
the unperturbed state using a gene co-expression knowl
edge graph, and the second GNN learns perturbation 
embeddings using a graph derived from GO. The states 
are combined using the respective perturbations, and a 
feed-forward decoder is used to reconstruct the post- 
perturbation gene expression. 

� Linear CODEX: lin-CODEX removes the nonlinear effect 
combination from CODEX. This baseline is included to 
illustrate the benefit of the effect decoder, and thus, serves 
as an ablation study. For model inference, the trained 
CODEX model is evaluated only for individual model 
branches and subsequently averaged to receive predictions 
for respective treatment combinations. 

3 Results
3.1 CODEX improves drug-synergy predictions in 
cancer cell lines
DrugComb (Zagidullin et al. 2019) provides more than 
700 000 recorded drug combinations for 8379 different 
drugs on 2320 different tissues, making it an invaluable re
source to explore drug combinations. However, the combina
torial complexity prohibits a comprehensive experimental 
exploration and asks for computational solutions. For in
stance, exploring all combinations of two drugs in all tissues 
would correspond to �1011 experiments. Following El Khili 
et al. (2023), we extracted 670 unique drugs and a set of 
2353 corresponding drug pairs on 75 selected cancer cell 
lines. Synergy effects were extracted from DrugComb 
(Zagidullin et al. 2019), and the normalized untreated cancer 
cell lines were retrieved from CellMiner (Reinhold et al. 
2012). Lowly expressed genes with log 2ðRPKMþ1Þ<1 and a 
variance smaller than 0.8 were excluded, resulting in a final 
set of 4639 features. For validation, we followed El Khili 
et al. (2023), and performed two different settings:

1) a 5-fold cross-validation, where random triplets of cell 
line-drug–drug combinations were selected for testing, 

2) a stratified 5-fold cross-validation strategy, where indi
vidual treatment combinations were removed from the 
training, meaning that the test fold contains unseen drug 
combinations. 

This validation strategy does not prohibit that similar cell 
lines and perturbations are captured by the training and test 
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data, which enables meaningful extrapolations among cell 
lines and perturbations. For performance comparison, we 
evaluated the Zero Interaction Potency (ZIP) (Yadav et al. 
2015), which measures the change in potency of the dose–re
sponse curves for individual drugs and their combinations. 
The main assumption is that noninteracting drugs do not 
change the underlying dose–response curves. ZIP combines 
the Bliss independence model (Bliss 1939) and Loewes 
Additivity (Loewe 1953), using fitted dose–response curves 
rather than experimentally observed points. All baselines 
were extracted from (El Khili et al. 2023).

3.1.1 Performance comparison
The results are given in Table 1. We evaluated three perfor
mance measures: the Spearman Correlation Coefficient 
(SCC), the Pearson Correlation Coefficient (PCC), and the 
MSE between ground truth and predictions. In the first sce
nario, the test set contained drug–drug combinations which 
were already part of the training data, although they were 
not seen in the same cell line. CODEX yielded the highest 
PCC and lowest MSEs between predictions and ground truth 
values and was only out-competed by MARSY with respect 
to SCC. The remaining competitors performed substantially 
worse than both approaches.

Next, we evaluated the more challenging scenario of valida
tion experiment (2), where the test fold contains only unseen 
drug combinations. As expected, all approaches performed 
worse than in the validation experiment (1). However, both 
CODEX and MARSY still achieve reasonable performance 
with PCCs > 0.87. As previously, CODEX performed best with 
respect to PCC and MSE and MARSY with respect to SCC. 
The same holds true considering an alternative synergy score 
Smean, where MARSY slightly out-competed CODEX, while the 
other approaches showed inferior performance (refer to 
Supplementary Table S1).

3.2 CODEX improves dose–response predictions in 
single-cell data
We studied CODEX’s ability to predict dose specific 
responses in single-cell perturbation data. We used the 
Sciplex2 data (Srivatsan et al. 2020), which contain 12 656 
post-perturbation transcriptomic profiles of A549 human 
lung adenocarcinoma cells measured for four different per
turbations (Vorinostat, BMS-34 554, Dexamethasone and 
Nutlin3a) and seven different concentrations (in total 28 
drug–dose combinations). We used the preprocessed data 
provided by Lotfollahi et al. (2023), which were normalized 
and log transformed and limited to the 5000 most variable 
genes. Accordingly, we left out the second highest treatment 
concentration and tested CODEX ability to reproduce the 

dose–response curves and to interpolate to unseen 
concentrations.

3.2.1 Performance comparison
Figure 2 shows dose–response curves (response versus dosage) 
for the top three Differentially Expressed Genes (DEGs) for 
each treatment. Ground truth values (solid lines and error bars), 
with dots representing individual measurements, are contrasted 
with predictions by CPA (dotted lines) and CODEX (dashed 
lines). The second highest dosage was hold out for testing and is 
highlighted by a vertical dashed line. CODEX achieves a sub
stantially better description of both training and test dosages, 
capturing also nonlinear dependencies (Fig. 2). This is also sup
ported by considering the reconstruction performance in terms 
of the coefficient of determination R2 (Fig. 3), for all genes 
(blue) and for the top 50 DEGs (orange). CODEX performed 
best for Dexamethasone, Nutlin-3a, Vorinostat and the linear 
baseline for BMS-34554, where substantial improvements on 
the top 50 DEGs were observed for the drugs Vorinostat (0.94 
vs. 0.85 for CODEX vs. CPA), and Nutlin-3a (0.84 vs. 0.81 for 
CODEX vs. CPA). On average, we observed a median perfor
mance gain of 9.1% for the top 50 DEGs compared to CPA 
(Supplementary Fig. S1A). Furthermore, considering all dosages 
(both validation and out-of-distribution data), CODEX showed 
significantly improved R2 values compared to CPA, and a me
dian performance increase of 11.5% for the top 50 DEGs 
(Supplementary Fig. S1B). We further observed that the linear 
baseline performs well on BMS-34554, while it failed for 
Dexamethasone and Vorinostat. This suggests that linear effects 
are sufficient to model some but not all interventions.

3.3 CODEX can predict molecular downstream 
effects of drug combinations in single cells
We further investigated molecular downstream effects in 
terms of perturbed transcriptomes of 13 anticancer drugs on 
A549 cells obtained from the combinatorial sci-Plex 
(Combosciplex) assay (Lotfollahi et al. 2023). The data com
prise 18 different anticancer medications evaluated on 
63 430 single cells, including a total of 25 unique drug com
binations and seven individually observed drug perturbations 
(for an overview, see Supplementary Table S5). Similar to the 
Sciplex2 data, Combosciplex was normalized, log- 
transformed, and restricted to the 5000 most variable genes. 
To study the ability of CODEX to infer the effects of unseen 
drug combinations, we excluded four combinations during 
model development and evaluated the reconstruction of per
turbed transcriptomes using R2 scores. We compared 
CODEX to the linear baseline, which averages the observed 
single effects, CPA (Lotfollahi et al. 2023), and lin-CODEX.

Table 1. Mean 5-fold cross-validation performance for the prediction of ZIP synergy scores, in terms of Spearman Correlation Coefficient (SCC), Pearson 
Correlation Coefficient (PCC), and Mean Squared Error (MSE) for unseen cell lines (1) and unseen drug combinations (2).a

Model Setting (1) Setting (2)

SCC " PCC " RMSE # SCC " PCC " RMSE #

CODEX 0.752 (±0.004) 0.889 (±0.005) 5.31 (±0.18) 0.725 (±0.005) 0.877 (±0.005) 5.58 (±0.17)
MARSY 0.780 (±0.010) 0.886 (±0.005) 5.36 (±0.19) 0.749 (±0.011) 0.875 (±0.005) 5.62 (±0.15)
MatchMaker 0.742 (±0.004) 0.873 (±0.006) 6.11 (±0.32) 0.720 (±0.006) 0.864 (±0.007) 6.23 (±0.12)
TreeCombo 0.737 (±0.004) 0.870 (±0.003) 5.73 (±0.17) 0.689 (±0.005) 0.856 (±0.006) 6.00 (±0.15)
DeepSynergy 0.701 (±0.003) 0.869 (±0.004) 5.78 (±0.18) 0.676 (±0.006) 0.860 (±0.008) 5.95 (±0.16)

a The best performing scores were highlighted in bold, and the arrow indicates whether the measure is maximized or minimized.
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3.3.1 Performance comparison
Considering median R2 values, we observed that CODEX 
performs best with an increase of 5.5% on the top 50 DEGs 
compared to CPA (Supplementary Fig. S2). The performance 
resolved for the individual hold-out treatment combinations 
is shown in Fig. 4. There, already lin-CODEX is able to im
prove predictions compared to the linear baseline. However, 
it is outperformed by both CPA and CODEX, suggesting a 
crucial role of nonlinear decodings (see also Supplementary 
Fig. S2). The performance gains of CODEX were mainly at
tributed to the combinations including Alvespimicin (Fig. 4). 
Those were weakly supported by the training data with sig
nificantly different effects than observed during training 

(Lotfollahi et al. 2023). This is further illustrated in a UMAP 
representation, where the left-out treatment combinations 
containing Alvespimin (purple triangles, with blue circles) are 
separated from the majority of the training combinations (red 
circles), both on the latent space and the final predictions 
(Fig. 5A and B, see also Supplementary Fig. S3 for in
creased resolution).

The Combosciplex data comprise only a subset of all possi
ble drug combinations. We next used CODEX to infer all 
remaining unobserved drug combinations and visualized the 
results using a UMAP representation on the latent linear 
effects (zi) and on the final predictions (top and bottom of  
Fig. 5, respectively). UMAP on the latent representation 
reveals distinct clusters associated with the dominant effects 
attributed to Pirarubicin, Danusertib, Tanespimycin, and 
Sorafenib. Those are not revealed on the final predictions 
(bottom Fig. 5), suggesting that the nonlinear adjustments of 
the decoder regulate the treatment effect sizes. We further 

Figure 2. Dose-dependent reconstruction of the gene expression levels of the top 3 DEGs for each of the treatments. Ground truth values (solid lines 
and error bars), with the size of the dots representing the number of available samples for each measurement, are contrasted with predictions by CPA 
(dotted lines) and CODEX (dashed lines). The dashed vertical line indicates the dosage left out for testing.

Figure 3. R2 reconstruction performance of the mean post perturbation 
gene expression of all genes (blue) and the top 50 DEGs (orange) 
obtained for the second highest dose (left out for testing) on Sciplex2.

Figure 4. R2 reconstruction performance of the mean post perturbation 
gene expression profiles for all genes (blue) and top 50 DEGs (orange) 
obtained for the four held out treatment combinations on the 
Combosciplex data.

Figure 5. UMAP of the combined latent representation z of CODEX (A) 
and of its final predictions (B) for all possible treatment combinations of 
the Combosciplex data. Each colored triangle represents a treatment 
component, and the full squares represent their respective combinations. 
Training combinations are circled in red, test combinations in blue, and 
the ground truth for the unobserved combinations in green (only for final 
predictions).
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confirmed that out-of-sample predictions (blue circles) are in 
near vicinity of respective ground truths (green circles), with 
one-to-one correspondence indicated by connecting 
black lines.

3.4 CODEX facilitates predictions of combined gene 
knock-out perturbations from CRISPRi in 
single cells
Finally, we used CODEX to explore genetic perturbations 
implemented via CRISPRi. CRISPRi facilitates the targeted si
lencing of genes and has become increasingly feasible in 
large-scale single-cell perturbation screens in recent years. 
For instance, Norman et al. (2019) proposed Perturb-seq to 
perform single-cell pooled CRISPRi screens and provided 
data containing a total of 284 unique knock-out conditions, 
comprising 131 unique two-gene knockouts, on 108 000 
single-cells from the K562 cancer cell line (Norman et al. 
2019). In the first experiment, we selected test combinations 
where the individual perturbations were part of the training 
data. To further guarantee a fair comparison to state-of-the- 
art competitors, we followed Roohani et al. (2023) and 
implemented the same 5 test-training splits using the same 
feature set of 5045 genes. We assessed the performance in 
reconstructing perturbed profiles in terms of normalized 
MSE on the top 20 DEGs (normalized using the reconstruc
tion error of the random baseline) and PCC, where we evalu
ated the reconstructed effect on all genes (not considering the 
control background) and the reconstruction of the top 
20 DEGs.

3.4.1 Performance comparisons
Also, considering this application, CODEX substantially 
improves the recently suggested state-of-the-art solutions CPA 

and GEARS and by far out-competes GRN. Considering PCC 
for the top 20 DEGs (Fig. 6C), we observed a median value of 
0.98 for CODEX compared to 0.96 for lin-CODEX, 0.91 for 
CPA, 0.92 for GEARS, and 0.82 for GRN. This is consistent 
with the performance in terms of normalized MSEs (Fig. 6A) 
and by considering PCC for all genes (Fig. 6B). To further sub
stantiate these findings, we performed an additional validation 
experiment corresponding to the setting of (Lotfollahi et al. 
2023), where each combination of perturbations is left out in 
one of 13 splits, and evaluated the reconstruction performance 
in terms of the R2 score on all genes and on the top 50 DEGs, in 
line with (Lotfollahi et al. 2023). These results demonstrate that 
in this comparison, CODEX out-competes the other methods 
significantly (Supplementary Fig. S4).

3.5 CODEX facilitates predictions of unobserved 
gene knock-outs from CRISPRi in single cells
CODEX can predict downstream effects of unseen perturba
tions, combinations thereof with observed perturbations, as 
well as combinations of unseen perturbations only. This is 
achieved by proxy models resembling unseen perturbations. 
These proxies were established by a weighting scheme sum
marizing related gene perturbations (see Methods). To assess 
CODEX’s capability to predict unseen perturbations, we per
formed three additional experiments using the Norman et al. 
(2019) dataset, where we inferred the effect of left-out pertur
bations for a single missing perturbation (0/1 seen), a missing 
perturbation in a pair (1/2 seen), and two missing perturba
tions in a pair (0/2 seen). Due to the limited number of single 
gene perturbations (105), we tested CODEX on two addi
tional genetic perturbation screens generated by Replogle 
et al. (2022), comprising a total of 1543 RPE-1 and 1092 
K562 single genetic perturbations, with 175 398 and 
192 648 measured single cells, respectively. We again 
adapted the experimental setup of Roohani et al. (2023) and 
compared the reconstruction error based on five identical sets 
of held-out perturbations. Performance was again assessed 
using normalized MSE on the top 20 DEGs, PCC of the effect 
on all genes, and PCC on the top 20 genes.

3.5.1 Performance comparison
For the Norman et al. (2019) data, we observed that GEARS 
yielded the lowest median MSE in all three settings (Fig. 7A). 
However, CODEX consistently out-competes all other methods 
with respect to PCC (Fig. 7B and C). There, CODEX improves 
the median PCC on the top 20 DEGs from 0.90 to 0.92 for 0/1 
seen, 0.83 to 0.93 for 1/2 seen, and 0.79 to 0.89 for 0/2 seen 
compared to the second-best performing model (GEARS).

Figure 6. Reconstruction performance in terms of normalied MSE for the 
top 20DEGs (A), PCC of the effect on all genes (B) and PCC of the top 20 
DEGS (C) of unseen perturbation combinations on the Norman et al. 
(2019) data.

Figure 7. Reconstruction performance in terms of normalied MSE for the top 20DEGs (A), PCC of the effect on all genes (B) and PCC of the top 20 DEGS 
(C) of unseen perturbations for varying degrees of difficulty. The inferred effect of perturbations is evaluated for a single missing perturbation (0/1 seen), 
a missing perturbation in a pair (1/2 seen), and two missing perturbations in a pair (0/2 seen) on the Norman et al. (2019) data.
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On the Replogle et al. (2022) data, CODEX performs best 
on all compared measures for both K562 and RPE-1 cells 
(Fig. 8A–C). On K569 cells, CODEX improves the median 
PCC from 0.31 to 0.49, and on RPE-1 cells from 0.53 to 
0.61, compared to GEARS (Fig. 8B). In comparison, the per
formance of CPA and GRN is highly compromised with re
spect to MSE (Fig. 8A) and PCC on all genes (Fig. 8B). These 
findings suggest that when many single perturbations are 
known, gene graph proxies can be highly efficient. This holds 
true for both CODEX and GEARS. For CODEX, however, 
this aspect seems to be even more beneficial.

4 Conclusion
We proposed CODEX as a general framework to model 
high-throughput perturbation experiments. CODEX natu
rally facilitates diverse causal prediction tasks, can learn non
linear effect combinations, and can model different 
intervention types. This was shown for both chemical and ge
netic perturbation combinations. Moreover, we suggested a 
weighting scheme to perform predictions for completely un
seen perturbations. Thus, applications of CODEX are rich 
and the outlined performance comparisons suggest that 
CODEX offers highly competitive performance across diverse 
applications.

CODEX builds on counterfactual reasoning and implements 
different perturbations via distinct model representations, while 
most state-of-the-art approaches include perturbations as dis
tinct variables (Lotfollahi et al. 2023, Roohani et al. 2023) or 
represent them using chemical embeddings (Preuer et al. 2018, 
Kuru et al. 2022, El Khili et al. 2023). Causal modeling of rep
resentations increases model complexity, but has the benefit 
that highly complex downstream effects can be captured 
through the model architecture. This might be particularly rele
vant for the prediction of complex phenotypes, as our empirical 
results for the prediction of perturbed single-cell transcriptomes 
suggest. To enable out-of-distribution predictions for unseen 
drug combinations, different perturbation branches are com
bined. This has two advantages. First, subsequent network 
layers can account for potential nonlinearities. Those were re
peatedly shown to be key to the outlined prediction tasks as 
supported by our comparison to the linear CODEX baseline 
(lin-CODEX). Second, and most importantly, CODEX can 
learn the individual perturbation from combinations of pertur
bations. Given the combinatorial complexity of high- 
throughput perturbation screens, it is not tractable to 
comprehensively explore the space of perturbations and their 

downstream effects experimentally. However, CODEX makes 
use of redundancy, and might further improve extrapolation 
performance as perturbations are captured in more and more 
diverse combinations, not even limited to pairs of perturbations. 
This will be crucial to maximize the use of upcoming, poten
tially more comprehensive perturbation screens.

CODEX has a number of limitations. First, the main issue 
that afflicts all prediction algorithms of such a kind is that 
in vitro cell line experiments provide only a very limited pic
ture of the mechanisms taking place in vivo. It will be key to 
further consider the in vivo model transfer. Multiple 
approaches were already suggested, comprising Velodrome 
(Sharifi-Noghabi et al. 2021) and CODE-AE (He et al. 
2022). However, they mainly rely on a measure of distribu
tional similarity and do not address that biological processes 
between human and cell lines differ, with the former compris
ing, e.g. complex cellular interactions taking place in the tu
mor microenvironment. Second, nowadays perturbation 
experiments are destructive, meaning that we never observe 
an individual cell before and after the intervention. 
Observing the latter might substantially deepen our under
standing of molecular downstream effects. In this direction, 
e.g. Bunne et al. (2023) and Dong et al. (2023), attempt to 
identify counterfactual cell pairs using optimal transport. 
However, a combination of those methods with CODEX 
requires future research, addressing, e.g. potential biases 
from cell-pair selection.

In summary, CODEX provides a highly potent framework 
to extrapolate the space of interventions in high throughput 
perturbation experiments to unseen interventions and combi
nations thereof. Empirical results suggest that it substantially 
enhances out-of-distribution predictions and applies to di
verse prediction tasks, suggesting rich applications in 
pharmacogenomics.
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Supplementary data are available at Bioinformatics online.
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Figure 8. Reconstruction performance in terms of normalied MSE for the 
top 20DEGs (A), PCC of the effect on all genes (B) and PCC of the top 20 
DEGS (C) for an unseen single perturbation on single cells from K562 and 
RPE-1 cell lines (Replogle et al. 2022).
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The data from Replogle et al. (2022) are available from 
https://doi.org/10.25452/figshare.plus.20022944 and the pre
possessed drug-synergy data from https://github.com/Emad- 
COMBINE-lab/MARSY/tree/main/data (El Khili et al. 2023). 
Further information and code to reproduce the experiments 
are provided in the CODEX repository at https://github.com/ 
sschrod/CODEX.
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