
Teaching bioinformatics through the analysis of
SARS-CoV-2: project-based training for computer
science students
Pavlin G. Poli�car 1,�, Martin �Spendl 1, Toma�z Curk 1, Bla�z Zupan 1,2

1Faculty of Computer and Information Science, University of Ljubljana, Ve�cna pot 113, 1000 Ljubljana, Slovenia
2Department of Education, Innovation and Technology, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, United States
�Corresponding author. Faculty of Computer and Information Science, University of Ljubljana, Ve�cna pot 113, 1000 Ljubljana, Slovenia.
E-mail: pavlin.policar@fri.uni-lj.si

Abstract
Motivation: We learn more effectively through experience and reflection than through passive reception of information. Bioinformatics offers
an excellent opportunity for project-based learning. Molecular data are abundant and accessible in open repositories, and important concepts in
biology can be rediscovered by reanalyzing the data.
Results: In the manuscript, we report on five hands-on assignments we designed for master’s computer science students to train them in bioin-
formatics for genomics. These assignments are the cornerstones of our introductory bioinformatics course and are centered around the study
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). They assume no prior knowledge of molecular biology but do require
programming skills. Through these assignments, students learn about genomes and genes, discover their composition and function, relate
SARS-CoV-2 to other viruses, and learn about the body’s response to infection. Student evaluation of the assignments confirms their usefulness
and value, their appropriate mastery-level difficulty, and their interesting and motivating storyline.
Availability and Implementation: The course materials are freely available on GitHub at https://github.com/IB-ULFRI.

1 Introduction
While considerable attention has been devoted to structuring
bioinformatics courses for life scientists (Mangul et al. 2017,
Carey and Papin 2018, Madlung 2018), less attention has
been paid to how to structure these courses for computer sci-
entists (LeBlanc and Dyer 2004, Oesper and Vostinar 2020),
especially those without a background in molecular biology.
However, bioinformatics is an inherently interdisciplinary
field and can be well approached from a computer science
perspective. Skills in programming in Python or R, familiarity
with databases, open access to information, and knowledge
of data processing, visualization, and machine learning, pro-
vide not only an excellent entry point into bioinformatics
(LeBlanc and Dyer 2004) but also wonderful opportunities
for hands-on, project-based learning (Emery and Morgan
2017, Sauter et al. 2022). The role and benefits of project-
based learning are well documented in the literature
(Blumenfeld et al. 1991).

We propose a set of homework assignments and a corre-
sponding syllabus for our Introduction to Bioinformatics
course developed for master’s students in Computer Science.
The course assumes a solid background in Python program-
ming and is designed to introduce students with no prior
knowledge of biology to the tools and analyses commonly
performed in bioinformatics for genomics. In each of the five
assignments presented here, we focus on a specific aspect of
bioinformatics. We guide students through each topic
through the theory and implementation of bioinformatics
algorithms and their application to real-world data to solve
practical problems. The construction of problem- and data-

driven learning was also our main challenge in designing the
problems in the exercises.

The assignments and the associated bioinformatics course
we present here are designed to simulate the process of ex-
ploring the SARS-CoV-2 virus. As this course was originally
developed during the initial coronavirus disease 2019
(COVID-19) lockdowns of 2020, we felt that this would be a
particularly motivating example, as students would gain
hands-on experience working with a virus that was, at the
time, disrupting everyday life. The course begins with the as-
sumption that the students have no prior knowledge of the
SARS-CoV-2 virus, its structure, or its inner workings.
Throughout the assignments, students progressively uncover
different properties of SARS-CoV-2, which can then be vali-
dated against published scientific findings. In essence, stu-
dents take on the role of scientists, immersing themselves in
the discovery process to gain a deeper understanding of the
virus over the course of the semester.

Below, we first present the didactic approach in designing
the assignments. We then detail each of the five assignments,
their associated learning objectives, and the problems that
students will need to solve. We also discuss possible exten-
sions and bonus problems for each assignment. Our proposed
material was implemented at the Faculty of Computer and
Information Science at the University of Ljubljana and evalu-
ated by master’s students enrolled in the course. We present
the results of this evaluation in a separate section. We con-
clude the manuscript with an overview of the achieved goals,
providing information on the availability of the assignment
text, code, and related resources.

The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40, i20–i29
https://doi.org/10.1093/bioinformatics/btae208
ISMB 2024

https://orcid.org/0000-0002-6462-9372
https://orcid.org/0009-0008-0796-8985
https://orcid.org/0000-0003-4888-7256
https://orcid.org/0000-0002-5864-7056
https://github.com/IB-ULFRI

2 Didactic approach
The assignments and the associated bioinformatics course
were originally developed during the 2020 COVID-19
lockdowns when in-person lab work was made difficult and
project-based homework assignments were preferred.
The bioinformatics course we designed (Fig. 1) is delivered
in five cycles of about 3 weeks each, where in each cycle,
students attend two to three lectures to learn theoretical
concepts, followed by a practical homework assignment
that reinforces the learned material. Each assignment
focuses on a particular aspect of the bioinformatics work-
flow, implementing and applying these algorithms to real-
world problems related to the SARS-CoV-2 pandemic. The
text of the assignments is released in the middle of each cy-
cle so that students can observe the problem they will have
to solve, and the instructor can refer to the material during
lectures. This interweaving of lectures and labs ensures
that the students have a solid understanding of both the
theory and applications of the presented bioinformat-
ics algorithms.

The main objective of the course is to familiarize computer
science students with the key concepts of molecular biology
and bioinformatics. The lectures cover motivation and the-
ory, and the homework assignments offer a practical oppor-
tunity for students to cement their knowledge by applying
their skills in programming and data science algorithms. To
assess the achievement of the learning outcomes, we adminis-
ter a final examination at the end of the semester. While the
focus of this manuscript is to describe the developed assign-
ments, we are pleased to report that student pass rates have
been excellent in all iterations of the course. We largely at-
tribute this to the knowledge gained through practical work
and the proposed project-based learning (For more informa-
tion on the course structure and link to the Moodle page, see
the instructor notes available at https://github.com/IB-
ULFRI/instructor-notes.).

Each assignment consists of about four mandatory
problems that follow our main investigative storyline of the
SARS-CoV-2 virus, as well as optional problems that allow
students to earn bonus points. These optional problems are
meant to complement the mandatory problems and typically
require additional analysis that serves as a point of interest or
an alternative use or extension of a particular algorithm. For
each assignment, students are required to submit a Python
script containing their implementations of the required algo-
rithms and a Jupyter Notebook report describing the steps,
results, and interpretation of their analysis. Assignments are
submitted through GitHub Classroom, an online classroom
platform that allows instructors to create and manage assign-
ments, distribute them to students, and receive submissions
through GitHub. In their solutions, students were encouraged
to use standard Python libraries for data access, analysis, and
visualization, including biopython, pandas, matplot-
lib, and seaborn.

Project-based learning and coding to solve problems in bio-
informatics primarily address the upper levels of Bloom’s
Taxonomy (Bloom et al. 1956)—a framework for categoriz-
ing learning outcomes into levels of cognitive complexity—
which involve higher-order thinking skills such as applying,
analyzing, evaluating, and creating. Implementing algorithms
in Python and applying them to practical problems of SARS-
CoV-2 virus analysis facilitates the application of theoretical
knowledge to real-world scenarios. As students immerse

themselves in the discovery process, they are likely to evaluate
the effectiveness of different algorithms and methods in
uncovering information about the virus. Through the assign-
ments, students synthesize different pieces of information and
techniques to uncover known scientific facts about the virus.
This creative process of simulating real scientific discovery
requires a higher level of cognitive processing because stu-
dents are not just learning existing knowledge, they are dis-
covering it from the data.

3 Course assignments
The proposed course consists of five assignments that gradu-
ally introduce both molecular biology and fundamental con-
cepts of bioinformatics to students of computer science.

3.1 Assignment 1: a first look at the genome
In the first assignment, students are familiarized with the ba-
sic concepts of genomics, including the roles of DNA and
RNA, the differences between nucleic acids and amino acids,
and the conceptual and functional grouping of some regions
of DNA into genes. The problem set guides students through
the process of finding and accessing genomic data from pub-
licly available repositories, locating and filtering open reading
frames (ORFs), and applying a naive classification scheme to
identify ORFs corresponding to putative transmem-
brane proteins.

3.1.1 Learning outcomes
In this assignment, students will:

� Acquaint with the biopython library to retrieve genomic
records from the NCBI database and manipulate these
records for further analysis.

Introduction to Molecular Biology

The First Look at the Genome

Genes and Open Reading Frames

Sequence Alignment

Inference of Phylogenetic Trees

Machine Learning for DNA Classification

Estimation of Genetic Distances

Genome Assembly

Gene Expression and Profiling

Gene Set Enrichment Analysis

Christmas Break

Invited Lecture

Inference of Gene Networks

Remembrance Day Break

Assignment-Related Lectures Other Lectures Holidays

Course Schedule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Week

Assignment 1
• ORF Identification
• Precision/Recall/F1 Curve
• Protein Translation

Assignment 2
• Global Alignment
• Local Alignment

Assignment 3
• Phylogenetic Analysis
• Neighbor-Joining Trees
• Recombination

Assignment 4
• Variant Classification
• Genetic Distance
• Speed of Mutation

Assignment 5
• Read Mapping
• Gene Expression Analysis
• GO Term Enrichment Analysis

Figure 1. The course schedule for the winter semester of 2023–24
iteration of the Introduction to Bioinformatics course. Each numbered dot
represents 1 week, with its associated lecture on the left. Lectures
crucial to the completion of the corresponding homework assignment are
indicated with red-colored dots and associated with the assignment with
a blue outline.

Teaching bioinformatics through the analysis of SARS-CoV-2 i21

https://github.com/IB-ULFRI/instructor-notes
https://github.com/IB-ULFRI/instructor-notes

� Implement an ORF finding algorithm and use it on a
obtained nucleotide sequence.

� Examine the results to distinguish likely candidate ORFs
from noise.

3.1.2 Assignment tasks
In this assignment, we will be working with two different
organisms: SARS-CoV-2 and Escherichia coli (E. coli). Our
primary goal will be to develop an algorithm for identifying
ORFs. However, using our developed algorithm without
proper validation cannot give us confidence in our results.
Therefore, we will first validate our approach to the well-
annotated E. coli genome. Once we have confirmed that our
procedure produces reasonable results, we can then apply it
to the SARS-CoV-2 genome.

Before tackling the assignment, students must first install
the biopython library and use it to download the NCBI
E. coli record. The SARS-CoV-2 genome is provided in a sep-
arate FASTA file. The assignment comprises four problems:

1) Implement an ORF finding algorithm and apply it to the
E. coli genome.

2) Using a permutation test, determine a filtering threshold
to remove short ORFs likely appearing at random.
Evaluate the reasonableness of this threshold by examin-
ing its precision, recall, and F1 metrics. We can compute
these metrics by obtaining the ground truth genes from
the NCBI E. coli record.

3) Having verified that the permutation test produces a rea-
sonable threshold, apply the same treatment to the
SARS-CoV-2 genome. Find all ORFs on the SARS-CoV-
2 genome, and, using a permutation test, filter them
down to only the most likely gene candidates.

4) Having identified the ORFs that likely correspond to
true genes, we next implement a simple classification
scheme to identify putative transmembrane proteins.
Transmembrane proteins typically comprise a larger
proportion of hydrophobic amino acids than non-
transmembrane proteins. Therefore, by comparing the
average hydrophobicity of the proteins corresponding to
the ORF candidates against a background distribution
of proteins from a known, annotated organism, we can
infer likely transmembrane proteins. Translate each
ORF identified in the third problem into its amino acid
sequence and compute its average hydrophobicity.
Using the hydrophobicity values of true proteins from E.
coli, determine which of these SARS-CoV-2ORFs is
most likely to correspond to transmembrane proteins.

3.1.3 Bonus problems
At this stage, students can also create a visualization of the
identified ORFs, showing their positions on the viral genome
and marking which ORFs are on the positive and negative
strands. They can determine whether SARS-CoV-2 is a large
virus or not by downloading the metadata of all viruses in the
NCBI virus database and comparing the lengths of the viral
genomes. Alternatively, they can consider only RNA viruses.

3.1.4 Summary
The first assignment guides students through the process of
downloading, reading, and parsing genetic records. By imple-
menting a simple ORF finding algorithm, students learn to
work with genetic sequences and learn the importance of

validating their algorithms against previously published find-
ings. The aim of this assignment is to identify potential genes
in the SARS-CoV-2 genome and hint that we can computa-
tionally determine their function, providing additional moti-
vation for the second assignment.

A particularly interesting result from this assignment comes
from the bonus problem in which students construct a visual-
ization of their identified ORFs on the SARS-CoV-2genome
shown in Fig. 2. From this plot, students observe almost no
ORFs on the negative strand, a consequence of the single-
stranded nature of the SARS-CoV-2virus.

3.2 Assignment 2: decoding gene function
In the first assignment, we identified ORFs corresponding to
potential gene candidates in the SARS-CoV-2 virus.
However, the nucleotide sequences alone provided little in-
sight into the function of the potential downstream proteins.
In this assignment, we develop a BLAST-like tool for the
functional annotation of genes based on homologous genes.
Using the Needleman–Wunsch algorithm for global align-
ment (Needleman and Wunsch 1970), we first identify closely
related viruses and compile a database of annotated reference
gene sequences. Then, using the Smith–Waterman algorithm
for local alignment (Smith and Waterman 1981), we examine
a selection of promising ORFs identified in the first assign-
ment, verifying their correspondence to true genes and deter-
mining their protein function.

3.2.1 Learning outcomes
In this assignment, students will:

� Examine the concept of homologous genes to infer gene
function in related organisms.

� Implement and apply the Needleman–Wunsch algorithm
for global alignment.

� Implement and apply the Smith–Waterman algorithm for
local alignment.

3.2.2 Assignment tasks
We provide students with 20 NCBI accession codes of related
viruses from the Coronaviridae family, of which SARS-CoV-
2 is a prominent member. We will first identify the most
closely related viruses, and then use their annotated genes to
determine the gene functions of a handful of ORFs we found
in the previous homework assignment. The assignment com-
prises four problems:

1) Implement the Needleman–Wunsch algorithm for
global alignment.

2) From the 20 provided sequences of related viruses, use
your implementation of global alignment to find the
three most closely related to SARS-CoV-2.

3) Implement the Smith–Waterman algorithm for lo-
cal alignment.

4) In the first homework assignment, we identified several
ORFs from SARS-CoV-2, which likely correspond to
true genes. We will attempt to determine the function of
five of these ORFs using local sequence alignment. Using
the three most closely related viruses you identified in
the second problem, compile a database of the true, ref-
erence genes along with their name and function from
their annotated NCBI record. Use your implementation
of local alignment to find the best matching reference

i22 Poli�car et al.

gene in your database for each of the five ORFs from
SARS-CoV-2. Determine the quality of the match and
report your predicted protein function.

3.2.3 Bonus problems
Our analysis reveals that the SARS-CoV-2 virus is closely re-
lated to the SARS-CoV virus, which caused the SARS out-
break between 2002 and 2004. In 2019, Xia et al. (2019)
proposed a broad-spectrum human coronavirus inhibitory
drug for the treatment of SARS. The drug works by binding
to a specific motif of consecutive amino acid types in the
spike protein of the coronaviruses, preventing binding and
entry to human cells, and thereby blocking infection. Since
the SARS-CoV-2 virus is closely related to SARS-CoV, could
the same treatment work on SARS-CoV-2? Use local align-
ment and adapt the scoring matrix to identify potential medi-
cation target binding sites in the SARS-CoV-2 spike protein.

3.2.4 Summary
In this assignment, students implement two sequence align-
ment algorithms, learn to identify related organisms, and in-
fer protein functions from similar sequences of related
organisms. We provide students with five ORFs identified in
the first exercise, one of which does not correspond to an ac-
tual gene. By planting a false ORF, students need to reason
about the results of the alignment procedures and identify the
false ORF. The bonus problem shows an alternate use of the
alignment algorithms and demonstrates that, by designing
clever scoring functions, alignment algorithms can also be
used for more complex tasks.

3.3 Assignment 3: mapping the family tree
In the second assignment, we used global alignment to deter-
mine the similarities between viruses to facilitate the func-
tional annotation of putative genes. In this assignment, we
will use these alignments and the neighbor-joining algorithm
(Saitou and Nei 1987) to construct a phylogenetic tree of the
Coronaviridae family of viruses. Using this phylogenetic tree,
students explore and hypothesize about the evolutionary
path of SARS-CoV-2. We also introduce the notion of

recombination and investigate the role it may have played in
the evolution of SARS-CoV-2.

3.3.1 Learning outcomes
In this assignment, students will:

� Implement the neighbor-joining algorithm.
� Implement a drawing function for plotting phyloge-

netic trees.
� Construct a phylogeny for provided viral sequences and

evaluate the importance of selecting an appropri-
ate outgroup.

� Investigate potential recombination events.

3.3.2 Assignment tasks
In this exercise, we provide students with 30 coronaviruses
and one other viral sequence. The nucleotide sequences are
pre-aligned using multiple-sequence alignment. The assign-
ment comprises four problems:

1) Implement the neighbor-joining algorithm (Saitou and
Nei 1987).

2) Implement a drawing function for plotting the resulting
phylogenetic trees.

3) Using your implemented algorithms, construct and plot
the phylogenetic tree of the 31 viral sequences. First,
align the sequences using global alignment. Use the
Hamming distance to calculate pairwise distances be-
tween the aligned sequences. Infer a phylogenetic tree
and reroot it using the provided rerooting algorithm, us-
ing the unrelated Breda virus as the outgroup. The
Coronaviridae family comprises four subgroups, which
are contained within the NCBI records. Color each viral
sequence according to its membership in each of these
four subgroups.

4) Following the study from Lam et al. (2020), investigate
the potential recombination event between the bat and
pangolin viruses. Using their sliding window approach,

0 5,000 10,000 15,000 20,000 25,000 30,000

SARS-Cov-2 ssRNA(+) genome [nt]

Spike protein (S)

Membrane protein (M)
Nucleocapsid protein (N)

Envelope protein (E)

5’ 3’

Candidate ORFs of SARS-CoV-2 ssRNA(+) virus

Figure 2. The ORFs identified by our naive ORF finding approach in the SARS-CoV-2 genome. Note that using our naive approach, we are able to recover
only 10/12 functional ORFs due to frame-shift on ORF1ab (Naqvi et al. 2020). We highlight four of the identified ORFs corresponding to structural SARS-
CoV-2 proteins.

Teaching bioinformatics through the analysis of SARS-CoV-2 i23

determine whether particular regions of SARS-CoV-2
are more similar to the pangolin virus than the bat virus.

3.3.3 Bonus problems
When constructing our phylogenetic trees, we inferred the
single, most likely tree for our data. However, we do not
know how robust this tree is and whether certain tree struc-
tures arise due to chance or reflect some true, underlying phe-
nomenon. To estimate our uncertainty, we perform
bootstrapping to assess the reliability of our trees. Implement
phylogenetic tree bootstrapping and rerun your analysis.
When drawing the resulting phylogenetic trees, we imple-
mented standard, horizontal dendrograms. However, den-
drograms come in all different shapes and sizes. Implement
tree drawing using radial dendrograms as described in
Bachmaier et al. (2005).

3.3.4 Summary
In this assignment, students use the neighbor-joining algo-
rithm to construct a phylogenetic tree of the Coronaviridae
family of viruses. Although the procedure produces an
unrooted tree, we root the final tree to facilitate tree drawing.
To compute distances between viral sequences, students use
their implementation of global alignment from the previous
assignment. Figure 3 shows the resulting dendrogram of this
assignment. Upon closer inspection, students can observe
that the dendrogram branches closely correspond to the four
major subgroups of the Coronaviridae family.

3.4 Assignment 4: tracking viral evolution
In the third assignment, we considered viral evolution at a
macro-level, mapping the evolutionary tree of the

Coronaviridae family. In this assignment, we narrow our fo-
cus and investigate mutations within the SARS-CoV-2 virus
species itself. Due to the unprecedented global response to
the SARS-CoV-2 pandemic, timestamped SARS-CoV-2
sequences are abundant, allowing us to track the virus’s
mutations through time in remarkable detail. The goal of the
students in this assignment is 3-fold. First, to estimate the
speed of mutation of the SARS-CoV-2 virus and compare it
to the speed of mutation in other viruses. Secondly, learn
about the differences between synonymous and non-
synonymous mutations and their implications. Lastly, stu-
dents must categorize different SARS-CoV-2 sequences into
distinct viral variants based on each viral sequence’s observed
single nucleotide variants. This classification allows us to an-
alyze and plot the prevalence of these variants through time,
offering a dynamic view of the virus’s evolution.

3.4.1 Learning outcomes
In this assignment, students will:

� Calculate the speed of mutation and evaluate the impact
of correction procedures like the Jukes–Cantor and the
Kimura two-parameter correction models on mutation
rate estimates.

� Differentiate between synonymous and non-synonymous
mutations to assess their implications on genetic variation
and evolutionary pressure.

� Classify viral sequences into variants.

3.4.2 Assignment tasks
We provide students with 212 timestamped SARS-CoV-2 nu-
cleotide and protein sequences gathered in Slovenia from the
period between 2019 and 2022. Each sequence is pre-aligned
to the NCBI reference sequence from 2019. Similarly, we pro-
vide pre-aligned nucleotide sequences for the unrelated Ebola
and Zika viruses. Additionally, we provide variant classifica-
tions for a handful of Alpha and Delta variant SARS-CoV-2
sequences. The assignment comprises four problems:

1) Based on the NCBI reference sequence, calculate the
number of mutations for each of the given SARS-CoV-
2sequences and apply the Jukes–Cantor correction
(Jukes and Cantor 1969). Plot the estimated number of
mutations as a function of time. Determine the slope us-
ing linear regression and discuss how this relates to the
speed of mutation.

2) Determine whether SARS-CoV-2 mutates quickly or
slowly. To answer this question, repeat the same proce-
dure as above on the Ebola and Zika viral sequences
and compare the speed of mutation between the
three viruses.

3) As the virus evolves, it accumulates mutations, and var-
iants emerge. Compare the mutations on the sequences
of Alpha and Delta viral variants. Plot the nucleotide
mutation rates for four genes and identify the most com-
mon mutations. Determine if any mutations are shared
between the two variants and look for evidence showing
that the Delta variant evolved from the Alpha variant.

4) Determine which variant each of the 211 SARS-CoV-2
sequences belongs to. Develop a classification scheme to
categorize viral protein sequences into variants based on
the presence or absence of particular mutations (The
mutations and their associated variants are collected

0 5,000 10,000 15,000 20,000 25,000

genetic distance calculated with
neighbour joining algorithm [nt]

 Breda
 SW1

 MunCoV_HKU13
 BuCoV_HKU11
 ThCoV_HKU12

 FIPV
 PRCV
 TGEV
 Rh-BatCoV_HKU2

 HCoV-NL63
 HCoV-229E

 Sc-BatCoV_512
 PEDV
 Mi-BatCoV_HKU8
 Mi-BatCoV_1A
 HCoV-HKU1

 MHV
 ECoV

 PHEV
 BCoV
 HCoV-OC43

 TCoV
 IBV

 Pi-BatCoV_HKU5
 Ty-BatCoV_HKU4
 Ro-BatCoV_HKU9
 SARSr-CoV
 SARSr-Rh-BatCoV_HKU3
 PCoV
 BatCoV
 Human-SARS-CoV-2

Phylogenetic tree of the Coronaviridae family

Alphacoronavirus
Betacoronavirus
Gammacoronavirus
Deltacoronavirus
Non-Coronavirus

Figure 3. A phylogenetic tree of the Coronaviridae family of viruses
obtained using the neighbor-joining algorithm. Leaves are colored
according to their subgroup membership.

i24 Poli�car et al.

from https://covariants.org). Then, plot the timeline of
the emergence and prevalence of different SARS-CoV-2
variants in Slovenia throughout the COVID-
19 pandemic.

3.4.3 Bonus problems
Students may additionally implement the Kimura two-
parameter correction model (Kimura 1980) and observe the
changes in the analysis results if we instead use this model for
genetic distance correction.

3.4.4 Summary
In this assignment, students learn about viral mutation and
the emergence of variants. They learn to estimate the speed of
mutation and to compare these speeds among viruses. The
difference between the speed of mutation at the nucleotide
level and the genome level is of particular importance. The
SARS-CoV-2 genome spans 30kbp and is longer than the
other two Ebola and Zika virus genomes spanning 18 and 10
kbp, respectively. Comparing mutation rates at the genome
level suggests that SARS-CoV-2 mutates faster than Ebola
and Zika. However, a per-nucleotide comparison reveals
that, in fact, the speed at which SARS-CoV-2 mutates is com-
parable to Ebola and is actually slower than Zika. Students
also learn to categorize viral sequences into variants as de-
fined by the broader scientific community. Students then con-
struct a timeline of the prevalence of different variants in
Slovenia, which clearly shows the emergence and decline of
different variants (see Fig. 4).

3.5 Assignment 5: the immune response
So far, we have primarily concerned ourselves with the intrin-
sic aspects of the SARS-CoV-2 virus itself, including its struc-
ture, origins, and evolutionary path. However, it is important
to recognize that viruses cannot function autonomously and
require host cells to replicate. Therefore, any investigation of
the SARS-CoV-2 virus is incomplete without also considering
its interaction and influence on its host cells.

To investigate the effects of SARS-CoV-2 on the human
body, we now turn our attention to human gene expression
data. By examining the differences in the gene expression be-
tween healthy and infected human cells, we can determine
which cellular processes are disrupted by the virus and reason
about its implications for the host cells. The problem set
guides students through a standard single-cell RNA-seq
analysis involving the construction of count matrices, data
normalization, differential expression analysis, and gene en-
richment analysis. This approach provides a more compre-
hensive picture of the inner workings of the SARS-CoV-2

virus and reveals its broader biological impact on the hu-
man body.

3.5.1 Learning outcomes
In this assignment, students will:

� Implement the construction of gene expression matrices.
� Execute a standard gene expression data analysis pipeline

by performing dimensionality reduction, conducting clus-
tering, and visualizing data patterns.

� Appraise the results by identifying differential expres-
sions, and analyzing enriched Gene Ontology (GO) terms
to elucidate biological significance.

3.5.2 Assignment tasks
This assignment comprises two sections. In the first section,
students learn to construct gene expression count matrices
from synthetic reads using the algorithms developed in
Assignment 2. In the second section, we conduct a full-
fledged single-cell RNA-seq analysis on real-world data,
characterizing the effects of SARS-CoV-2 infection on the hu-
man body.

Section 1. We provide students with 605 noisy, synthetic
short reads corresponding to different chunks of the SARS-
CoV-2 genome in FASTQ format and gene annotations for
the SARS-CoV-2 genome in GFF format. The count matrix
construction then comprises four steps:

1) From each read, extract the barcode and
mRNA fragment.

2) Using local alignment, align each mRNA fragment to
the SARS-CoV-2 genome.

3) If the fragment aligns to a region corresponding to a
gene, update the matrix entry corresponding to the gene
and associated cell barcode.

4) Apply basic matrix filtering based on the number of
detected mRNA fragments for each cell and gene.

Section 2. In this section, we conduct a typical single-cell
RNA-seq analysis using real-world data characterizing the
human immune response to SARS-CoV-2 infection (Wilk
et al. 2020). The data contain single cells obtained from
healthy and infected donors. Additionally, we provide a sub-
set of GO terms along with their associated genes.

The analysis then follows four steps:

1) Report the number of genes detected in each cell as well
as the number of cells each gene was detected in. Based
on their distributions, determine filtering thresholds for
cells and genes.

2) Perform counts-per-million library-size normalization to
account for sequencing depth and log normalization for
variance stabilization.

3) Identify genes that are differentially expressed between
healthy and infected donors. Perform comparisons be-
tween genes using the t-test followed by the Benjamini–
Hochberg false discovery rate (FDR) correction to ac-
count for multiple comparisons. Compute gene log-fold
changes and plot your results in a volcano plot.

4) Having obtained a list of differentially expressed genes,
we next perform gene enrichment analysis, which may
help us make sense of the genetic programs activated by
the infection. Based on the list of differentially expressed

Mar
2020

0%

100%

50%

Jun
2020

Sep
2020

Dec
2020

Mar
2021

Jun
2021

Sep
2021

Dec
2021

Mar
2022

Jun
2022

P
er

ce
nt

ag
e

of
 v

ar
ia

nt
pr

ev
al

en
ce

 in
 S

lo
ve

ni
a

No mutations

Unknown

20A/S:439K

20I (Alpha, V1) 21A (Delta)

21K (Omicron)

21L (Omicron)

SARS-CoV-2 variants

Figure 4. Emergence of variants in Slovenia between March 2020 and
June 2022. Variants were sampled from the total sequences and
smoothed with a moving average over 3 months.

Teaching bioinformatics through the analysis of SARS-CoV-2 i25

https://covariants.org

genes, use the hypergeometric test to identify enriched
GO terms. Inspect the identified GO terms and deter-
mine their relevance to the SARS-CoV-2 infection.

3.5.3 Bonus problems
The differential expression analysis we performed above is
one of the most common types of tasks in gene expression
data analysis. However, gene expression data can be used in
a myriad of other ways. For instance, one common task is the
characterization of different cell types. These kinds of analy-
ses typically involve dimensionality reduction, clustering, and
visualization. In this exercise, we will use the scanpy Python
library (Wolf et al. 2018). This exercise walks through these
four different steps:

1) Run principal component analysis (Jolliffe 2002) on the
gene expression matrix and extract the top 50 principal
components. Visualize the first two components in a
scatter plot.

2) Identify characteristic subpopulations of cells using a
graph-based clustering algorithm of your choice.

3) Use t-distributed stochastic neighbor embedding (t-SNE)
(Van der Maaten and Hinton 2008) or Uniform
Manifold Approximation and Projection (UMAP)
(McInnes et al. 2018) to construct a visualization of the
data. Color the data points based on their clus-
ter membership.

4) As before, perform differential expression analysis,
this time finding differences between the different
clusters of cells. Create a scatter plot of the t-SNE/
UMAP embedding, this time coloring points according
to the expression levels of the most highly differentially
expressed genes.

3.5.4 Summary
In the final exercise, we examine the impact of SARS-CoV-2
on the human body through the lens of gene expression data.
First, students learn to construct gene expression matrices
from synthetic reads, giving them a thorough understanding
of this data modality. We then move on to a realistic exam-
ple, where students follow the typical steps in a single-cell
RNA-seq analysis. Through their analysis, students observe
that infected individuals have a heightened immune response
compared to their healthy counterparts. By experimenting
with the protocol parameters, students discover that minor
changes in the analysis parameters can result in different
analysis results and findings. This underscores the impor-
tance of critically evaluating computational findings and the
need for experimental validation.

4 Student evaluation
To evaluate the success of our course, we asked students to
complete short, anonymous surveys after completing each of
the five homework assignments. We report student participa-
tion rates in Table 1. We asked about each assignment’s in-
terestingness, difficulty, time required to complete, clarity of
instructions, and any suggestions for improvement for future
homework assignments. Students also rated the complete set
of assignments on these dimensions at the end of the course.

Figure 5 summarizes student feedback. For each of the
three reported plots, we use the Kruskal–Wallis test to deter-
mine if there are significant differences between the

independent groups, followed by Dunn’s post hoc test with
FDR correction for multiple comparisons to identify specific
pairs of groups with statistically significant differences in
their ratings. Below, we report only those differences
where p< 0:05.

Figure 5a shows that students overwhelmingly found the
assignments interesting. This confirms the many positive
comments we received in the unstructured part of the feed-
back surveys. Of the assignments, students found the last as-
signment the least interesting. These ratings are largely
consistent with the final rankings assigned to each assignment
at the end of the course, where students assigned higher rank-
ings to Assignments 4 and 3 with average final rankings of
3.8 and 3.5, respectively, and lower rankings to Assignments
1, 2, and 5 with average final rankings of 2.7, 2.7, and 2.3,
respectively. Interestingly, students rated Assignments 1 and
2 highly upon completion but ranked them lower than
Assignments 3 and 4 at the end of the course.

Figure 5b shows that, on average, students found the prob-
lems somewhat challenging. The difficulty of the problems
may correlate with the algorithmic complexity of the tasks.
For example, students rated Assignment 3 as the most diffi-
cult. This assignment requires students to implement the
neighbor-joining algorithm, which is perhaps the most algo-
rithmically challenging of the programming tasks. Several
students reported struggling with its implementation in the
unstructured feedback. Conversely, the fourth assignment,
which requires very little algorithmic programming, was
rated as easier than Assignments 1 and 3. These ratings are
largely consistent with the final rankings assigned to each as-
signment at the end of the course, where students ranked
Assignment 4 as the easiest with an average final ranking 2.4,
Assignments 1, 2, and 5 as similarly difficult with average fi-
nal rankings 3, 2.8, and 2.9, respectively, and Assignment 3
as the most difficult of all with an average final ranking
of 3.9.

Our Introduction to Bioinformatics course is allocated six
European Credit Transfer and Accumulation System credits,
which corresponds to 150 working hours per semester.
Divided among the five assignments with roughly 6 hours of
accompanying lectures, each assignment should take about
24 working hours to complete. Figure 5c shows that most
students completed the assignments within two full days, in-
dicating that the assignments are roughly in line with this tar-
get. Assignment 1 took longer than tasks 2 and 3. Oddly,
Assignment 5 typically took less time than the other assign-
ments. This may be explained by our particular course logis-
tics, where students only need to accumulate enough points
to pass the course and do not need to complete all the assign-
ments. Going into the final assignment, many students had
likely already gathered sufficient points from previous assign-
ments and invested less time.

We note here that the clarity of the instructions undoubt-
edly also affects the interestingness, difficulty, and time

Table 1. We collected anonymous feedback from the 110 enrolled
students attending the 2023/24 iteration of the course.a

HW1 HW2 HW3 HW4 HW5 Final

67 47 45 40 34 34

a We here report the number of students who provided feedback for
surveys corresponding to each of the five homework assignments, as well as
the final course feedback survey.

i26 Poli�car et al.

required to complete the tasks. For example, instruction clar-
ity was positively correlated with interestingness (Spearman
correlation ρ ¼ 0:34) and negatively correlated with time to
complete (ρ ¼ 0:15). Interestingly, although the instruction
clarity also negatively affected task difficulty (ρ ¼ 0:12), its
P-value of 0.06 did not meet our significance threshold.
These results suggest that although the clarity of instructions
is essential for student engagement, it does not appear to
have a significant effect on assignment difficulty.

In the unstructured section of the surveys, students shared
overwhelmingly positive feedback, highlighting how much

they enjoyed the structure and real-world nature of the
assignments. They praised the engaging nature of the story-
line, in which each assignment connects to the previous
ones. Two students wrote: “I liked the guided building of
the homework and the story that came with each task,” and
“It feels like it’s actual work that could be done by scientists
working on the field.” Some students commented on the ap-
plied nature of the assignments: “The guided building of the
task and doing something that produced real-world results,”
“The story behind what we were doing, didn’t feel like
pointless algorithms,” and “Comparing real life examples

Not at all interesting Very interesting

100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 4.18

μ = 4.09

μ = 4.27

μ = 4.17

μ = 3.53

How interesting did you find the assignment?

3 hours or lessmore than 2 days
2 days 6 hours to 1 day 3 - 6 hours

100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 2.13

μ = 2.40

μ = 2.00

μ = 2.70

μ = 2.94

How long did you need to complete the assignment?

100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 2.37

μ = 2.60

μ = 1.89

μ = 2.90

μ = 2.56

How difficult did you find the assignment?

Very difficult Not at all difficult

(a)

(b)

(c)

Figure 5. Student feedback. We plot the distributions of student responses related to assignment interestingness, difficulty, and time spent to complete
the assignment. Each distribution is centered to the neutral response. To facilitate comparisons between the different assignments, we mark the
distribution means, which are obtained by assigning 1 to the red option and 5 to the green option, and the intermediate options accordingly.

Teaching bioinformatics through the analysis of SARS-CoV-2 i27

together to give a feeling of actually working on some-
thing ‘real’.”

Students’ criticisms centered on the clarity of the assign-
ment instructions and the lack of unit tests for the program-
ming assignments. For example, “Maybe more examples/
tests for the functions we have to write. Some of the exercise
descriptions could have been clearer.” Since we have been
collecting student feedback for all four iterations of the
course and are constantly working to improve the assign-
ments, we find it encouraging that the number of students
who cited the instructions as a source of confusion decreases
year over year. While we were initially reluctant to provide
students with comprehensive unit tests to verify the correct-
ness of their algorithms, assuming that their absence would
encourage students to think about how to verify their imple-
mentations on their own, in practice, we now believe that
providing unit tests is an overall benefit to students. Moving
forward, we will likely provide accompanying unit tests in fu-
ture installments of the course, allowing students to verify
their implementations before moving on to the applica-
tion exercises.

5 Conclusion
Project-based learning can be a great joy for both teachers
and students. Here, we proposed a series of assignments in
which computer science students learn about molecular biol-
ogy through the implementation and application of bioinfor-
matics algorithms. The assignments were designed to lead
students through the discovery of the structure and function
of the SARS-CoV-2virus, where the teacher’s role was to in-
troduce the algorithms, while students used them to find
genes and their functions, reason about the origin of the vi-
rus, and think about the human immune response triggered
by the presence of the virus. The tasks were designed as
breadcrumbs that lead students through the story of SARS-
CoV-2, allowing them to piece together the intricate puzzle
of life’s mechanisms and apply their computational skills to
real-world biological challenges.

We, the authors, with much help from our students, have
spent over 3 years adapting and refining the assignments pro-
posed above. Every year, we collect student evaluations and
opinions on each of the five assignments. Based on this feed-
back, we have been able to improve both the assignments and
related lectures. According to the student evaluations, we
have done well: students find the assignments interesting, en-
gaging, and—to the delight of us instructors—sufficiently
challenging. However, one of our greatest successes remained
almost hidden: through project-based training and data-
driven problem-solving, students learn about the world, the
importance of data, apply critical thinking, and behave like
true scientists. Next to training bioinformaticians, this is our
most important achievement.

Author contributions
P.G.P., T.C., and B.Z. designed the initial versions of the
course and homework assignments. Over the four iterations
of the course, P.G.P. and M.�S. refined the content and
instructions of homework assignments. P.G.P., M.�S., and B.
Z. wrote and reviewed the manuscript. T.C. reviewed
the manuscript.

Conflict of interest
None declared.

Funding
This work was supported by the grants from Slovenian Research
and Innovation Agency grants P2-0209 and L2-3170.

Data availability
We provide free and open access to all materials reported in
the manuscript, including instructor notes, assignment
instructions, and related data. These can all be found on
GitHub at https://github.com/IB-ULFRI. For each assign-
ment, we provide template repositories, which can be used in
conjunction with the GitHub Classroom platform for course
implementation. We can share assignment solutions privately
with colleague instructors upon request.

References
Bachmaier C, Brandes U, Schlieper B. Drawing phylogenetic trees. In

Deng X and Du DZ (eds.), Algorithms and Computation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, 1110–21.

Bloom BS, Engelhart MD, Furst EJ et al. Taxonomy of Educational
Objectives: The Classification of Educational Goals, Volume
Handbook I: Cognitive Domain. Philadelphia, Pennsylvania,
United States: David McKay Company. 1956.

Blumenfeld PC, Soloway E, Marx RW et al. Motivating project-based
learning: sustaining the doing, supporting the learning. Educational
Psychologist 1991;26:369–98. https://doi.org/10.1080/00461520.
1991.9653139.

Carey MA, Papin JA. Ten simple rules for biologists learning to pro-
gram. PLoS Comput Biol 2018;14:e1005871. https://doi.org/10.
1371/journal.pcbi.1005871.

Emery LR, Morgan SL. The application of project-based learning in
bioinformatics training. PLoS Comput Biol 2017;13:e1005620.
https://doi.org/10.1371/journal.pcbi.1005620.

Jolliffe IT. Principal Component Analysis. New York, New York,
United States: Springer, 2002. https://doi.org/10.1007/b98835.

Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro, H.
N., (ed) Mammalian Protein Metabolism, Vol. 3, pp. 21–132.
Cambridge, Massachusetts, United States: Academic Press, 1969.

Kimura M. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J
Mol Evol 1980;16:111–20.

Lam TTY, Jia N, Zhang YW et al. Identifying SARS-CoV-2-related
coronaviruses in malayan pangolins. Nature 2020;583:282–5.
https://doi.org/10.1038/s41586-020-2169-0.

LeBlanc MD, Dyer BD. Bioinformatics and computing curricula 2001:
why computer science is well positioned in a post-genomic world.
SIGCSE Bull 2004;36:64–8. https://doi.org/10.1145/
1041624.1041659.

Madlung A. Assessing an effective undergraduate module teaching ap-
plied bioinformatics to biology students. PLoS Comput Biol 2018;
14:e1005872. https://doi.org/10.1371/journal.pcbi.1005872.

Mangul S, Martin LS, Hoffmann A et al. Addressing the digital divide
in contemporary biology: lessons from teaching unix. Trends
Biotechnol 2017;35:901–3. https://doi.org/10.1016/j.tibtech.2017.
06.007.

McInnes L, Healy J, Melville J. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. arXiv pre-
print arXiv:1802.03426, 2018.

Naqvi AAT, Fatima K, Mohammad T et al. Insights into sars-cov-2 ge-
nome, structure, evolution, pathogenesis and therapies: structural
genomics approach. Biochim Biophys Acta Mol Basis Dis 2020;
1866:165878. https://doi.org/10.1016/j.bbadis.2020.165878.

i28 Poli�car et al.

https://github.com/IB-ULFRI
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1371/journal.pcbi.1005871
https://doi.org/10.1371/journal.pcbi.1005871
https://doi.org/10.1371/journal.pcbi.1005620
https://doi.org/10.1007/b98835
https://doi.org/10.1038/s41586-020-2169-0
https://doi.org/10.1145/1041624.1041659
https://doi.org/10.1145/1041624.1041659
https://doi.org/10.1371/journal.pcbi.1005872
https://doi.org/10.1016/j.tibtech.2017.06.007
https://doi.org/10.1016/j.tibtech.2017.06.007
https://doi.org/10.1016/j.bbadis.2020.165878

Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol
Biol 1970;48:443–53. https://doi.org/10.1016/0022-2836(70)
90057-4.

Oesper L, Vostinar A. Expanding undergraduate exposure to
computer science subfields: Resources and lessons from a hands-on
computational biology workshop. In: Proceedings of the 51st
ACM Technical Symposium on Computer Science Education,
SIGCSE ’20, 1214–1219. New York, NY: Association for
Computing Machinery, 2020. https://doi.org/10.1145/
3328778.3366909

Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–25.
https://doi.org/10.1093/oxfordjournals.molbev.a040454.

Sauter T, Bintener T, Kishk A et al. Project-based learning course on
metabolic network modelling in computational systems biology.

PLoS Comput Biol 2022;18:e1009711. https://doi.org/10.1371/
journal.pcbi.1009711.

Smith TF, Waterman MS. Identification of common molecular subse-
quences. J Mol Biol 1981;147:195–7. https://doi.org/10.1016/0022-
2836(81)90087-5.

Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach
Learn Res 2008;9(11):2579–605.

Wilk AJ, Rustagi A, Zhao NQ et al. A single-cell atlas of the peripheral
immune response in patients with severe COVID-19. Nat Med
2020;26:1070–6. https://doi.org/10.1038/s41591-020-0944-y.

Wolf FA, Angerer P, Theis FJ. Scanpy: large-scale single-cell gene ex-
pression data analysis. Genome Biol 2018;19:15. https://doi.org/10.
1186/s13059-017-1382-0.

Xia S, Yan L, Xu W et al. A pan-coronavirus fusion inhibitor targeting
the hr1 domain of human coronavirus spike. Sci Adv 2019;5:
eaav4580. https://doi.org/10.1126/sciadv.aav4580.

The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 20–29
https://doi.org/10.1093/bioinformatics/btae208
ISMB 2024

Teaching bioinformatics through the analysis of SARS-CoV-2 i29

https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1145/3328778.3366909
https://doi.org/10.1145/3328778.3366909
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1371/journal.pcbi.1009711
https://doi.org/10.1371/journal.pcbi.1009711
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1126/sciadv.aav4580

	Active Content List
	1 Introduction
	2 Didactic approach
	3 Course assignments
	4 Student evaluation
	5 Conclusion
	Author contributions
	Conflict of interest
	Funding
	Data availability
	References

