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Abstract

The ability to accurately overlay one modality retinal image to another is critical in 

ophthalmology. Our previous framework achieved the state-of-the-art results for multimodal 

retinal image registration. However, it requires human-annotated labels due to the supervised 

approach of the previous work. In this paper, we propose a self-supervised multimodal retina 

registration method to alleviate the burdens of time and expense to prepare for training 

data, that is, aiming to automatically register multimodal retinal images without any human 

annotations. Specially, we focus on registering color fundus images with infrared reflectance and 

fluorescein angiography images, and compare registration results with several conventional and 

supervised and unsupervised deep learning methods. From the experimental results, the proposed 

self-supervised framework achieves a comparable accuracy comparing to the state-of-the-art 

supervised learning method in terms of registration accuracy and Dice coefficient.

Index Terms—

Rigid image registration; self-supervised learning; multimodal retinal image; convolutional neural 
network

I. Introduction

The retina is the only part of the central nervous system which can be imaged at high 

resolution in the living patient. It is accomplished by various retinal imaging modalities 

such as color fundus (CF), infrared reflectance (IR), fluorescein angiography (FA), and 

optical coherence tomography (OCT). Each imaging modality can provide different levels 

of pathology and visualize various retinal related diseases [1]. For this reason, the ability to 

accurately register other types of retinal imaging onto IR images and to align their vessels 

is critical to analyze multimodal information about the retina. For the multimodal retinal 
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image registration task, these images are aligned pixel-to-pixel to build a comprehensive 

visual representation of the eye, and help ophthalmologists confirming their diagnosis with 

multiple evidences. However, it is challenging to detect and match common patterns across 

modalities [2] because multimodal images not only significantly differ in appearance but 

also are captured in various image resolution and field of view from different instruments. 

Imaging quality and retinal diseases could also distort useful patterns for matching and 

increase the difficulty of registration. Therefore, it has been a widely studied topic to design 

a robust registration approach.

A coarse-to-fine pipeline is a common framework for registration [2], [3], [4] such that large 

mismatch is handled by the coarse (rigid) registration and small error is corrected by the 

fine (deformable) registration. Although the retina itself is close to a spherical shape, the 

imaging area can be approximated by a plane and registered with the affine, or perspective 

transformation in the globally coarse alignment step. The remaining error due to the planar 

approximation can be corrected by a deformable registration method in the locally fine 

alignment step. Between the two steps, the coarse alignment step is crucial for successful 

registration because most fine alignment methods cannot correct large errors of the coarse 

alignment step. Therefore, we focus on the coarse alignment step to increase registration 

accuracy using the self-supervised learning approach.

Most existing coarse alignment approaches fall into two categories: Area-based and 

Feature-based. The first category aims to minimize the mutual information [5] or the 

entropy correlation coefficient [6] between source and target images. Since the area-based 

methods are computationally intensive and the performance degrades when substantial 

texture difference exists, it is not suitable for the multimodal registration. The second 

category is based on detecting feature points and finding point correspondences among 

registration images. A feature-based pipeline often includes vessel extraction, feature 

detection and description, and outlier rejection [2], [7], [8], [9], [10], [11]. In our previous 

works [12], [13], we overcame existing limitations using the end-to-end deep learning 

framework. We proposed a content-adaptive multimodal retinal image registration method 

that focuses on the globally coarse alignment and includes three weakly supervised neural 

networks for vessel segmentation, feature detection and description, and outlier rejection. 

Our proposed framework of [13] achieved state-of-the-art performance on two different 

datasets. Although we minimized annotation efforts to prepare for training datasets using 

the unsupervised vessel segmentation and the pre-trained model of the feature detection, 

manual annotations were still required for keypoints between source and target images, 

ground-truth homography matrices, and inliers of the outlier rejection network. In this paper, 

we propose a self-supervised registration framework that does not require human-annotated 

labels to train the network. To the best of our knowledge, our proposed approach is the first 

self-supervised learning framework for multimodal retinal image registration.

II. Related Work

The pipeline structure of many conventional image registration includes vessel extraction 

(if any), feature detection and description, keypoint matching and outlier rejection. The 

structure is applicable for the deep learning methods and even for the self-supervised 
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learning approaches. However, various frameworks can be designed by choosing different 

combinations with emphasis on different aspects and target applications. In this paper, we 

focus on the rigid registration framework for the multimodal retinal image.

A. Vessel Segmentation

The retinal vessel is the most common landmark in the multimodal retinal images. 

Therefore, many approaches first extract vascular information from the source and target 

images and unify the extracted vessel as a common modality after enhancing edges and 

corners of the vessel. In conventional (not learning) literature, [11] used an edge map 

based on strip fitting, [2] proposed a mean phase image using the Reize transform and 

log-Gabor filters, and [14] explicitly generated the vessel segmentation to achieve more 

robust matching result. In deep learning literature, DRIU [15], DUNet [16], and IterNet 

[17] obtained accurate vessel segmentation maps with strong supervision. In other words, 

pixel-wise segmentation is used for ground truth such that they require intensive manual 

annotations which is time consuming and costly. Since there is no known dataset with 

ground-truth vessel segmentation for IR retinal images, it is very challenging to directly 

apply them to our dataset. In our previous works [12], [18], we applied the style transfer 

network to segment vessels of CF and IR images without any experts’ annotation and it was 

further improved by the unsupervised vessel segmentation network with a content-adaptive 

technique to maintain structure of input images [13]. In this paper, we apply our previous 

vessel segmentation networks to extract the vessels of source and target images and tightly 

couple them to the self-supervised learning framework as a common modality.

B. Feature Detection and Description

The retinal image registration task has adopt the feature detection and description methods 

of computer vision including Harris corner detection [19], histogram of oriented gradients 

(HOG) [20], scale invariant feature transformation (SIFT) [21], and speeded up robust 

features (SURF) [22]. Particularly, [8] proposed a partial intensity invariant feature 

descriptor (PIIFD) for the multimodal retinal images and [11] proposed a low-dimensional 

step pattern analysis algorithm (LoSPA) to improve the robustness for disease image pairs. 

In DeepSPA [23], a learning-based descriptor was proposed for retinal images, but it was 

trained based on the detected classes of hand-crafted step patterns using the conventional 

LoSPA descriptor [11], which could limit the performance of the network. The learning-

based approaches for natural images, including learned invariant feature transform (LIFT) 

[24] and universal correspondence network (UCN) [25], improved matching performance 

compared to the conventional methods [24], [25]. LIFT can generate descriptors after 

detecting keypoints and UCN generates only dense descriptors with each pixel considered 

as a keypoint. Since keypoints and the corresponding descriptors are not derived jointly, the 

accuracy of both methods are limited. The SuperPoint network [26] overcame the limitation 

with one encoder and two decoders to obtain keypoints and descriptors jointly in a single 

forward pass which outperformed LIFT and UCN. However, the original model was trained 

first on synthetic dataset and then refined with target images (natural images), which is 

not ideal for retinal images. Therefore, we refined the Superpoint network with manually 

annotated keypoints for our dataset in our supervised learning framework [12], [13]. In this 

paper, we apply a self-supervised learning method to eliminate any manual annotations.
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C. Outlier Rejection

Random Sample Consensus (RANSAC) [27] is the most commonly used method for outlier 

detection in computer vision. It applies an iterative approach that randomly selects matching 

points and votes for models based on the number of inliers. Another popular method, least 

median of squares (LMEDS) [28] computes the median of squared error in each iteration 

but it is only robust when the inlier ratio is more than 50%. Other iterative methods such 

as PROSAC [29], R-RANSAC [30], and USAC [31] achieved only marginal improvement 

over RANSAC with higher complexity. The iterative approaches such as GDB-ICP [7] 

and ED-DB-ICP [32] refining bootstrap regions were applied for the multimodal retina 

image registration. However, they are sensitive to scale. Adaptive outlier rejection based 

on asymmetric Gaussian mixture model (AGMM) [10] and root mean square error with 

feature distance (RMSEFD) [33] required longer runtime with intense tuning. To combine 

RANSAC and deep learning approaches, DSAC [34] introduced a differentiable RANSAC 

for end-to-end training with marginal improvement. By contrast, [35] trained a network to 

predict inliers and to reject outlier matchings such that the network outperformed RANSAC 

by a significant margin. Since the network was designed to estimate the essential matrix 

for camera pose estimation, some modifications were made to estimate the perspective 

transformation matrix for image registration [13].

D. Learning-Based Image Registration

Deep learning has been extensively used in the single-modality image registration task. 

However, most methods such as FlowNet [36], [37], PWC-Net [38], and the latest IRR-PWC 

[39] led to deformable registration for natural images. Since several large scale synthetic 

image datasets are publicly available, these models were first trained with the synthetic data 

and were fine-tuned to natural image pairs. For the medical image registration, AIRNet 

[40] and DLIR [4] was proposed for the medical images via the rigid or/and deformable 

registration. Voxelmorph [41], DIR-Net [42], and other approaches [43], [44], [45] were 

proposed to register single-modality images like magnetic resonance images (MRI) or 

computed tomography (CT) 3D volume and only for the deformable registration. This paper 

proposes to register 2D multimodal retina images with the rigid transformation. We compare 

the performance of DLIR [4] and Voxelmorph [41] in the experimental section IV.

The authors of [18], [46], [47] proposed the networks for multimodal retinal images but 

mostly focused on the deformable (local) registration step with assumption that input image 

pairs are coarsely aligned or their field of view are quite similar. If the deformable methods 

were directly applied to the original input images where large displacement exists or large 

difference of the field of view (45° color fundus, 30° IR as inputs in Fig 1), they would 

not be able to correctly align the images, which will be discussed in section IV. An end-

to-end network CNNGeo [3], which was proposed for semantic alignment of multimodal 

natural images, followed the coarse-to-fine procedure via estimating 6 parameters for 

affine transformation and 12 parameters for spline transformation. It could handle large 

displacements but the success criterion of [3] is not as strict as that of the retinal image 

registration [9], [10], [11], [13]. The experimental results of [13] showed that CNNGeo [3] 

is worse than IRR-PWC [39] for the multimodal retinal image registration. Similarly, the 

correlation based registration was applied to register between MRI and DXA [48].
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E. Self-Supervised Learning

Recently, self-supervised learning has gained popularity since it can significantly reduce or 

eliminate manually annotated labels. Self-supervised learning sets the learning objectives 

properly to obtain supervision from the training data itself. Thus, the learning method 

converts an unsupervised learning problem into a supervised one without annotated labels. 

Many self-supervised approaches were proposed and a large number of the pretext tasks 

have been studied for the self-supervised learning. The contrastive learning [49] sets a 

learning task to predict bottom blocks of the same column, which can enhance the main 

goal of representation learning. The rotation task [50] identifies a rotated degree among four 

degrees {0°, 90°, 180°, 270°} between input and output images. The jigsaw puzzle task [51] 

finds the relative position among patches. Self-supervised learning has also been applied 

for the retinal images such as denoising optical coherent tomography [52], diabetic retinal 

image classification [53], which utilizes the fuzzy clustering algorithm as self-supervision. 

We are not aware of any work on self-supervised learning for multimodal retinal image 

registration.

III. Proposed Method

In Fig. 1, we propose a framework for multimodal retinal image registration via the 

self-supervised learning approach. The proposed framework is composed of a vessel 

segmentation network, a feature detection and descriptor network, and an outlier rejection 

network, which are the same elements of our previous framework [12], [13]. However, the 

networks are trained fundamentally in different way: the previous works were trained in the 

supervised method whereas the proposed method is done in the self-supervised manner such 

that we do not directly provide any ground truth for the feature detection and descriptor, 

inlier matches, and the perspective transformation matrix. Even the vessel segmentation 

network was trained in the unsupervised manner in our previous works [12], [13]. In this 

work, we fix the model parameters of the vessel segmentation network with the pretrained 

models of [12], [13].

The proposed method also follows the feature based registration pipeline and entire steps 

of the pipeline are optimized in an end-to-end manner with self-supervision. Specifically, 

the proposed framework of Fig. 1 takes a source image Isrc and its target image Itgt and 

generates its vessel segmentations Ssrc and Stgt. Next, the self-supervised feature detection 

and descriptor network finds keypoint pairs KIsrc, KSsrc , KItgt, KStgt  between an image and 

its segmentation for both source and target images. These keypoints are classified into inlier 

pairs by the intra outlier rejection network and the intra transform matrix Mintra is derived for 

self-supervision. The learned keypoints of a common modality (here, vessel segmentation) 

KSsrc and KStgt are mapped implicitly to grid points. The inter outlier rejection network 

predicts inliers and they are used to estimate the inter transform matrix Minter to align a 

source image to a target image. To the best of our knowledge, the proposed method is the 

first fully self-supervised learning approach for the rigid registration of multimodal retinal 

images.
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A. Vessel Segmentation Network

The structure of the vessel segmentation network in Fig. 2 is exactly same as that of our 

previous work [13]. However, we briefly review the vessel segmentation network to show 

the complete pipeline steps of our proposed framework. The input image is RGB CF for 

source or grayscale IR for target where the single channel IR image is converted to three 

channels with repetition. The output of a segmentation network is a single-channel grayscale 

image indicating vesselness at every pixel position. The source and target segmentation 

networks have its own encoder but share the same decoder for segmentation output.

We apply two types of the vessel segmentation network of [12] and [13] to evaluate 

the performance variations. Both networks were trained in an unsupervised or weakly 

supervised manner with a style loss to eliminate the dependency on manually labeled vessel 

segmentation as a ground truth. In [12], we proposed the CNN-based UNet for the vessel 

segmentation. The vessel segmentation network was improved using the pixel-adaptive 

convolution (PAC) [54] in order to enhance the robustness when aligning retinal images with 

various quality [13]. CNN benefits from the weight-sharing nature whereas it is also content 

agnostic in the sense that the same set of kernel is applied to different image contents 

and pixel locations. On the contrary, PAC [54] weighs the original 2D convolution kernel 

according to the feature guidance at different locations such that the network can adapt to 

different content. The mean phase image ϕ ℐ  of Fig. 2, which is a guidance image, is 

obtained by taking the average of phase images at multiple scales,

ϕ ℐ = 1
N ∑

i = 1

N
ϕσi ℐ .

(1)

The phase of image ℐ at scale σ is first computed by

ϕσ ℐ = arctan Gσ fR ℐ
Gσ fe ℐ

(2)

where fR ℐ  is the odd component of ℐ extracted by the Reize transform [55], fe ℐ  is the 

even component [56], and Gσ() represents the log-Gabor filter at scale σ [57]. To train the 

segmentation network in an unsupervised fashion, the style transfer technique was adopted 

[18]. Using style transfer, the network only requires one manually labeled segmentation map 

from any dataset to serve as a style reference. In this way, the network can be trained without 

any pixel-wise segmentation for all images in the dataset, which would require extensive 

manual annotation. Furthermore, since expert annotated vessel segmentation is not publicly 

available for IR dataset, the unsupervised vessels segmentation network is a crucial step for 

the success of the proposed framework.

Empirically, we observed that the mean phase image was very robust in enhancing edges in 

the original image even with low contrast. The pixel adaptive convolution could adjust local 

convolution kernel weights in the segmentation network according to guidance of the mean 
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phase image such that it can improve vessel segmentation for retinal images with various 

quality. In this paper, we denote the CNN-based segmentation network of [12] and the 

PAC-based segmentation network of [13] as ConvSeg and PACSeg, respectively and fix the 

network parameters during the training. Interested readers should refer to the [12], [13] for 

more details. We will compare the performance of these two segmentation networks in the 

proposed self-supervised learning framework and discuss the benefits of content adaptation 

in section IV.

B. Feature Detection and Description Network: Self-Supervised Keypoint Detection

The feature detection and description network of [58] is adopted for the self-supervised 

keypoint learning, which completely eliminates fine-tuning procedure on the pretrained 

SuperPoint model [26] of [13]. It leverages a shared-encoder backbone with three output 

heads for feature points, scores, and descriptions, as illustrated in Fig. 3. The structure of 

the self-supervised feature detection and description network aims to regress a function that 

takes an image as input and outputs feature points, descriptors, and scores.

A CF source image Isrc or an IR target image Itgt and its corresponding vessel segmentation 

map Ssrc or Stgt are three-channel H × W  images where W  and H denote the width and 

height of an image and a single channel Itgt, Ssrc, and Stgt are converted to three channels 

with repetition. The input images Isrc and Itgt are warped to Isrc
w  and Itgt

w  using a random 

homography transformation Mss for self-supervised learning. The network parameters are 

shared for all input images and vessel segmentation maps. Specifically, we train the network 

to map an input image I ∈ R3 × H × W  to output keypoint scores sc ∈ RN, feature points 

(keypoints) p ∈ R2 × N, and descriptor f ∈ R256 × 4N for each input: W θ:I p, sc, f , where 

I ∈ Isrc
w , Itgt

w , Ssrc, Stgt  and N = W c ⋅ Hc = W
8 ⋅ H

8 . Instead of selecting interest point locations 

from the heatmap as in [26], the authors of [58] applied a regression network to predict a 

single keypoint for each 8 × 8 region of an input image [59] where the predicted location pi

is the sum of the network output oi and the center of an 8 × 8 region ci with i ∈ 1, 2, 3, …, N
as illustrated in Fig. 4. Moreover, the predicted location can be outside the 8 × 8 border for 

better matching and aggregation as denoted in the green regions. The score head regresses 

confidence of keypoints, which is bounded within [0, 1] using a sigmoid function. The score 

is also constrained such that scores of a matching keypoint pair should be similar. The 

descriptor head provides 256-dimensional features with a higher resolution grid to capture 

finer details. The subpixel convolution via pixel shuffle operation [60] is used to upsample 

descriptors such that each keypoint can interpolate its corresponding descriptor with half-

pixel accuracy descriptors. The top-K keypoints K among N keypoints of the feature point 

network are selected based on the confidence score where K ∈ KIsrcw , KItgtw , KSsrc, KSsrc . K 

keypoints and their corresponding descriptors are passed to the outlier rejection network 

for the next step as illustrated in Fig. 1. Specifically, the top-K confident keypoints are 

determined with their own scores for source and target keypoint pairs KIsrcw , KSsrc  and 

KItgtw , KStgt  as follows:
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i = arg sort(scs, descending)   ,   i ∈ 1, 2, 3, …, K
j = arg sort sct, descending  ,    j ∈ 1, 2, 3, …, K
d pi

s, pj
t * = max 

j
fi

s ⊤ fj
t,  ∀i

(3)

where d pi
S, pj

t *  is the correlation distance of descriptors between the top-K source and 

target keypoints. In Fig. 1, the keypoint pairs and the corresponding correlation distance 

for source and target images are denoted as x1 = pi
s, pj

t * , d pi
s, pj

t *  where pi
s, pi

t ∈ KIsrc
w , KSsrc

and x2 = pi
s, pj

t * , d pi
s, pj

t *  where pi
s, pi

t ∈ KItgt
w , KStgt  The main goal of the proposed feature 

detection and description network is learning keypoints and their description to map a CF or 

IR image to its corresponding vessel segmentation via the self-supervised learning.

C. Feature Detection and Description Network: Implicit Keypoint Detection

Although the proposed self-supervised network learns keypoints and their descriptors, the 

keypoints of a warped source CF image and its vessel segmentation Ks, s ∈ Isrc
w , Ssrc  and 

the keypoints of a warped target IR image and its vessel segmentation Kt, t ∈ Itgt
w , Stgt  are 

learned independently. There is no direct loss function to constraint that the keypoints of 

a source image and its vessel segmentation Ks are consistent to the keypoints of a target 

image and its vessel segmentation Kt since we do not use any ground truth of keypoints 

between Isrc and Itgt in our proposed framework. As a result, we might not find matching 

keypoints from a source CF to a target IR vessel segmentation. Therefore, we propose the 

cross keypoint matching from the keypoints of the self-supervised learning to grid keypoints 

for the multimodal registration. Since the implicit keypoint detection is to map from a CF 

source image to an IR target image through a common modality of a vessel segmentation, 

we search the top-K keypoints of a source segmentation pi
s, which are learned from the self-

supervised learning, to the grid-points of an IR target segmentation pj
t ∈ GStgt, that is, output 

of feature points Pmap in Fig. 3. Moreover, the top-K keypoints of an IR vessel segmentation 

pi
t are mapped to the grid-points of a source segmentation pj

s ∈ GSsrc to maximize correlation 

of the keypoints descriptor as follows:

i ∈ 1, 2, 3, …, K = arg sort sc pi
l ,  descending  ,

j ∈ 1, 2, 3, …, N = arg sort sc pj
l ,  descending  ,

dkg pi
s, pj

t * = max
j

fi
sfj

t, dgk pi
t, pj

s *

= max
j

fi
tfj

s,  ∀i

(4)

where l ∈ t, s , sc pi
l  and sc pj

l  are the corresponding scores of pi and pj for the CF source 

and IR target vessel segmentations, respectively. Note that (eq. 4) is different from (eq. 3). 

The top-K confident keypoints between N grid points and top-K keypoints are obtained in 

(eq. 4) for the inter outlier rejection network while the top-K confident keypoints between 

image and vessel segmentation are determined as described in (eq. 3) for intra outlier 

rejection network. Since we do not use any ground-truth keypoints of the supervised method 
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in our proposed method, we cannot directly apply any loss function to pair keypoints during 

training. Furthermore, we cannot use the self-supervised method directly to map keypoints 

between a CF source image and an IR target image because CF and IR images are taken 

by different instrument with different image characteristics such as field of view, resolution, 

imaging method and so on, that is, they are multimodal images. The mismatch loss of 

keypoints and descriptors is implicitly affected by the Dice loss function between a CF 

vessel segmentation and an IR vessel segmentation after applying the inter outlier rejection 

network and estimating the inter homography matrix as illustrated in Fig. 1. The keypoint 

pairs and the associated descriptor score x3 = pi
s, pj

t * , dkg  from the source keypoints to the 

target grid-points and x4 = pj
s * , pi

t, dgk  from the source grid-points to the target keypoints 

are stacked to be xinter ∈ R2K × 5 and they are fed into the inter outlier rejection network.

D. Outlier Rejection Network

The outlier rejection network is intended to replace the conventional RANSAC with 

the CNN network to estimate confidence of keypoint pairs, which ultimately guides the 

sampling of minimal sets. It cascades the residual blocks [13] as shown in Fig. 5 but we 

expand its structure to take correlation distance in addition to pairs of keypoints’ position as 

in [58] and [61]. In order to register multimodal data with the self-supervised approach, 

we propose two outlier rejection networks: intra multimodal outlier rejection network 
and inter multimodal outlier rejection network. The intra multimodal outlier rejection 

network estimates inliers for the self-supervised registration from CF and IR images to its 

corresponding vessel segmentation. On the other hand, the inter multimodal outlier rejection 

network predicts those for the multimodal registration from a CF vessel segmentation to 

an IR vessel segmentation as illustrated in Fig. 1. Although two outlier rejection networks 

share the network parameters, the input of the intra multimodal outlier rejection network 

Kt, t ∈ Isrc
w , Ssrc , Itgt

w , Stgt  is different from one of the inter multimodal outlier rejection 

network Kt, t ∈ Ssrc, Stgt
g , Ssrc

g , Stgt .

In the intra outlier rejection network, the top-K pairs of keypoints for a CF source image and 

a IR target image support K × 5 dimension, which are denoted as x1 and x2 in Fig 1. They are 

stacked to be xintra ∈ ℝ2K × 5 and are fed into the intra multimodal outlier rejection network. 

The output of the network is a vector w ∈ ℝ2K × 1 containing a probability score of an inlier 

wi ∈ 0, 1  for each correspondence. We reduce the number of residual blocks of the proposed 

network from 12 to 8 since the performance is better, which will be discussed in subsection 

IV-C. The major difference of the proposed outlier rejection network to the one in [58] is 

that the score w of the outlier rejection network is directly applied to estimate a homography 

matrix. Consequently, the proposed outlier rejection network is used to register a source to a 

target but that of [58] is only utilized as a proxy task to improve the keypoint detection and 

description. Therefore, the outlier rejection network of [58] is only applied for training while 

the proposed outlier rejection network is applied for testing as well as for training.

Since the perspective transformation has 8 degrees of freedom, at least 4 pairs of 

correspondences are required. In order to estimate the 3 × 3 perspective transformation 

matrix M from pairs of coordinates and weighting scores, we adapt a weighted version of 
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4-point algorithm, which allows soft-assignment to put more weights on inliers with higher 

probabilities whereas the conventional 4-point algorithm uses hard-assignment, which is 

considered as a special case of the weighted 4-point algorithm with binary weighting scores. 

For the i-th pair of correspondence, let us denote the source and the target coordinates by 

xi, yi  and xi
', yi

'  and define matrix Aj ∈ ℝ4K × 9 as

Aj =

0 0 0 x1 y1 1 −x1y1
' −y1y1

' −y1
'

x1 y1 1 0 0 0 −x1x1
' −y1x1

' −x1
'

⋮       ⋮       ⋮
0 0 0 x2K y2K 1 −x2Ky2K

' −y2Ky2K
' −y2K

'

x2K y2K 1 0 0 0 −x2Kx2K
' −y2Kx2K

' −x2K
'

,

then the transformation matrix is obtained by solving the optimization problem:

Mj
* = arg min 

Mj
WjAjVec Mj ,

(5)

where j ∈ intra, inter  and Wj ∈ ℝ4K × 4K is a diagonal matrix of the output scores 

Wj = diag w1, w1…, w2K, w2K  where w is the inliner confidence of the outlier rejection 

network as shown in Fig. 5. It can be proved that the solution is the corresponding 

eigenvector of the smallest eigenvalue of Aj
TWj

2Aj. We derive the homography transformation 

matrices, Mintra and Minter using the corresponding output score Wj of the intra and inter outlier 

rejection networks as in (eq. 5) and illustrated in Fig. 1.

E. Loss Function

The self-supervised feature detection and descriptor network in Fig 1 is trained with the 

positional loss function λpos, the descriptor loss function ℒdesc, and the score loss function 

ℒscore in (eq. 10). The position distance dij of λpos is computed by L2 norm between the 

warped source keypoints pw using randomly generated homography transformation matrix 

Mss and the target keypoints pt:dij = pi
w − pj

t
2, where pi

w = T pi
s, Mss  and i, j ∈ 1, 2, 3, …, N . 

We find matching pairs pi
s, pj

t  with a threshold Tℎ of a confident distance as in (eq. 6) 

and the positional loss ℒpos is derived as a mean of distance of confident matching pairs 

pi
s * , pj

t *  as follows:

pi
s * , pj

t * = arg min
i, j

 dij,     s . t .  dij < Tℎ

(6)

ℒpos = 1
N* ∑   dij

* ,

(7)
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where N* is the total number of confident matching pairs and dij
* = T pi

s * , Mss − pj
t *

2.

The output of the descriptor head is a 256 × H
4 × W

4  tensor as shown in Fig. 3. The tensor 

contains 256-dimensional descriptors for a total of H
4 × W

4  after upsampling by a factor of 

two at the center of each 8 × 8 block of the original resolution. The descriptor loss ℒdesc

in (eq. 8) is a triplet loss to minimize the distance between the anchor descriptor fs and 

the positive descriptor f+
w, while it maximizes the distance between the anchor descriptor fs

and the negative descriptor f−
w, which is the closest in the descriptor space after excluding 

a positive descriptor. Although any sample other than the true match can be used as the 

negative pair, we choose the hardest negative sample to train the network.

ℒdesc = 1
N ∑

i
max 0, d fi

s, fi, +
w − d fi

s, fi, −
w + m ,

(8)

where d fi
s, fi

w = fi
s − fi

w
2, fi

s = fs pi
s , fi, +

w = ft T pi
s, Mss .

The score loss ℒscore [59] is composed of the unsupervised point (USP) loss ℓusp and the 

similarity loss of a point-pair score ℓsim, as follows:

ℒscore = 1
N ∑

i
ℓi

usp + ℓi
sim

ℓi
usp = scs pi

s * + sct pi
w *

2 dij
* − ℒpos

ℓi
sim = scs pi

s * − sct pi
w * 2,

(9)

where pi
w * = T pi

s * , Mss  and scs, sct are scores of source and target, respectively. The overall 

objective of the score loss is to improve repeatability, i.e., keypoints are consistent regardless 

of the homography transformation Mss and multimodal images (here, image and vessel 

segmentation). The total loss of the self-supervised keypoint network is

ℒss−key = λposℒpos + λdescℒdesc + λscoreℒscore .

(10)

The multimodal intra outlier rejection network in Fig 1 is trained with the loss function 

ℒintra−io in (eq. 14), which is defined as a weighted sum of two terms. The first term ℒclass

in (eq. 11) is a classification loss, that is a cross-entropy loss between the predicted and 

ground truth labels for each correspondence. Let oi x  be the last linear layer output for the 

i-th correspondence, and yi Mss  in (eq. 12) be its label as an inlier or an outlier given the 

ground-truth transformation matrix Mss, which is obtained from the self-supervised keypoint 

detection in Fig. 3. Then the classification loss is defined as
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ℒclass xintra; Mss = ∑
i = 1

2K
− 1

Nc
yi Mss ⋅ log σ oi xintra ,

(11)

where c ∈ p, n  and σ ⋅  denotes the sigmoid function. Np is the number of inliers and Nn

is the number of outliers such that Np + Nn = 2K. The label yi Mss  for each correspondence 

is obtained by thresholding L2 distance between the target coordinates pi
t and warped source 

coordinates T pi
s, Mss

yi Mss =
yi

p = 1, if   T pi
s, Mss − pi

t ≤ 3 pixels 
yi

n = − 1, otherwise 

(12)

where pi
s and pi

t are defined in (eq. 3) and (eq. 4) for the self-supervised keypoints and the 

implicit keypoints, respectively. The matrix regression loss ℒmatrix is a mean squared error 

(MSE) between the predicted and ground-truth transformation matrices

ℒmatrix xintra; Mss = MSE Mss − Mintra xintra

(13)

where Mintra denotes the predicted transformation matrix in (eq. 5) given xintra. The ℒmatrix

loss makes Mintra to be close to Mss, which is a ground-truth transformation matrix in the 

self-supervised manner for the intra alignment (alignment between a warped image to its 

own vessel segmentation). Then the total loss of the multimodal intra outlier rejection 

network is

ℒintra−io xintra; Mss = λclassℒclass xintra; Mss + λmatrixℒmatrix xintra; Mss .

(14)

In order to learn the implicit keypoint matching and its corresponding multimodal inter 

outlier rejection network in Fig 1, we apply the Dice loss ℒDice Ssrc 
w , Stgt  between a warped 

source vessel segmentation Ssrc 
w = T Ssrc, Minter  and a target vessel segmentation Stgt in 

addition to the classification loss ℒclass xinter; Minter  of (eq. 11) where Minter is the predicted 

transformation matrix in (eq. 5) given xinter. The Dice coefficient is commonly used to 

evaluate the registration accuracy where higher Dice coefficient indicates more overlap 

between two segmentation maps. Furthermore, the Dice coefficient is shown to have the best 

correlation to subjective score from ophthalmologist [62]. We define the Dice loss as one 

minus the soft Dice coefficient on the aligned vessel segmentation. The Dice coefficient for 

binary segmentation is defined as

Dice ℐ1, ℐ2 = 2 × ∑   ℐ1 ⊙ ℐ2
∑   ℐ1 + ∑   ℐ2
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(15)

where ⊙ denotes element-wise product and its value is between [0,1]. Since the binary Dice 

coefficient is not differentiable, the differentiable soft Dice coefficient [18] is applied for 

Dice loss for grayscale segmentation maps:

ℒDice Ssrc 
w , Stgt = 1 −  Dice s Ssrc 

w , Stgt ,
where Dice  ℐ1, ℐ2 = 2 × ∑    ele_min  ℐ1, ℐ2

∑   ℐ1 + ∑   ℐ2

(16)

and ele_min denotes the element-wise minimum. The total loss of the inter outlier rejection 

network is defined as

ℒinter−io xinter, Ssrc, Stgt; Minter = λclass 
* ℒclass xinter; Minter + λDiceℒDice Ssrc 

w , Stgt .

(17)

IV. Experiments

We compare the overall performance of the proposed self-supervised framework to several 

existing methods including three conventional, four supervised, and two unsupervised 

methods for multimodal retinal image registration. The experimental results show that the 

proposed self-supervised method achieves comparable performance comparing to the state-

of-the-art results from the previous supervised learning approaches. We perform experiments 

on two multimodal retinal datasets: CF-IR dataset to register color fundus (CF) source 

images to infrared reflectance (IR) target images and CF-FA dataset to register CF source 

images to fluorescein angiography (FA) target images.

A. CF-IR Dataset

1) Dataset: The first dataset collected by Jacobs Retina Center (JRC) at Shiley Eye Institute 

consists of CF images (RGB, 3000 × 2672) for source and IR images (grayscale, 768 × 

768 or 1536 × 1536) for target. The image pairs contain a variety of pathologies including 

diabetes, hemorrhages, and macular degeneration. We partition 873 CF-IR pairs into 530 

pairs for the training set, 90 for the validation set, and 253 for the test set. Ophthalmologists 

classify the quality of each image as good, usable, and bad as listed in Table I.

2) Criteria: The robustness of registration is measured by the success rate, which is 

determined by the criterion that the maximum error (MAE) in (eq. 18) is less than or 

equal to 10 pixels [8], [9], [10], [11], [23] on 6 manually labeled correspondences P and the 

ground-truth transformation matrix Mgt [13].

MAE = max
p ∈ P

T T p, Mgt
−1 , Minter − p

(18)
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Note that we do not use any manually labeled correspondences and the ground-truth 

transformation matrix Mgt for training and validation. These are only used to determine the 

success rate to evaluate performance. The accuracy of registration is also measured by the 

Dice coefficient in (eq. 15) on the binary segmentation maps of aligned images regardless 

of success registration or not. The binary segmentation maps are obtained via ConvSeg or 
PACSeg vessel segmentation network with 0.5 threshold. We multiply two segmentation 

maps with a valid mask to compute the Dice coefficient in their overlapping region.

3) Implementation: All images are first padded to square shape and resized to 768 × 

768 before applying for registration test. Since directly downsampling the source images 

could increase the noise and adversely affect the segmentation, the images are anti-aliased 

with Gaussian filter before bicubic downsampling. In our method, all pixel intensities are 

normalized between [0, 1], and the target grayscale images are converted to 3 channels by 

stacking the input channel 3 times.

4) Training: We use the pretrained models of [12], [13] for the vessel segmentation 

network denoted as ConvSeg and PACSeg, respectively and fix the network parameters 

during the training. Interested readers should refer to the [12], [13] for more details. The 

self-supervised feature detection and descriptor network, the multimodal intra and inter 

outlier rejection networks, and intra and inter matrix estimation are trained in an end-to-end 

fashion. All networks of the proposed framework are trained in PyTorch using Adam 

optimizer, and the best model is chosen with the lowest Dice loss on the validation set. 

The learning rate 10−4 with 10% decays every 200 epochs up to 10−5 and the batch size is 

set to be 4. We set the maximum epochs to be 3,000 and the best loss weights including 

λclass, λmatrix, and λDice in eqs. (10), (14), and (17) are searched experimentally as listed in Table 

V. All the coordinates are normalized within [‒1, 1], and the transformation matrices are 

modified accordingly. The margin of the triplet loss in (eq. 8) m and the threshold Tℎ in (eq. 

6) are set to be 1 and 4, respectively.

5) Comparison: To compare the performance, we consider three conventional (not learning-

based) methods such as SURF-PIIFD-RPM [9], URSIFT-PIIFD-AGMM [10], and Phase-

HOG-RANSAC [2] and four supervised deep-learning methods including IRR-PWC [39], 

our previous works ICASSP [12] and TIP [13], and two unsupervised methods DLIR [4] and 

Voxelmorph [41]. We use the original authors’ MATLAB code for SURF-PIIFD-RPM [9] 

and URSIFT-PIIFD-AGMM [10] and our own implementation in MATLAB for the affine 

registration part of phase-HOG-RANSAC [2]. For IRR-PWC [39], we use the pretrained 

model on FlyingThings3D dataset [63] in PyTorch and fine-tune the model using Adam 

optimizer with learning rate 10−4, batch size 1, and weight decay 10−4 for 100 max epochs. 

We test IRR-PWC [39] with the pretrained model and the fine-tuned model on our test set, 

which are denoted as “IRR-PWC (pre-trained)” and “IRR-PWC (fine-tuned)”, respectively. 

We also use publicly available authors’ code for DLIR [4] and Voxelmorph [41] to train 

and test for our dataset. Moreover, we modify Voxelmorph [41] to register 2D image 

instead of 3D data. Specifically, we compare the performance of the proposed method 

(ConvSeg) with that of our ICASSP [12], which proposed the convolutional segmentation. 

We also compare the performance of the proposed method (PACSeg) with that of our 

TIP [13], which proposed the content adaptive segmentation. Furthermore, we present 
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the proposed endto-end framework, which consists of the keypoint detection and outlier 

rejection networks, achieves significantly better performance than the keypoint detection 

network with the conventional RANSAC method to replace the multimodal inter and intra 

outlier rejection network, which is denoted as the proposed method (RANSAC).

6)Results and Discussion: The proposed methods are compared with three conventional 

methods, four supervised, and two unsupervised deep-learning methods in Table II for the 

quantitative result and in Fig. 6 for the qualitative result. The criterion of MAE ≤ 10 pixels in 

(eq. 18) is used to determine successful registration in this experiment and the average Dice 

coefficient is expressed as mean and (± standard deviation). In Table II, we first compute 

the Dice coefficient of the original input images without any registration denoted as no 
registration for baseline.

a) Conventional (no learning) methods: SURF-PIIFD-RPM [9] achieves 27.27% success rate 

and an average of 0.262 Dice coefficient on the entire test set. The performance improves 

after excluding bad quality images, that is, in case of both source and target image are 

“good” or “usable”, but degrades in case of either source or target image is “bad” where its 

success rate is significantly low at 4.0%. URSIFT-PIIFD-AGMM [10] performs better than 

SURF-PIIFD-RPM [9] in some cases as in Fig. 6, but the overall result is worse than [9] as 

shown in Table II. Phase-HOG-RANSAC [2] achieves the highest success rate 40.32% and 

Dice coefficient 0.331 among three conventional methods whereas 14.00% success rate on 

the bad quality images indicates very limited robustness.

b) Supervised learning methods: The pretrained IRR-PWC [39] fails on every image pair, 

while the fine-tuned IRR-PWC reaches 1.19% success rate and 0.096 Dice coefficient on 

average. Since the original input image pairs show large resolution gaps, a wide field 

of view difference, and large quality variations, applying only a deformable registration 

method does not yield accurate results. ICASSP [12], which utilizes the convolutional vessel 

segmentation, achieves significantly higher performance comparing to three conventional 

methods and IRR-PWC at 86.56% success rate, 0.592 average Dice coefficient. Our TIP 

[13] further improves and clearly achieves the highest success rate 97.63% and average Dice 

coefficient 0.631 with the improvement of 11.07% and 0.039 comparing to the results in 

ICASSP [12]. TIP [13] ranks the highest and reaches 99.51% success rate after excluding 

bad quality images (both source and target image are good or usable quality).

c) Unsupervised learning methods: Although we perform network parameters and various 

hyperparameters including loss functions, both DLIR [4] and Voxelmorph [41] fail to 

provide any alignment. DLIR [4] achieves slightly higher Dice coefficient of 0.090, 

comparing to Voxelmorph [41]’s 0.081. Since the appearance of input image pairs is quite 

different with resolution, wide field of view, and image quality, DLIR [4], which learns 

directly the transformation parameters from the input images in a unsupervised manner, fails 

to align multimodal retina images with large difference in field of view. Voxelmorph [41], 

which proposed only for single modal deformable registration, also fails all the alignment 

for our datasets because the deformable registration algorithms are mainly proposed to align 

small misalignment.
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d) Proposed self-supervised learning method: Although the supervised learning method 

[13] achieves the highest performance as in Table II, it requires manually labeled 

correspondences to prepare the ground truth of the training set such as keypoints and 

transform matrices, and fine-tunes a pretrained model on a unrelated dataset with a target 

dataset. Consequently, a lot of time and effort are needed for the supervised method. 

Moreover, we might need to do all procedure again for a different target dataset. In this 

paper, we register multi-modal retinal images via a self-supervised method to alleviate all 

these burdens and aim to automatically register multi-modal images without any human 

annotations. The proposed method with two types of segmentation networks, which are 

denoted as ConvSeg and PACSeg, have better performance comparing to the work in 

ICASSP [12]. The performance of PACSeg is higher than that of ConvSeg regardless of 

image quality. It indicates that the content adaptive vessel segmentation of [13] is helpful 

even for the self-supervised learning. However, the performance gain (1.98 success rate) 

is not significant comparing to that of the supervised methods (11.07). For high-quality 

images, the proposed self-supervised learning PAC Seg shows comparable performance to 

TIP [13]. However, TIP [13] achieves better performance than PACSeg for images with bad 

quality. In practice, this is not a critical issue since the bad quality images would not be 

used for diagnosis. Thus, the proposed self-supervised learning method achieves comparable 

performance to the state-of-the-art supervised learning approach [13] as shown in Table 

II. Furthermore, the proposed self-supervised learning method is significantly better than 

the keypoint detection network with the conventional RANSAC (RANSAC), which only 

achieves 41.50% success rate. Especially, the conventional RANSAC is much worse at the 

difficult dataset (bad dataset).

Fig. 6 (1)–(3) show qualitative registration results among conventional, supervised learning, 

unsupervised learning, and self-supervised learning methods for three image pairs. For each 

image pair, sub-images (a) and (b) are the input images resized to 768 × 768. Sub-image 

(c) presents the checkerboard overlay of the aligned images, where the RGB and gray 

tiles show the warped CF source image and the target IR image, respectively. Note that 

the checkerboard image can easily visualize the quality of registration since the vessels 

of source and target images should be continuous across the tiles if two images are well 

aligned. Sub-image (d) shows the overlay of the aligned vessel segmentation, where the 

source segmentation and the target segmentation are assigned to the red channel and 

the green channel, respectively. The vessel channel image is also effective to visualize 

qualitative registration because the vessels look yellow if segmentation maps overlap 

accurately. For the first image pair (1), which is classified as good quality for both the 

source CF image (1a) and the target IR image (1b), two conventional methods [2], [9], two 

supervised methods [12], [13], and the proposed methods succeed while the other methods 

including URSIFT-PIIFD-AGMM [10] and fine-tuned IRR-PWC [39] fail since their MAEs 

in (eq. 18) are larger than 10 pixels as illustrated from (1c) and (1d). For the second example 

(2), where both images include some disease and the CF image is blur, the supervised 

methods of [12], [13] and the proposed methods succeed while the other methods fail. For 

the third image pair (3) where the optic disk in CF image is located near the center of the 

image, only the supervised method of TIP [13] can successfully align the images. Note that 

since the number of keypoint correspondences of [9], [10] is insufficient to calculate an 
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affine transformation matrix (fewer than 3), their results are set to be the same as before 

registration.

B. CF-FA Dataset

We also test the performance of the proposed framework on the public dataset [64], which 

consists of 59 pairs of color fundus (720 × 576, RGB) and fluorescein angiography (720 

× 576, grayscale) images. In this dataset, 29 pairs are normal while the other 30 pairs 

of images have diabetic retinopathy. The field of view of CF and FA images are similar 

and there are no images with poor quality. We manually labeled 6 pairs of keypoint 

correspondences to obtain the ground-truth transformation matrix for all image pairs. We 

fine-tune the supervised deep learning methods [12], [13], [39] on this dataset using similar 

hyper parameters as in the JRC CF-IR dataset (reducing batch size to 30 for outlier rejection 

network) for comparison and apply the same parameters to fine-tune the self-supervised 

proposed methods. 30 pairs with odd indices are used for training and the other 29 pairs with 

even indices are applied for testing. Due to the small number of images, we do not use a 

validation set and simply stop training at the maximum epoch.

Table III shows the experimental results of three conventional, four supervised deep-

learning, and the proposed methods for the CF-FA dataset [64] where the success rate and 

Dice coefficient are evaluated in the same way as in the JRC CF-IR dataset. Most methods 

achieve higher success rate compared to JRC CF-IR dataset overall due to similar field of 

view of source and target images and better image quality. The proposed methods as well as 

Phase-HOG-RANSAC [2] and TIP [13] achieve 100% success, while our proposed method 

PACSeg reaches the 2nd highest Dice coefficient at 0.663. Fig. 7 shows one challenging pair 

whose the overlapping ratio between source and target images is small. SURF-PIIFD-RPM 

[9], URSIFT-PIIFD-AGMM [10], fine-tuned IRR-PWC [39], DLIR [4] and Voxelmorph 

[41], and ICASSP [12] fail to align the pair such that they yield MAE larger than 10 pixels 

whereas Phase-HOG-RANSAC [2], TIP [13], and our proposed methods succeed. The 

proposed methods produce similar accurate alignment to the supervised method [13], which 

is observable from the segmentation overlay. The experimental results on CF-FA dataset 

demonstrate that the proposed framework can be easily generalized for other modalities 

of the retinal images via fine-tuning on a small training set without drastically adjusting 

hyper parameters and requiring large dataset. We evaluate testing runtime and memory usage 

of the conventional, the supervised, the unsupervised, and the proposed self-supervised 

methods on CPU or GPU devices in Table IV where CPU has 8 cores Intel(R) Core(TM) 

i7-5960X with 64 GB memory and GPU is a NVidia Tesla M40 with 24 GB memory. All 

the learning based methods, which run on the GPU, show much shorter runtime than the 

conventional methods. Among the learning methods, the execution time of the proposed 

methods takes longer time from 0.2 to 0.97 second. However, the proposed methods still 

have much shorter runtime compared to the conventional methods. The memory usage 

of the learning methods, except for the proposed method, is also lower than that of 

the conventional methods. The proposed methods use the most GPU memory since our 

architecture is the most complex comparing to the others.
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C. Ablation Study

We perform three ablation studies for: seven hyperparameters λpos, λdesc, λscore, λclass, λmatrix, λclass 
* , 

and λDice in eqs (10), (14), and (17) and the number of keypoints K, and the number 

of residual blocks in the outlier rejection network. As listed in Table V, all the seven 

hyperparameters are set to be a default value 1.0. We first change one hyperparameter 

from 0.05 to 10.0 and the best candidate parameters are collected based on the 

success rate or Dice. Note that we mainly show the hyperparameters to achieve 

better results than the default configuration although we search various parameters in 

Table V. Next, we use the combinations of the candidate hyperparameters from two 

to seven. After all the experiments, λpos = λscore = λclass 
* = λDice = 1.0, λdesc = 3.0, λclass = 0.1, and 

λmatrix = 5.0 are the best hyperparameters achieving the highest success rate 97.23. On the 

other hand, λpos = λscore = λmatrix = λDice = 1.0, λdesc = 3.0, λclass = 0.1, and λclass 
* = 5.0 are the best 

hyperparameters achieving the highest Dice 0.631. We choose the hyperparameters to 

achieve the highest Dice coefficient since they are more stable.

We also evaluate the performance of the proposed network with various number of keypoints 

K, and the number of residual blocks of the outlier rejection network along with ConvSeg 
and PACSeg vessel segmentation networks on the CF-IR test set in Table VI. We first fix 

the number of residual blocks, 4 or 8 and configure different number of keypoints K from 

300 to 1200 for each vessel segmentation network. 900 keypoints configuration achieves 

the highest success rate with higher Dice coefficient with PAC vessel segmentation network 

and 600 keypoints are the best for the highest success rate with Conv vessel segmentation 

network. In the third ablation study, we choose the best number of keypoints K (900) and 

set the number of residual blocks as 4, 8, and 12 to evaluate the performance variations. The 

best number of residual blocks are 4 and 8 for ConvSeg and PACSeg vessel segmentation 

network, respectively. We also observe that the Dice coefficient increases along with the 

number of residual blocks.

V. Conclusion

In this paper, we propose a self-supervised learning framework for the multimodal 

retinal image registration. The structure of the proposed framework is similar to that 

of the supervised learning method, which consists of three neural networks for vessel 

segmentation, feature detection and description, and outlier rejection. From the experimental 

results, the proposed method achieves similar performance as that of the state-of-the-art 

supervised learning method without any human-annotated labels or ground truth. The 

proposed method shows that the self-supervised learning can even be used for the 

multimodal registration task. In future work, we will concatenate the proposed framework 

with a self-supervised locally fine alignment method to form a complete pipeline without 

any labels. In addition, we briefly discuss the multimodal retina registration for clinical 

applications. From the multimodal retina images of the diabetic patient in Fig. 8, the CF 

image reveals clearly white lesions as indicated by a yellow arrow in sub-Figure 8(a) and the 

IR image shows better red legions denoted by a blue arrow in sub-Figure 8(b). The aligned 

multimodal images can reveal both legions as overlaid in sub-Figure 8(c). The preliminary 

example shows the potentials of multimodal retina registration for clinical applications. 

An et al. Page 18

IEEE Trans Image Process. Author manuscript; available in PMC 2024 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We will further research on the clinical applications to help ophthalmologists in improving 

diagnosis accuracy and speed.
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Fig. 1. 
The proposed registration framework takes a source image Isrc and its target image Itgt and 

generates their corresponding vessel segmentations Ssrc and Stgt. Next, the self-supervised 

feature detection and descriptor network find keypoint pairs KIsrcw , KSsrc , KItgt, KStgt

between a warped image and segmentation for both source and target images, where they 

are denoted as blue and green keypoints and they are overlayed onto an image and a 

vessel segmentation before and after registration, respectively. The multimodal intra outlier 

rejection network takes the Top-K pairs of keypoints x1 and x2 for source and target to 

estimate the intra transform matrix Mintra. For the multimodal inter registration, the keypoints 

of the source and target segmentation KSsr and KStgt are implicitly aligned into the grid-

points of the source and target segmentation GSsrc and GStgt. The multimodal inter outlier 

rejection network takes the Top-K pairs of keypoints x3 and x4 to estimate the inter transform 

matrix Minter.
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Fig. 2. 
Structure of the content-adaptive vessel segmentation network [13] where PACT stands for 

transposed pixel-adaptive convolution [54].
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Fig. 3. 
Structure of the self-supervised feature detection and description network for the multimodal 

keypoint learning. The warped source and target images Isrc
w , Itgt

w  are generated after applying 

the random transformation matrix Mss. The keypoint detection and description network 

estimates top-K key points of the vessel segmentation and warped images for source and 

target, which are denoted as KIsrcw , KSsrc  and KItgtw , KStgt , respectively.
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Fig. 4. 
8 × 8 grid prediction scheme for the feature positions.
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Fig. 5. 
Structure of the outlier rejection network for the intra and inter alignment
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Fig. 6. 
Registration results of three example pairs in the CF-IR test set using three conventional, 

three supervised learning, and two self-supervised learning methods. (a) and (b) show the 

input image pair resized to 768 × 768. (c) shows the checkerboard of the aligned original 

images (RGB tiles: warped source image, gray tiles: target image). (d) shows the vessel 

segmentation overlay (red: warped source segmentation, green: target segmentation, yellow: 

overlap).
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Fig. 7. 
Registration results of one challenging pair in CF-FA dataset using different methods. (a) 

and (b) show the input image pair. (c) shows the checkerboard of the aligned original 

images (RGB tiles: warped source image, gray tiles: target image). (d) shows the vessel 

segmentation overlay (red: warped source segmentation, green: target segmentation, yellow: 

overlap).
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Fig. 8. 
Potential clinical application: the white lesion (yellow arrow) is clearly visualized in the CF 

image (a) and the red lesion (blue arrow) is more visible in the IR image (b). Two lesions are 

clearly visible in the overlay image (c).
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TABLE I

Number of Good, Usable, and Bad Quality Images in the CF-IR Dataset

Dataset Good Usable Bad Total

Training CF 256 193 81 530

Training IR 327 168 35 530

Validation CF 47 30 13 90

Validation IR 58 23 9 90

Test CF 124 90 40 253

Test IR 181 59 14 253
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TABLE III

Result of Different Methods on CF-FA Test Set Where C, S, US, and SS of M Column Stand for 

Conventional, Supervised, Unsurpervised, and Self-Supervised Method, Respectively. The Best Results Are 

Colored in Red And The 2nd Best Are Marked In Bold

M Method Success rate Dice

- No registration – 0.120 (±0.023)

C SURF-PIIFD-RPM [9] 82.76% (24/29) 0.553 (±0.218)

C URSIFT-PIIFD-AGMM [10] 68.97% (20/29) 0.500 (±0.240)

C Phase-HOG-RANSAC [2] 100.00% (29/29) 0.648 (±0.100)

S IRR-PWC [39] (pretrained) 0.00% (0/29) 0.098 (±0.023)

S IRR-PWC [39] (fine-tuned) 3.44% (1/29) 0.200 (±0.069)

S Our ICASSP [12] (ConvSeg) 96.55% (28/29) 0.645 (±0.102)

S Our TIP [13] (PACSeg) 100.00% (29/29) 0.679 (±0.087)

US DLIR [4] 0.00% (0/29) 0.121 (±0.028)

US VxMORPH [41] 0.00% (0/29) 0.116 (±0.022)

SS Proposed (ConvSeg) 100.00% (29/29) 0.656 (±0.096)

SS Proposed (PACSeg) 100.00% (29/29) 0.663 (±0.085)

SS Proposed (RANSAC) 89.66% (26/29) 0.582 (±0.158)
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TABLE IV

Testing Runtime and Memory Usage at CPU or GPU Devices Where C, S, US, AND SS OF M Column Stand 

For Conventional, Supervised, Unsupervised, And Self-Supervised Method, Respectively

M Method Time (s) Device (Memory usage)

C [9] 16.98 CPU (5.7 GB)

C [10] 64.89 CPU (5.8 GB)

C [2] 20.85 CPU (5.3 GB)

S [39] (pretrained) 1.17 GPU (1.3 GB)

S [39] (fine-tuned) 1.17 GPU (1.3 GB)

S [12] (ConvSeg) 1.17 GPU (2.3 GB)

S [13] (PACSeg) 1.18 GPU (4.8 GB)

US [4] 0.41 GPU (2.1 GB)

US [41] 0.42 GPU (4.0 GB)

SS Proposed (ConvSeg) 1.34 GPU (9.3 GB)

SS Proposed (PACSeg) 1.38 GPU (9.3 GB)

SS Proposed (RANSAC) 1.30 GPU (8.9 GB)
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