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Abstract
Landscape genomic analyses associating genetic variation with environmental vari-
ables are powerful tools for studying molecular signatures of species' local adaptation 
and for detecting candidate genes under selection. The development of landscape 
genomics over the past decade has been spurred by improvements in resolutions 
of genomic and environmental datasets, allegedly increasing the power to identify 
putative	genes	underlying	local	adaptation	in	non-	model	organisms.	Although	these	
associations have been successfully applied to numerous species across a diverse 
array of taxa, the spatial scale of environmental predictor variables has been largely 
overlooked, potentially limiting conclusions to be reached with these methods. To 
address this knowledge gap, we systematically evaluated performances of genotype–
environment	 association	 (GEA)	models	 using	 predictor	 variables	 at	multiple	 spatial	
resolutions. Specifically, we used multivariate redundancy analyses to associate 
whole- genome sequence data from the plant Arabis alpina L. collected across four 
neighboring	valleys	in	the	western	Swiss	Alps,	with	very	high-	resolution	topographic	
variables	derived	from	digital	elevation	models	of	grain	sizes	between	0.5 m	and	16 m.	
These comparisons highlight the sensitivity of landscape genomic models to spatial 
resolution, where the optimal grain sizes were specific to variable type, terrain char-
acteristics, and study extent. To assist in selecting variables at appropriate spatial 
resolutions, we demonstrate a practical approach to produce, select, and integrate 
multiscale	variables	into	GEA	models.	After	generalizing	fine-	grained	variables	to	mul-
tiple spatial resolutions, a forward selection procedure is applied to retain only the 
most relevant variables for a particular context. Depending on the spatial resolution, 
the	relevance	for	topographic	variables	in	GEA	studies	calls	for	integrating	multiple	
spatial	scales	into	landscape	genomic	models.	By	carefully	considering	spatial	resolu-
tions, candidate genes under selection by a more realistic range of pressures can be 
detected for downstream analyses, with important applied implications for experi-
mental research and conservation management of natural populations.
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1  |  INTRODUC TION

Rapidly changing climatic conditions emphasise an urgent need to 
understand the capacity of organisms to adapt to novel environ-
ments.	By	studying	local	adaptation,	where	populations	display	in-
creased	fitness	in	their	local	environment	(Kawecki	&	Ebert,	2004),	
researchers and conservation practitioners can gain insights into 
levels of genetic variance both within and among populations to un-
derstand	their	adaptive	potential	to	future	conditions	(Hoffmann	&	
Sgró, 2011; Whitlock, 2015).	Technological	and	analytical	advances	
over the last decade have unlocked the identification of genomic 
regions	putatively	involved	in	adaptation	(Hoban	et	al.,	2016),	form-
ing the foundation for experimental testing of adaptive phenotypic 
responses	 to	 heterogeneous	 environments	 (Lasky	 et	 al.,	 2023; 
Savolainen et al., 2013).	Although	genome	scans	of	genetic	differ-
entiation and the detection of outlier loci can identify candidate 
genomic	regions	under	selection	(Lotterhos	&	Whitlock,	2014),	en-
vironmental variables must be integrated into analyses to identify 
ecological	 factors	potentially	driving	 the	adaptive	process	 (i.e.,	 se-
lective	agents)	and	predict	how	organisms	might	respond	to	future	
environmental	 conditions	 (Hoban	 et	 al.,	 2016; Lasky et al., 2023; 
Rellstab et al., 2016).

Genotype–environment	association	(GEA)	methods	of	landscape	
genomics are an exploratory bottom- up approach to study genomic 
imprints of local adaptation and identify candidate genomic regions 
under selection. Used to correlate genetic variation segregating in 
populations with the environmental conditions that they experience 
(Rellstab	et	al.,	2015),	these	methods	successfully	identified	putative	
genes involved in local adaptation across various plant and animal 
species	 (e.g.,	Bogaerts-	Márquez	 et	 al.,	2021; Selmoni et al., 2021; 
Todesco et al., 2020).	Among	 the	many	methods	 available	 to	per-
form	GEAs	 (Forester	 et	 al.,	2018),	multivariate	 redundancy	 analy-
ses	(RDAs)	represent	promising	approaches	to	detect	signatures	of	
selection	(Capblancq	&	Forester,	2021;	Forester	et	al.,	2016).	RDA	
models work by maximizing the explained responses of all input loci 
simultaneously with regards to multiple environmental variables 
(Legendre	&	 Legendre,	1998).	 Because	 of	 this,	 they	 have	 recently	
gained traction in landscape genomic analyses as they provide more 
ecologically relevant models of adaptation than traditional univari-
ate	GEA	methods	 (Lasky	et	al.,	2023),	 including	the	popular	 latent	
factor	mixed	models	(LFMM;	Frichot	et	al.,	2013)	or	the	SamBada	ap-
proach	(Duruz	et	al.,	2019; Stucki et al., 2017).	Additionally,	simula-
tions highlight their robustness to demography and sampling designs 
(Forester	 et	 al.,	 2018)	 while	 maintaining	 higher	 power	 and	 lower	
false	discovery	rates	than	traditional	univariate	methods	(Capblancq	
et al., 2018).	Though	 improvements	 in	 resolutions	of	genomic	and	
environmental	datasets	have	spurred	the	development	of	these	GEA	
methods	(Dauphin	et	al.,	2023),	the	impact	of	using	high-	resolution	

environmental variables on the detection of putative genes under 
selection is still largely speculative and unknown. To avoid ambigu-
ity	and	facilitate	discussion	(Anderson	et	al.,	2010),	here	we	define	
spatial resolution as the grain size of environmental variables, extent 
as the boundary size of the study site, and level as the difference 
between	individual	study	sites	(local	level)	and	their	agglomeration	
(regional	level).

The	issue	of	spatial	scale	in	ecology	is	not	new	(Levin,	1992),	yet	a	
current	limitation	of	evolutionary	ecology	methods,	including	GEAs,	
is that the full implications of spatial scale on the reliability, accu-
racy	and	interpretation	of	model	results	remains	unknown	(Dungan	
et al., 2002).	Patterns	observed	in	nature	are	the	result	of	processes	
occurring across a continuum of nested spatial scales, where model-
ling requires a biologically arbitrary selection of variables at distinct 
spatial	 resolutions	 (Fitzpatrick	&	Keller,	2015).	Despite	 awareness	
of this sensitivity, employing the finest spatial resolution available, 
often with little to no justification, remains the main paradigm 
(Moudrý	et	al.,	2023).	While	“finer-	is-	better”	may	be	acceptable	for	
variables	≥90 m	(Chauvier	et	al.,	2022; Cushman & Landguth, 2010),	
the accessibility of very high- resolution terrain variables at resolu-
tions	≤1 m	(e.g.,	Kasser	et	al.,	2019)	calls	for	spatial	resolutions	to	be	
more	 thoroughly	 assessed	prior	 to	 analyses.	 For	 instance,	 species	
distribution models of an alpine plant were optimized when using 
resolutions	between	2	and	16 m	(Guillaume	et	al.,	2021),	despite	ex-
pectations	that	the	finest	resolutions	≤0.5 m	would	seem	most	rele-
vant across such rugged terrain.

Topographic variables derived from digital elevation models 
(DEMs)	have	gained	popularity	in	evolutionary	ecology	modelling	to	
complement climatic variables when describing spatial patterns of 
plant	diversity	 (Irl	 et	al.,	2015;	Scherrer	&	Körner,	2011)	 and	have	
been successfully implemented in species distribution modelling 
(e.g.,	Gottfried	 et	 al.,	1998; Guillaume et al., 2021)	 and	 landscape	
genomic	analyses	(e.g.,	Leempoel	et	al.,	2018).	A	plethora	of	topo-
graphic	 variables	 can	 be	 derived,	which	 are	 classified	 into:	 (i)	 pri-
mary	 terrain	 attributes	 calculated	 directly	 from	 DEMs	 (including	
slope,	 curvature,	 and	 aspect	 as	 northness	 and	 eastness);	 and	 (ii)	
secondary terrain attributes derived from the primary attributes 
to	 describe	 a	 given	 pattern	 as	 a	 function	 of	 a	 process	 (e.g.,	 vec-
tor ruggedness measure, soil wetness indices, and solar radiation; 
Wilson & Gallant, 2000).	 These	 secondary	 terrain	 attribute	 vari-
ables have been specifically developed to represent measured en-
vironmental characteristics, including the air humidity, soil moisture, 
air	temperature	(e.g.,	Leempoel	et	al.,	2015),	as	well	as	biophysical	
processes	 including	 erosion,	 water	 flow,	 and	 solar	 radiation	 (e.g.,	
Moore	et	al.,	1991).	Care	must	be	taken	when	selecting	the	spatial	
resolution	 of	 these	 variables	 (Anderson	 et	 al.,	2010),	 as	 the	 same	
variable type that is generalized to different spatial resolutions can 
describe	 different	 terrain	 processes	 (Keitt	 &	 Urban,	 2005).	 Fine	
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resolutions can add high amounts of unnecessary detail and noise 
(Kalbermatten	et	al.,	2012),	whereas	coarse	resolutions	may	gener-
alise over important topographic structures and thus miss relevant 
ecological	patterns	(Pain,	2005).	The	spatial	resolution	of	a	variable	
therefore may change its relevance in different ecological contexts 
(Chauvier	et	al.,	2022; Leempoel et al., 2015).

The optimal spatial resolution for ecological modelling de-
pends	 on	 species’	 biology	 (e.g.,	 Anderson	 et	 al.,	 2010; Loke & 
Chisholm, 2022),	study	region	extent	 (e.g,	Anderson	et	al.,	2010),	
terrain	topography	(e.g.,	Guillaume	et	al.,	2021),	and	variable	type	
(e.g.,	Chauvier	et	al.,	2022; Leempoel et al., 2015),	making	it	chal-
lenging to generalise the selection of the most appropriate spa-
tial	resolution	for	use	in	evolutionary	ecology	models	(Woodcock	
& Strahler, 1987).	 One	 option	 is	 to	 systematically	 compare	 the	
performance of models built with predictor variables at various 
spatial resolutions, where different resolution variables can be pro-
duced	 using	 a	multiscale	 approach	 (Woodcock	&	 Strahler,	1987).	
For	 DEM-	derived	 variables,	 multiscale	 can	 be	 achieved	 using	 a	
Laplace- gradient wavelet transformation to first generalise a fine- 
resolution	DEM	to	coarser	resolutions,	extracting	the	most	prom-
inent	 nested	 topographic	 patterns	 at	 each	 step	 (Kalbermatten	
et al., 2012)	 before	 deriving	 relevant	 terrain	 variables	 (Leempoel	
et al., 2015).	A	draw-	back	to	this	systematic	method	is	that	it	can	
be time consuming and impractical to investigate each combination 
of variable type and spatial resolution, particularly when investi-
gating	multiple	study	sites	with	different	terrain	characteristics.	An	
alternative is to obtain the full range of desired variables at multi-
ple resolutions before implementing a selection procedure to re-
tain only the variables at resolutions that are most relevant to the 
data. In species distribution modelling this has been achieved by re-
taining the variables at resolutions that best discriminate presence 
data	from	random	background	points	(e.g.,	Guillaume	et	al.,	2021; 
Rochat et al., 2021)	or	using	an	automatic	collinear	variable	selec-
tion	algorithm	(Adde	et	al.,	2023);	in	landscape	genomics	by	using	
a	stepwise	forward	selection	procedure	(Blanchet	et	al.,	2008)	 to	
select	the	variables	that	maximise	genomic	variance	explained	(e.g.,	
Capblancq	&	Forester,	2021).	However,	the	relevance	of	such	ap-
proaches	in	GEA	models	are	yet	to	be	investigated.

Here,	we	implement	an	approach	to	obtain	environmental	prox-
ies	 at	 multiple	 resolutions	 for	 conducting	 GEA	 analyses,	 looking	
to assess environmental variable effects on genomes at different 
spatial	 resolutions.	 Specifically,	multivariate	RDA	models	 are	 used	
to combine very- high resolution genomic and environmental data-
sets,	with	the	aims	of	 (i)	systematically	assessing	the	sensitivity	of	
GEA	models	to	topographic	environmental	variables	at	multiple	spa-
tial	 resolutions,	and	 (ii)	 investigating	a	method	to	select	multiscale	
variables	 for	use	 in	GEA	models.	This	work	 falls	 in	 the	 context	of	
a landscape genomics study on the perennial herb Arabis alpina L., 
sampled	across	four	alpine	valleys	in	the	western	Swiss	Alps.	As	spe-
cies distribution modelling predictions in this system were optimized 
when	using	variables	ranging	from	2	to	16 m	(Guillaume	et	al.,	2021),	
depending on site characteristics and variable type, it is hypothe-
sized	that	DEM-	derived	variables	of	2–16 m	spatial	resolutions	will	

be most relevant for detecting signatures of selection in this system. 
We highlight the importance of carefully considering and justifying 
the spatial resolution of predictor variables used in evolutionary 
ecology models and demonstrate a practical method to produce, se-
lect,	and	integrate	multiscale	variables	into	GEA	models.	By	carefully	
considering spatial resolutions, candidate genes under selection can 
be more accurately detected for downstream analyses, with import-
ant applied implications for experimental research and conservation 
management of natural populations.

2  |  METHODS

2.1  |  Study species and sample sites

Arabis alpina	(Brassicaceae)	is	an	arctic-	alpine	perennial	plant	that	is	
becoming a widely used model organism to study ecological genom-
ics	 (reviewed	 in	Wötzel	et	al.,	2022).	 In	the	Alps,	 individuals	occur	
mostly in high- alpine areas with rugged terrain, typically charac-
terized by calcareous scree slopes and unstable rocky structures 
(Buehler	et	al.,	2012).	Arabis alpina has a relatively small genome of 
approximately	375	Mbp	(Jiao	et	al.,	2017; Willing et al., 2015).	The	
present	study	uses	publicly	available	data	from	Rogivue	et	al.	(2019a)	
containing information on 304 geo- referenced A. alpina individuals 
located	 across	 four	 valleys	 in	 the	 western	 Swiss	 Pre-	Alps:	 Essets	
(ESS;	 N = 70),	 Martinets	 (MAR;	 N = 96),	 Para	 (PAR;	 N = 69)	 and	
Pierredar	 (PIE;	N = 69)	 (Table 1; Figure S1).	For	each	site,	 individu-
als	were	sampled	 in	10	plots	of	6–10	 individuals,	with	at	 least	1 m	
between	individuals	and	a	maximum	of	10-	30 m	between	individuals	
of	a	plot	(for	schema,	see	figure	1	in	Rogivue	et	al.,	2023).	Individuals	
were geo- referenced to an accuracy of ±2 cm	 with	 a	 Differential	
Global	Positioning	System	(DGPS)	receiver.

Although	these	four	populations	have	a	shared	post-	glacial	an-
cestry	(Rogivue	et	al.,	2018),	investigations	of	genome-	wide	single-	
nucleotide	 polymorphism	 (SNP)	 data	 revealed	 restricted	 historical	
gene flow between populations, with pairwise FST values between 
0.09	 and	 0.18	 (Rogivue	 et	 al.,	 2019a).	 Additionally,	 low	 observed	
heterozygosity	 (HO	 between	 0.05	 and	 0.17)	 corresponded	 to	 sig-
nificantly	high	 inbreeding	coefficients	 (FIS	between	0.18	and	0.28)	
coupled	with	high	levels	of	selfing	in	this	region	(Zeitler	et	al.,	2023).	
Given predominant selfing requiring insect pollinators and limited 
dispersal capacities of small wind- dispersed seeds between moun-
tain valleys, gene flow is expected to occur over short distances in 
this	species	(<1 km;	Ansell	et	al.,	2008;	Buehler	et	al.,	2012).	The	dis-
tribution	and	orientation	of	the	valleys	(>7 km	between	each	north-	
facing	valley)	support	the	four	sites	as	independent	replicates,	with	a	
common genomic background and comparable genetic variation, for 
studying local adaptation.

We investigated the impacts of spatial scale on the detection 
of local adaptation at the local level by assessing each of the four 
valleys	independently	(local:	ESS,	MAR,	PAR,	and	PIE),	as	well	as	at	
the	regional	level	by	grouping	the	four	valleys	together	(regional).	A	
schema providing a workflow of the methods is given in Figure S1.
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2.2  |  Environmental data

The four valleys were characterized using topographic variables 
derived	 from	 DEMs	 at	 multiple	 spatial	 resolutions,	 following	 the	
methods	of	Guillaume	et	al.	(2021).	Raw	LiDAR	(light	detection	and	
ranging)	 point	 clouds	 produced	 by	 the	Direction	 of	 Land	Registry	
and	 of	Geoinformation	 (DCG),	 Canton	 of	Vaud,	 Switzerland,	were	
obtained	 from	 the	 ASIT	 Vaud	 website	 (www. asitvd. ch; accessed 
12.9.2019)	and	selected	to	cover	the	target	study	site	extents	and	
surrounding mountain topography. Point clouds were processed 
using	CloudCompare	GLP	software	(version	2.10.2,	2020;	retrieved	
from http:// www. cloud compa re. org/ )	to	produce	DEMs	with	a	0.5 m	
grain	 size	 geo-	referenced	 in	 the	 Swiss	 reference	 system	 (MN95:	
CH1903+/LV95).

To	 obtain	 multiscale	 variables,	 the	 base	 DEMs	 at	 0.5 m	 were	
generalized	to	1,	2,	4,	8,	and	16 m	resolutions	using	a	Gaussian	pyr-
amid	algorithm	in	MATLAB	(version	R2019a,	2019;	retrieved	from	
https:// www. mathw orks. com)	with	the	impyramid function, follow-
ing	 the	work	 of	 Kalbermatten	 et	 al.	 (2012).	 These	 spatial	 resolu-
tions were chosen following a multiscale species distribution model 
study using A. alpina	occurrence	data	at	MAR	and	PAR,	where	topo-
graphic	 variables	 were	 most	 important	 at	 resolutions	 of	 2–16 m	
(Guillaume	et	al.,	2021).

The same nine variable types relating to terrain morphometry, 
hydrology, solar radiation, and climate were derived from each of the 
DEMs	at	the	six	spatial	resolutions,	using	SAGA	GIS	(v7.5.0;	Conrad	
et al., 2015).	The	nine	DEM-	derived	variable	types	used	here	include	
the	 primary	 terrain	 attributes	 of	 slope	 (SLO),	 horizontal	 curvature	
(HCU),	and	aspect	 in	the	form	of	eastness	 (EAST	–	sine	of	aspect)	
and	northness	(NORTH—cosine	of	aspect),	as	well	as	the	secondary	
terrain	attributes	of	vector	 ruggedness	measure	 (VRM),	 the	SAGA	
wetness	 index	 (SWI),	 the	 sky	view	 factor	 (SVF),	 total	 irradiance	 in	
June	 (TI6),	 and	 the	wind	 exposure	 index	 (WEX).	 Study	 sites	were	
characterized across the site extents with mean and standard de-
viation	of	 the	 nine	 variable	 types	 at	 the	middle	 resolution	of	 2 m.	

Mean	 terrain	 ruggedness	 (assessed	 as	 VRM)	was	 used	 to	 classify	
the	sites	 into	homogeneous	and	heterogeneous	terrain	sites	 (Loke	
& Chisholm, 2022).	Detailed	 descriptions	 and	 parameters	 used	 to	
produce the variable types can be found in Table S1.

The geographic coordinates of the 304 sampled plants were 
used to extract corresponding environmental values from each of 
the	54	DEM-	derived	variables	(nine	variable	types	at	six	spatial	res-
olutions),	as	well	as	elevation	at	0.5 m,	using	the	extract function of 
the	raster	R	package	(v.3.5.15;	Hijmans,	2022).	Upon	generalization	
of variables toward coarser resolutions, an average of four samples 
occurred	in	the	same	grid	at	the	16 m	resolution	(up	to	maximum	of	
10	individuals).	While	this	pseudo-	replication	could	be	handled	by	it-
eratively	running	GEA	analyses	with	randomly	removed	individuals,	
we	retained	all	samples	to	maintain	both	GEA	model	power	(Selmoni	
et al., 2020)	and	consistent	sample	sizes	for	comparisons	between	
models	(Guillaume	et	al.,	2021; Guisan et al., 2007).

Environmental	 variable	 values	 were	 standardized	 (i.e.,	 cen-
tered	 and	 scaled)	 for	 each	 local	 and	 regional	 analysis	 to	 remove	
biases	 arising	 from	 differences	 in	 variable	 units	 (Legendre	 &	
Legendre, 1998).	Due	 to	 the	 large	number	of	variables	produced	
upon multiscale generalization, independence amongst the vari-
able	 types	was	assessed	at	 the	 finest	 resolution	of	0.5 m	using	a	
Spearman rank correlation with a threshold of |rs| ≥ 0.8	(Dormann	
et al., 2013)	for	each	local	site	to	minimise	the	number	of	variable	
types for multiscale generalization. Principal component analysis 
(PCA)	based	on	the	0.5 m	DEM-	derived	variables	was	performed	
for each local site to verify that plots were sampled across a range 
of conditions using the prcomp function in the stats R package 
(v.4.1.2;	R	Core	Team,	2021).

To investigate how to best select variables at appropriate 
spatial	 resolutions	 for	 use	 in	 GEA	 models,	 we	 systematically	
tested	eight	sets	of	DEM-	derived	variables	for	each	site	and	level	
(Table 2).	 The	 first	 six	 Variable	 Sets	 (shortened	 to	 “VS”)	 were	
based on the nine variable types at one of the following spatial 
resolutions:	0.5,	1,	2,	4,	8,	or	16 m,	along	with	elevation	at	0.5 m,	

TA B L E  1 Location	and	genomic	information	(number	of	SNPs	used	in	analyses)	for	the	four	study	sites	(ESS,	MAR,	PAR,	and	PIE)	
separately	(local;	A–D)	and	grouped	(regional;	E).

(A) ESS (B) MAR (C) PAR (D) PIE (E) Regional

Latitude 46°16′2″N 46°12′37″N 46°23′23″N 46°19′13″N

Longitude 7°9′52″E 7°5′12″E 7°9′6″E 7°11′35″E

Overall orientation N NE NNE NW N

Target	study	site	area	(km2) 0.7 0.56 0.51 0.43 2.2

Sampled plant individuals 70 96 69 69 304

Genomic data

Total SNPs 220,214 113,900 287,261 160,322 291,396

Intergenic SNPs 183,647 94,904 240,404 133,888 243,622

Intergenic SNPS: LD pruned 6957 5991 7555 5705 11,813

Intragenic SNPs 36,567 18,996 46,857 26,434 47,774

Intragenic SNPs: high- impact 13,945 7813 17,537 10,757 22,806

Genes with high- impact SNPs 6331 3831 7832 5196 9632

http://www.asitvd.ch
http://www.cloudcompare.org/
https://www.mathworks.com
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such	that	each	of	these	single	resolution	variable	sets	(“VS- single”)	
had	10	predictor	variables.	These	will	be	referred	to	as	“VS- 0.5m”,	
“VS- 1m”,	etc.	The	seventh	variable	set	(“VS- all”)	 included	all	nine	
variable	types	at	all	six	spatial	resolutions,	plus	elevation	at	0.5 m,	
giving	 a	 total	 of	 55	 predictor	 variables.	 As	 this	 produced	many	
correlated	predictor	variables,	 the	eighth	variable	set	 (“VS- fwd”)	
was	 created	 from	 the	VS- all	model.	 To	 produce	VS- fwd, a step-
wise forward model selection procedure was implemented to 
maximise the genetic variance of the intragenic SNP dataset 
(described	 in	 Section	2.3	 below)	 explained	 by	 the	DEM-	derived	
variables	 (Blanchet	 et	 al.,	 2008).	 After	 ensuring	 significance	 of	
the	 VS- all	 global	 RDA	 model,	 the	 forward	 selection	 procedure	
began with an empty null model. The null model was complexified 
by adding one explanatory variable at a time, where the model 
stopped	either	when:	 (i)	the	permutation-	based	significance	test	
p < 0.01	threshold	was	reached	(across	1000	permutations),	or	(ii)	
the model's adjusted- R2	 began	 to	 decline	 (following	 Capblancq	
&	Forester,	2021).	 The	 resulting	VS- fwd variable sets were site- 
specific, with 7–14 predictor variables at the local sites, and 31 
predictor	 variables	 at	 the	 regional	 level.	 Forward	 selection	was	
performed with the ordiR2step function of the vegan R package 
(v.2.5.7,	Oksanen	et	al.,	2020).

2.3  |  Genomic data

The	 publicly	 available	 “non-	TE	 SNP	 dataset”	 containing	 whole-	
genome sequenced SNP variants outside of identified transposable 
element	 (TE)	sequences	was	obtained	from	Rogivue	et	al.	 (2019b),	
with complete sampling and data processing details described in 
Rogivue	et	al.	(2019a).	Briefly,	SNP	filtering	was	done	at	the	local	and	
regional	levels	independently	for	a	minor	allele	frequency	(MAF)	of	
<0.025	and	a	10%	missingness	threshold.	Missing	genotypes	were	
independently imputed at each local and regional level using the 
snmf and impute	functions	in	the	LEA	R	package	(v.3.6.0,	Frichot	&	
François,	2015),	where	the	K latent factors retained for imputation 
(ESS:	K = 2;	MAR:	K = 3;	PAR:	K = 6;	PIE:	K = 2;	Regional:	K = 6)	were	
based on the lowest genomic inflation factor values.

The	 annotation	 based	 on	 the	 reference	 genome	 v5.1	 (Jiao	
et al., 2017)	was	used	to	further	divide	the	imputed	SNP	dataset	
into	two	categories,	 following	Capblancq	and	Forester	 (2021):	 (i)	
intergenic SNPs lying outside of coding regions that are treated as 
putatively	neutral,	and	 (ii)	 intragenic	SNPs	within	coding	 regions	
that are more likely directly influenced by natural selection. They 
were used in analyses assessing neutral and adaptive processes, 

respectively, where the intergenic SNPs were first pruned for link-
age	disequilibrium	(LD;	threshold = 0.2)	using	the	snpgdsLDpruning 
function	of	the	SNPrelate	R	package	(v.1.28.0;	Zheng	et	al.,	2012).	
It is noted that intergenic SNPs may be involved in selective pro-
cesses due to LD, with whole- genome LD decay estimated at 
r2 < 0.1	within	 30.98 kb	 for	 non-	TE	 SNPs	 (Rogivue	 et	 al.,	2019a).	
However,	as	the	present	study	does	not	 look	to	provide	exhaus-
tive evaluations of SNPs under selection, only the intragenic SNP 
set was used as the response variable in downstream analyses. 
This was done to simplify model comparisons, where preliminary 
analyses	found	that	the	VS- fwd models explained the most varia-
tion for the intragenic SNP dataset compared with intergenic or 
whole	 genome	 (Table S2).	 Intragenic	 SNP	 variants	 were	 further	
annotated	 using	 SnpEff	 (Cingolani	 et	 al.,	2012)	 to	 identify	 high-	
impact SNPs as those with a direct impact on gene functionality 
(i.e.,	within-	gene	variants	involved	in	non-	synonymous	mutations	
including missense variants, splice acceptor and intron variants, 
starts	 lost,	 stops	gained,	and	splice	 region	variants).	All	analyses	
were performed at the individual genotype level, with genomic 
data coded as the count of the alternative allele for each locus.

2.4  |  Genotype–environment associations

To identify candidate loci involved in local adaptation at the local 
and	 regional	 levels,	 GEAs	 using	 multivariate	 RDAs	 were	 per-
formed	 following	Capblancq	and	Forester	 (2021).	A	partial	RDA	
was used to understand the partitioning of intragenic SNP vari-
ation	 into	 neutral	 (assessed	 as	 population	 structure	 and	 spatial	
geographic	structure)	and	adaptive	(assessed	with	environmental	
variables)	 processes	 at	 each	 local	 and	 regional	 level	 (full	 meth-
ods	in	Appendix	S2).	A	full	RDA	was	then	performed	for	the	GEA	
analyses, with intragenic SNPs coded to individual genotypes in 
the	response	matrix	and	the	DEM-	derived	variable	sets	(Table 2)	
in the explanatory variable matrix. Strong population structure 
was corrected in the regional analysis using the first three prin-
cipal	 components	 (PC)	 of	 the	 LD-	pruned	 intergenic	 SNP	 PCA	
(Appendix	 S2)	 as	 conditioning	 variables	 in	 a	 partial	 RDA.	 The	
weak	population	structure	detected	at	MAR	was	highly	correlated	
with	elevation	(rS = −0.88),	such	that	it	was	not	corrected	for.	This	
decision to not correct for population structure follows simula-
tions	indicating	reduced	RDA	model	power	and	inflated	FDR	due	
to altered mapping of quantitative trait mutations into the ordi-
nation space when an environmental gradient is correlated with 
structure	 (Forester	et	al.,	2018; Lotterhos, 2023).	For	each	 local	

Variable set Description Variables per set

i–vi VS- single	(e.g.	
VS- 0.5m)

Each	variable	at	one	single	spatial	
resolution,	plus	elevation	at	0.5 m

10

vii VS- all All	variables	at	all	spatial	resolutions,	
plus	elevation	at	0.5 m

55

viii VS- fwd Site- specific stepwise forward selected 
variables	based	on	the	VS- all model

7–14	(local);	
31	(regional)

TA B L E  2 Description	of	the	eight	
Variable	Sets	(shortened	to	“VS”)	
produced to investigate the effect of 
spatial	resolution	in	GEA	models.	Nine	
topographic environmental variables 
(Table S2)	were	produced	at	six	spatial	
resolutions	(0.5,	1,	2,	4,	8,	and	16 m).



6 of 19  |     GUILLAUME et al.

and regional level, the effect of variable sets on the detection of 
candidate SNPs under selection was investigated, resulting in 40 
GEA	models	in	total.

Outlier	SNPs	were	identified	based	on	RDA	loadings,	following	
methods	outlined	in	Capblancq	et	al.	(2018).	Scree	tests	were	used	
to select only the first K- constrained	RDA	axes	that	most	frequently	
explained a majority of the genetic variance associated with the 
predictor variables. The same number of K axes were retained for 
each site to ensure compatibility amongst variable sets, given a min-
imum of two K axes. The custom rdadapt function from Capblancq 
et	al.	(2018)	was	used	to	evaluate	the	significance	of	each	SNP	based	
on	its	extremeness	of	 its	Mahalanobis	distance	value	compared	to	
the	distribution	of	the	other	SNPs	 in	the	RDA	space	of	K retained 
axes.	The	Mahalanobis	distances	were	computed	using	the	covRob 
function	 of	 the	 ROBUST	 R	 package	 (v.0.7.0;	 Wang	 et	 al.,	 2022),	
corrected	for	inflation	factor	(François	et	al.,	2016)	and	distributed	
along a chi- squared distribution with K degrees of freedom to as-
sign a p-	value	to	each	SNP	(Luu	et	al.,	2017).	A	stringent	Bonferroni	
correction was applied to identify outlier loci, using the threshold 
of p- value <0.01/the	number	of	 tests	 (i.e.	 the	number	of	 SNPs	 in	
each	RDA	model).	The	lists	of	SNPs	detected	as	outliers	by	each	RDA	
model were compared between variable sets using upset plots made 
with	 the	UpSetR	 R	 package	 (v.1.4.0;	 Gehlenborg,	2019).	 Provided	
the putative functional relevance, we focus on the high- impact SNPs 
detected as outliers.

RDA	 biplots	 for	 the	 K retained axes were used to associate 
outlier	SNPs	with	DEM-	derived	variables.	For	each	outlier	SNP,	its	
projection onto each variable vector in the K retained axes was 
used to assign the associated predictor variable as the one with 
the largest absolute scalar value. The proportion of loci detected 
as	outliers	 from	 the	 investigated	high-	impact	 SNP	 set	 (pS; based 
on	Ahrens	et	al.,	2018)	were	calculated	to	allow	for	comparisons	
between sites and to identify whether a particular model resulted 
in a higher relative frequency of outlier SNPs compared to other 
models. The number of associations between high- impact outlier 
SNPs and predictor variables that occurred within each gene were 
tallied. Genes with multiple SNP–variable associations were noted 
as	“multiple”.

2.5  |  Gene ontology enrichment analyses

Gene	ontology	(GO)	terms	associated	with	genes	assessed	the	puta-
tive	function(s)	of	candidate	high-	impact	SNPs	detected	by	the	DEM-	
derived	 variables	 in	 each	 model,	 following	 Primmer	 et	 al.	 (2013).	
Using the high- quality A. alpina reference genome annotation, GO 
enrichment analyses were performed with the topGO R package 
(v.2.46.0;	Alexa	&	Rahnenführer,	2021),	assessing	overrepresented	
GO	 terms	 among	 genes	 associated	 with	 each	 DEM-	derived	 vari-
able. The significance of enriched GO terms was determined using 
Fisher's	exact	tests	using	the	default	weight01 algorithm and ranking 
by p-	value	to	only	retain	significant	GO	terms	(p < 0.05)	associated	
with at least five genes.

3  |  RESULTS

3.1  |  Topographic variables and terrain 
characteristics

DEM-	derived	topographic	variables	were	successfully	used	to	char-
acterise four alpine study sites. Independence amongst the nine 
DEM-	derived	 variable	 types	 (Table S1)	was	 confirmed	 for	 the	 fin-
est	grain	size	of	0.5 m	to	avoid	redundancy	in	downstream	analyses,	
where	only	TI6–SLO	at	MAR	 (rs = −0.92)	and	EAST–NORTH	at	PIE	
(rs = 0.85)	 had	 Spearman	 correlations	 above	 the	 |rs| ≥ 0.8	 threshold	
(Figure S2).	 Positive	 correlations	 observed	 amongst	 variables	 of	
the	same	type	generalized	to	six	spatial	resolutions	(0.5,	1,	2,	4,	8,	
16 m)	 were	 strongest	 when	 grain	 size	 was	 similar,	 and	 weakened	
with	increased	differences	amongst	grain	size	(Figure S3).	Elevation	
at	0.5 m,	included	to	represent	temperature	and	biotic	factors,	was	
uncorrelated	with	the	DEM-	derived	variables	across	all	sites,	except	
for	VRM	4 m	 (rs = −0.8)	 at	 ESS.	 In	 contrast,	 elevation	was	 strongly	
negatively	 correlated	with	 latitude	 (Y-	coordinate),	 as	 expected	 for	
predominantly north- orientated alpine valleys.

PCAs	(Figure S4)	confirmed	that	individuals	sampled	at	the	four	
sites were exposed to similar ranges of environmental conditions, 
allowing them to be treated as replicate systems potentially under-
going independent local adaptation within sites. The characteristics 
of	the	sites	based	on	the	2 m	derived	variables	assisted	the	interpre-
tations	of	GEA	results	(Table S3).	The	less	complex,	more	homoge-
neous	terrain	sites	of	ESS	and	PIE	were	characterized	by	more	gentle	
slopes with low rugosity, wetter soils and higher irradiance, while the 
more	complex,	heterogeneous	terrain	sites	of	MAR	and	PAR	were	
characterized by steeper and more rugged slopes, with drier soils, 
moderate irradiance and more wind exposure.

3.2  |  Variable selection: Stepwise forward model

The	 selection	 order	 of	 DEM-	derived	 variables	 for	 forward	 selec-
tion	(VS- fwd; Table 2)	hints	at	their	relative	contributions	in	driving	
genomic variation, where in some cases the same variable type was 
selected	at	multiple	spatial	resolutions	(Table 3).	Here,	terrain	com-
plexity and variable type had the greatest influence on variable rank-
ing.	Variables	at	coarser	resolutions	(4,	8,	16 m)	were	predominately	
selected	at	homogeneous	terrain	sites	(ESS	and	PIE),	while	variables	
at	finer	resolutions	down	to	1 m	grain	size	were	also	selected	at	het-
erogeneous	terrain	sites	(MAR	and	PAR)	(Table 3; Table S4).	Notably,	
only	 elevation	 was	 selected	 at	 the	 finest	 resolution	 of	 0.5 m	 for	
local sites, where it was always one of the first variables selected. 
Primary	 terrain	variables	 (i.e.,	 SLO,	HCU,	EAST,	NORTH)	were	 se-
lected	at	coarse	spatial	resolutions	(8 m,	16 m)	at	the	homogeneous	
sites	and	at	mid	 to	coarse	 resolutions	 (2–16 m)	at	 the	heterogene-
ous sites. Secondary terrain variables were overall selected at finer 
resolutions:	variables	representing	solar	radiation	and	sky	view	(TI6,	
SVF)	were	selected	toward	the	mid-	resolutions	between	4	and	16 m,	
and	variables	 representing	 rugosity	 (VRM),	 soil	wetness	 (SWI)	and	
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wind	exposure	(WEX)	were	selected	at	finer	resolutions	between	1	
and	16 m.	All	spatial	resolutions	were	represented	among	the	31	se-
lected variables at the regional level, with similar trends as with the 
local	sites:	primary	variables	were	selected	between	2	and	16 m;	TI6,	
SVF	were	selected	between	2	and	16 m;	and	VRM,	SWI	and	WEX	
were	selected	between	0.5	and	16 m.

3.3  |  RDA model evaluation

Multivariate	RDAs	identified	candidate	loci	strongly	associated	with	
environmental variables at the local and regional levels, despite neu-
tral processes of population and geographic structures explaining 
approximately a third of explained genomic variation at local sites 
(see	Appendix	S2 for full results; Figures S5–S8, Tables S4 and S5).	
The K	 constrained	 RDA	 axes	 retained	 were	 selected	 using	 Scree	
plots	 (ESS:	 K = 3,	 MAR:	 K = 2,	 PAR:	 K = 2,	 PIE:	 K = 3,	 and	 regional:	
K = 2;	Figure S9; Table S7).	Outlier	loci	were	identified	as	those	with	
p-	values	below	the	stringent	Bonferroni	thresholds	(ESS:	2.73 × 10−7, 
MAR:	 5.26 × 10−7,	 PAR:	 2.13 × 10−7,	 PIE:	 3.78 × 10−7, and regional: 
2.09 × 10−7),	 after	 adjusting	 locus-	wise	 p- value distributions using 
genomic	inflation	factors	(Table S7; Figure S10).	Downstream	analy-
ses	focused	on	loci	annotated	as	high-	impact	variants	(i.e.,	SNPs	that	
have a direct impact on gene functionality via non- synonymous mu-
tations that change amino acids and are thus more likely influenced 
by	selection),	which	accounted	for	40%–65%	of	outlier	SNPs	at	the	
local	levels	and	50%	at	the	regional	level	(Table S7).

GEA	 models	 were	 sensitive	 to	 predictor	 variable	 spatial	 res-
olutions,	 particularly	 at	 homogeneous	 terrain	 sites	 (ESS	 and	 PIE)	
(Figures S5 and S6).	 The	 sensitivity	 of	RDA	models	 to	 spatial	 res-
olution	was	 assessed	 for	 the	 eight	 variable	 sets	 (Table 2)	 at	 each	
site	 using	 two	metrics:	 (i)	 the	model's	 adjusted-	R2 as an indicator 
for	genetic	variance	captured	by	the	predictor	variables,	and	(ii)	the	
proportion of the high- impact SNPs that were detected as outlier 
loci	among	the	investigated	high-	impact	SNPs	(pS)	to	represent	the	
signatures of selection detected by the model. The low adjusted- R2 
values of Figure 1 reflect that raw R2 values were divided by the 
number of input variables used, which ranged between seven to 31 
(see	Table 2 for number of input variables and Figure S11 for raw 
values).	 VS- single model adjusted- R2 values reflected variable se-
lection	order	 (Table 3):	 explained	 genetic	 variance	was	maximized	
with	 coarser	 resolutions	 (VS- 16m)	 at	 homogeneous	 sites	 and	with	
intermediate	 resolutions	 (VS- 2m	 to	VS- 8m)	 at	heterogeneous	 sites	
(Figure 1a).	Meanwhile,	the	proportion	of	the	high-	impact	SNPs	de-
tected	as	outlier	loci	(pS)	varied	amongst	variable	sets	and	local	sites	
(Figure 1b).	At	PAR	and	PIE,	pS increased with coarser resolutions in 
VS- single	models,	whereas	ps	was	very	low	for	all	VS- single models 
at	ESS	except	for	a	peak	with	the	VS- 2m	model.	At	MAR,	pS peaked 
at	VS- 0.5m	and	VS- 8m.	At	the	regional	level,	RDA	models	had	much	
lower adjusted- R2	 values	 (Figure 1a)	 and	 detected	 extremely	 low	
numbers	of	high-	impact	SNPs	as	outliers	 (low	pS; Figure 1b)	when	
compared to the local analyses, regardless of variable spatial resolu-
tions or number of predictor variables.TA

B
LE

 3
 
Fo
rw
ar
d	
se
le
ct
ed
	D
EM
-	d
er
iv
ed
	v
ar
ia
bl
es
	th
at
	e
xp
la
in
ed
	th
e	
m
os
t	v
ar
ia
nc
e	
in
	th
e	
in
tr
ag
en
ic
	S
N
P	
da
ta
se
t	o
f	i
nd
iv
id
ua
ls
	s
am
pl
ed
	a
t	t
he
	fo
ur
	s
ite
s	
(E
SS
,	M
A
R,
	P
A
R,
	P
IE
)	s
ep
ar
at
el
y	

(lo
ca
l;	
A–
D
)	a
nd
	g
ro
up
ed
	(r
eg
io
na
l;	
E)
.	N
um
be
rs
	in
di
ca
te
	th
e	
or
de
r	t
ha
t	v
ar
ia
bl
es
	w
er
e	
se
le
ct
ed
,	w
he
re
	b
la
nk
	c
el
ls
	in
di
ca
te
	th
at
	th
e	
va
ria
bl
e	
w
as
	n
ot
	s
el
ec
te
d.
	D
et
ai
le
d	
re
su
lts
	a
re
	p
ro
vi
de
d	
in
	

Ta
bl

e 
S4

.

Re
s.

(A
) E

SS
(B

) M
A

R
(C

) P
A

R
(D

) P
IE

(E
) R

eg
io

na
l

0.
5

1
2

4
8

16
0.

5
1

2
4

8
16

0.
5

1
2

4
8

16
0.

5
1

2
4

8
16

0.
5

1
2

4
8

16

El
ev

1
1

2
1

1

SL
O

5
10

7
4

4
26

28
15

EA
ST

13
9

11
9

10
3

N
O
RT
H

7
5

1
2

27
13

H
C
U

14
12

8

V
RM

4
3

4
5

31
29

11
21

20

SW
I

12
11

6
3

19
5

14

SV
F

2
5

6
9

22
17

23
6

TI
6

8
13

3
7

4
30

24
12

W
EX

10
8

7
2

3
10

6
8

7
16

2
9

18



8 of 19  |     GUILLAUME et al.



    |  9 of 19GUILLAUME et al.

In support of using a forward selection procedure to incorporate 
multi-	resolution	variables,	the	VS- fwd models for all sites had similar 
metrics	to	the	highest-	performing	VS- single	models,	except	at	MAR	
where	VS- fwd	performed	relatively	poorly	(Figure 1).	Although	the	
VS- all models had the highest raw R2	at	each	site	(Figure S11A),	this	
was attributable to the large number of explanatory variables used. 
Indeed,	VS- all had the lowest adjusted- R2 at all sites when corrected 
for	 the	 number	 of	 input	 variables	 (Figure 1a)	 and	 detected	 rela-
tively	 low	proportions	of	high-	impact	SNPs	as	outliers	 (Figure 1b; 
Figure S11B).	Because	of	overfitting	 in	the	VS- all model, we focus 
subsequent	GEA	interpretations	only	on	VS- single	and	VS- fwd mod-
els,	 where	 comparisons	 with	 VS- all can be found in the relevant 
Appendix	S2.

A	deeper	understanding	of	RDA	model	sensitivity	to	differences	
in spatial resolution was obtained by comparing the identity of the 
high- impact SNPs detected as outliers between variable sets at each 
site	 (Table 4; visualized using UpSet plots in Figure S12).	 Overall,	
most	RDA	models	at	a	given	site	detected	common	outlier	loci,	with	
few models detecting >10%	unique	SNPs.	Almost	all	outlier	loci	at	
PAR	and	PIE	were	identified	by	at	least	two	variable	sets,	regardless	
of	how	many	high-	impact	SNPs	were	detected.	In	contrast,	four	VS- 
single	models	 at	 ESS	 and	 two	 at	MAR	detected	20%–80%	unique	
SNPs, which was unrelated to the absolute number of high- impact 
SNPs detected.

3.4  |  Genotype–environment associations

Genotype–environment interactions were investigated by as-
sociating	 each	 high-	impact	 outlier	 SNP	 to	 a	 DEM-	derived	 vari-
able	 based	 on	 projections	 in	 the	 RDA	 space	 (Table S8),	 where	
the locus distributions were generally insensitive to variable sets 
(Figure S13).	The	high-	impact	candidate	SNPs	were	then	used	to	
allocate	the	corresponding	genes	(hereafter	“high-	impact	genes”;	
Table 4)	to	an	environmental	variable	and,	rarely,	to	multiple	vari-
ables	(generally	≤10%	per	local	model	and	<20% for the regional 
model; Tables S7 and S9).

The spatial resolutions of associated environmental variables 
reflected	 the	 selection	 order	 for	VS- fwd, where associated vari-
ables varied greatly across the genome, among sites and between 
variable	sets	(Figure 2; Table S9; Figure S14).	Associations	at	ho-
mogeneous sites were dominated by coarser resolution variables 
(≥2 m),	where	top	associations	at	ESS	were	with	EAST,	VRM,	SWI,	
and	HCU,	and	at	PAR	with	SWI,	HCU,	and	WEX.	Associations	at	
heterogeneous sites were with variables across a greater range 
of	 spatial	 resolutions,	where	 top	associations	at	MAR	were	with	

NORTH,	WEX,	and	SWI,	and	at	PIE	with	HCU,	EAST,	NORTH,	and	
VRM.	Surprisingly,	despite	being	one	of	the	first	forward-	selected	
variables to explain genetic variation, elevation was rarely associ-
ated	with	genes	at	the	local	sites	(generally	<4%).	At	the	regional	
level, elevation was a top- associated variable with high- impact 
genes	 (up	 to	 45%	 in	 some	VS- single	models,	 but	 only	 2%	 in	VS- 
fwd),	alongside	SLO,	EAST,	and	VRM.	The	variables	NORTH,	SWI,	
WEX,	TI6	and	HCU	were	rarely	associated	with	high-	impact	genes	
at the regional level.

The functional significance of high- impact genes was investi-
gated	 for	each	variable	using	GO	enrichment	analyses	 (Table 4).	
Significantly associated functions were largely unique to each 
site	and	detected	by	different	variables	 (Table S2).	Overall,	only	
two	molecular	functions	(MFs)	and	two	biological	processes	(BPs)	
were detected across multiple sites, with one of each detected 
at	ESS	and	 in	the	regional	analysis,	which	predominantly	related	
to	 oxidation	 or	 cellular	 stress	 responses	 (Table S2).	 Cellular	 re-
sponse	 to	cold	 (GO:0070417),	 for	example,	was	detected	at	PIE	
with	VRM	16m	and	at	MAR	with	WEX	4m.	The	variables	associ-
ated with significant gene functions followed patterns from the 
top gene–variable associations. Plants at homogeneous sites gen-
erally presented more candidate genes with putatively adaptive 
functions, where the variable type exerting a potential selection 
pressure was relatively consistent amongst variable sets. Plants 
at heterogeneous sites contrastingly presented fewer candidate 
genes with adaptive functions that tended to be associated with 
different	 variable	 types	 and	 spatial	 resolutions.	 VS- fwd models 
captured many of the same significant functions and putative 
processes	under	selection	as	the	VS- single models, though not al-
ways	with	the	same	variable	type.	Analyses	at	the	regional	 level	
detected relatively few significant GO terms and only with the 
VS- fwd	model	(Table 4),	consistent	with	previous	results	highlight-
ing a lack of power to detect local adaptation with these spatial 
resolutions.

Interestingly,	 using	 multiscale	 DEM-	derived	 variables	 cap-
tured evidence of biotic pressures on plant local adaptation. Using 
the	VS- fwd	RDA	model	at	ESS,	a	significant	association	was	found	
between	 VRM	 2m	 and	 the	 Aa_G76360.h1	 gene	 of	 the	MYB29	
complex, which is involved in A. alpina adaptive response to in-
sect	herbivory	(GO:0009625).	The	RDA	biplots	highlight	that	the	
associated	high-	impact	SNP	is	strongly	associated	with	VRM	2m,	
and	slightly	 less	strongly	with	SWI	at	coarse	resolutions	 (star	 in	
Figure 3a).	This	SNP	is	also	found	in	a	genomic	region	that	appears	
to have many genes potentially under selection on Chromosome 
8	(Figure 3b).	The	positive	correlation	between	the	homozygous	
recessive	 genotype	 (GG)	 for	 this	 SNP	 given	 the	 values	 of	 VRM	

F I G U R E  1 Assessment	of	RDA	model	performance	based	on	two	metrics:	(a)	RDA	model's	adjusted-	R2	values,	and	(b)	the	proportion	of	
high-	impact	SNPs	that	were	detected	as	outliers	by	RDA	models	(ps),	where	values	on	the	y-	axis	for	(a)	have	been	corrected	for	the	number	
of	input	variables	(see	Table 2).	Raw	values	can	be	found	in	Figure S11.	For	each	local	(ESS,	MAR,	PAR,	PIE)	and	regional	analysis,	model	
performance metrics along the x-	axis	are	VS- single	models	built	with	all	variables	at	the	same	spatial	resolution	(0.5,	1,	2,	4,	8,	and	16 m),	
while	the	red	horizontal	line	indicates	the	VS- all	model,	and	the	blue	horizontal	line	indicates	the	VS- fwd	model.	All	models	include	elevation	
at	0.5 m	resolution.	Note	that	gray	dashed	lines	between	points	are	indicative	only	and	each	model	is	independent.
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2m	was	modelled	using	 linear	 regression	 (Figure 3c),	which	was	
used to produce a probability map of finding the GG genotype 
across	the	extent	of	ESS	(Figure 3d).	This	map	highlights	that	the	
GG genotype has a higher probability of being found in rougher 
terrain areas with less soil build- up, which could reduce insect 
herbivory pressure.

4  |  DISCUSSION

By	 coupling	 DEM-	derived	 h-	topographic	 environmental	 vari-
ables at multiple grain sizes with whole genome sequence data, 
we	 highlighted	 the	 sensitivity	 of	 GEA	 models	 to	 spatial	 resolu-
tions. These findings illustrate the importance of incorporating 

Candidate SNPs
Candidate 
genes GO terms: BP GO terms: MF

(A)	ESS

VS- 0.5m 57 53 2

VS- 1m 38 29 3

VS- 2m 832 712 3 2

VS- 4m 70 59 1

VS- 8m 51 47 2 1

VS- 16m 115 96 2 2

VS- fwd 642 546 8 5

(B)	MAR

VS- 0.5m 431 359 3

VS- 1m 91 74 1

VS- 2m 328 281 1 1

VS- 4m 261 233 1

VS- 8m 491 402 1

VS- 16m 403 335 1

VS- fwd 145 131 2

(C)	PAR

VS- 0.5m 865 721 2 1

VS- 1m 1203 989 1 3

VS- 2m 1304 1050 1 5

VS- 4m 1762 1389 1 6

VS- 8m 1924 1495 1 4

VS- 16m 1963 1508 1 5

VS- fwd 1837 1450 4

(D)	PIE

VS- 0.5m 53 54 2 1

VS- 1m 249 196 6 5

VS- 2m 309 246 1

VS- 4m 522 403 7 7

VS- 8m 995 757 10 8

VS- 16m 1078 822 5 7

VS- fwd 1064 823 6 8

(E)	Regional

VS- 0.5m 59 41

VS- 1m 66 47

VS- 2m 73 56

VS- 4m 64 49

VS- 8m 55 45

VS- 16m 78 59

VS- fwd 448 227 3 2

TA B L E  4 Summary	of	GEA	results	
performed	using	RDAs	for	the	four	sites	
(ESS,	MAR,	PAR,	and	PIE)	separately	
(local;	A–D)	and	grouped	(regional;	E).	
Values	indicate	the	number	of	high-	impact	
SNPs, genes and GO terms detected as 
significant	outliers	in	GEA	analyses.	GO 
terms	are	separated	into	BPs	and	MFs.
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multiscale	variables	into	studies	of	local	adaptation.	Furthermore,	
we emphasise that the paradigm of using the finest resolution var-
iables possible for modelling local adaptation in sessile organisms 
may not always hold, and indeed could introduce noise to models 
(Guillaume	et	al.,	2021; Pradervand et al., 2014).	Here,	we	discuss	
how	spatial	scale	affects	the	relevance	of	DEM-	derived	variables	
in	GEA	models	with	regards	to	study	extent	and	variable	type,	and	
provide	suggestions	for	integrating	multiscale	variables	into	GEA	
models.

4.1  |  Spatial scale matters

Systematic	comparisons	of	GEA	models	highlighted	that	the	spatial	
resolution	of	environmental	variables	matters.	Variables	with	grain	
sizes	 between	 2	 and	 16 m	 generally	 improved	GEA	model	 perfor-
mance for the alpine plant investigated, where optimal resolution 
depended on variable type, terrain characteristics, and study extent. 
Furthermore,	the	same	variable	type	was	often	selected	at	multiple	
spatial resolutions. This lack of specificity for an optimal spatial reso-
lution reflects findings from multiscale species distribution models 
(Guillaume	et	al.,	2021; Guisan et al., 2007),	as	well	as	GEA	analyses	
based	 on	 low-	resolution	 genetic	 markers	 (Leempoel	 et	 al.,	 2018).	
While strong correlations were found when the same variable type 
was generalized to similar spatial resolutions, this trend weakened 
between more different grain sizes. Indeed, the same environ-
mental variable at different spatial resolutions can capture distinct 
ecological	processes	and	climatic	conditions	 (Keitt	&	Urban,	2005; 

Lassueur et al., 2006; Leempoel et al., 2015)	with	 subsequent	 im-
pacts on model results, downstream analyses, and interpretations 
(Dungan	et	al.,	2002).	 It	 is	extremely	difficult	to	determine	exactly	
which spatial resolution is optimal for a given context, supporting 
the inclusion of the same variable type generalized to multiple spa-
tial resolutions simultaneously in evolutionary ecology modelling.

Contrary	to	initial	expectations	(Gottfried	et	al.,	1998; Lassueur 
et al., 2006),	no	single	spatial	resolution	was	identified	as	the	most	
appropriate for any variable type. Generally, primary terrain variables 
(i.e.,	 SLO,	HCU	and	EAST/NORTH)	were	 selected	at	 coarser	 grain	
sizes	(8–16 m),	whereas	secondary	terrain	variables	were	often	rele-
vant across a range of resolutions. Primary terrain attributes may be 
favoured at coarser resolutions due to smoothing over of the higher 
details	present	at	finer	resolutions	(Kalbermatten	et	al.,	2012),	result-
ing in variables that better represent landscape processes relevant 
to	the	organism	(Pain,	2005).	In	contrast,	the	relevance	of	secondary	
terrain attributes at finer grain sizes may be because they are spe-
cifically designed to model ecologically relevant hydrological, geo-
morphological,	and	BPs	(Wilson	&	Gallant,	2000).	Secondary	terrain	
attributes	representing	solar	radiation	and	sky	availability	(TI6,	SVF)	
were	selected	at	resolutions	between	4	and	16 m,	while	variables	of	
rugosity	(VRM),	soil	wetness	(SWI)	and	wind	exposure	(WEX)	were	
selected	across	a	broader	range	of	resolutions	between	1	and	16 m.	
That topographic effects on light are optimized at coarser resolu-
tions than those on rockiness, water drainage and exposure might 
be due to their respective interactions with topographic features. 
For	 instance,	 primary	 attributes	 of	 eastness	 and	 northness	 proxy	
for sunlight availability, impacting near- surface temperatures and 

F I G U R E  2 The	proportion	of	high-	impact	genes	with	outlier	SNPs	for	the	four	sites	(ESS,	MAR,	PAR,	PIE)	separately	(local)	and	grouped	
(regional),	grouped	by	the	variable	sets	used	as	explanatory	variables	in	the	RDA	models	(columns).	The	x- axis shows the associated 
variables,	colored	by	the	spatial	resolution	(grain	size)	for	the	variable.	In	cases	where	a	gene	had	multiple	SNP–variable	associations,	this	
was	listed	as	“multiple”.	Descriptions	of	variable	sets	found	in	Table S1. See Table S9 for raw counts of high- impact SNP–variable associations 
in each gene.
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photosynthetic	 rates	 (Bennie	 et	 al.,	 2008; Gottfried et al., 1998; 
Moore	et	al.,	1991).	As	light	and	shade	are	influenced	by	larger-	scale	
topographic	 features	 (e.g.,	mountain	 crests,	 boulders)	with	 strong	
seasonal fluctuations, these proxies may have coarser scale effects 
on vegetation and adaptive responses than more complex secondary 
attributes independent of large topographic features and seasonal 
variations	(Keitt	&	Urban,	2005).	However,	without	directly	measur-
ing an association between topographic variables and in- field condi-
tions	(e.g.,	climate,	soil	chemistry,	etc.),	it	remains	difficult	to	assess	
the actual selection pressure that these variables exert on organ-
isms. Indeed, selective pressures in natural environments are rarely 
known with certainty, and the hypothesized associations detected 
between genotypes and topographic variables require further val-
idation	via	in-	field	observations	or	experiments	(Lasky	et	al.,	2023).

General landscape topography is also important in dictating 
the	 appropriate	 grain	 size	 for	 a	 variable	 (Pain,	2005).	 In	 the	 pres-
ent	 study,	GEA	models	were	 optimized	with	 variables	 selected	 at	
mid	 to	 coarse	 (4–16 m)	 resolutions	 for	 homogeneous	 terrain	 sites	
(ESS	and	PIE),	and	with	a	combination	of	variables	at	fine	to	coarse	
(1–16 m)	resolutions	for	heterogeneous	terrain	sites	(MAR	and	PAR).	
Differences in terrain heterogeneity likely reflects the scale at 

which	local	adaptation	is	occurring.	Indeed,	models	of	abiotic	(e.g.,	
Thompson et al., 2001)	and	biotic	(e.g.,	Guillaume	et	al.,	2021)	fac-
tors have highlighted that finer details in variables are required at 
heterogeneous terrains, while natural processes at homogeneous 
terrains are smoothed over and require coarser resolution variables 
to represent environmental processes.

The spatial resolution of variables must appropriately reflect 
landscape processes likely affecting the study organism to en-
sure	 that	 signatures	 of	 local	 adaptation	 are	 detected	 (Anderson	
et al., 2010; Cushman & Landguth, 2010).	Here,	 the	 finest	 spatial	
resolution	 of	 0.5 m	 typically	 resulted	 in	 the	 lowest	model	 perfor-
mances at local sites, while model performances increased toward 
the	coarser	 resolutions	between	4	and	16 m.	Despite	 the	possible	
influence of pseudo- replication arising from the inclusion of up to 10 
samples in a grid upon generalization, the conservative thresholds 
used	to	detect	outlier	loci,	and	the	fact	that	RDA	performance	met-
rics	(adjusted-	R2	and	ps)	were	maximized	with	variables	at	any	of	the	
tested grain sizes, indicates that the observed patterns remain valid.

These results call for a need to reassess the general paradigm of 
increased landscape genetic model accuracy with finer grain vari-
ables	(Cushman	&	Landguth,	2010),	particularly	when	investigating	

F I G U R E  3 An	example	at	study	site	Essets	(ESS)	to	illustrate	how	a	GEA	model	built	with	forward-	selected	variables	(VS- fwd)	can	be	used	
to	detect	a	candidate	SNP	under	selection	and	associate	it	with	a	given	environmental	variable	(VRM	at	2 m).	Biplots	(a)	show	the	loading	
distribution	of	SNPs	(points;	multiplied	by	20	to	ease	visualization)	and	environmental	variables	(arrows)	across	the	first	three	RDA	axes,	
where	the	projections	in	the	RDA	space	were	used	to	assign	each	outlier	locus	to	the	predictor	variable	with	the	largest	absolute	scalar	
value. The outlier loci are color- coded to the most associated predictor variable of the same colored label. The location and significance of 
SNPs	across	the	genome	was	visualized	with	a	Manhattan	plot	(b),	where	outlier	SNPs	are	color-	coded	by	their	associated	variable.	In	this	
example,	locus	4719480	in	the	Aa_G76360.h1	gene	of	the	MYB29	complex	on	chromosome	8	(indicated	by	yellow	star	in	(a)	and	(b))	was	
most	strongly	influenced	by	VRM	at	2 m.	The	logistic	regression	between	the	GG	genotype	at	this	locus	with	VRM	at	2 m	(c)	was	used	to	
calculate	the	probability	of	finding	the	GG	genotype	across	the	ESS	(d).



    |  13 of 19GUILLAUME et al.

sessile	organisms	in	highly	heterogeneous	environments	(Gottfried	
et al., 1998).	 This	 is	 not	 to	 say	 that	 variables	 at	 0.5 m	 resolution	
should be discounted, as they can be ecologically relevant depend-
ing	on	variable	type.	 Indeed,	0.5 m	variables	 improved	RDA	model	
performance	 at	 one	 site	 (MAR)	 in	 the	 present	 study.	Additionally,	
common	enriched	GO	terms	and	similar	BPs	were	detected	between	
the	present	study	and	a	univariate	GEA	analysis	using	topographic	
variables	only	at	0.5 m	spatial	resolution,	including	GO	terms	relating	
to	defence	responses	at	ESS	(Rogivue	et	al.,	2023).	However,	it	was	
only	when	using	the	mixed	resolution	VS- fwd model that enriched 
GO terms were detected at the regional level, which were missed 
in	 the	VS- single models. Therefore, we emphasise that a spectrum 
of potential ecologically important processes be captured using 
variables	 at	 multiple	 levels	 of	 complexity	 (Anderson	 et	 al.,	 2010; 
Cushman & Landguth, 2010),	which	can	be	done	by	integrating	pre-
dictor variables at multiple nested spatial resolutions.

4.2  |  Local adaptation is local

Signatures of local adaptation associated with multiscale variables 
were specific for each population. Differences in candidate loci and 
gene functions putatively under selection were found between sites 
despite shared genomic background due to common recent history 
(Rogivue	 et	 al.,	 2018),	 potential	 parallel	 adaptation	 due	 to	 similar	
environmental	 pressures	 (Wos	 et	 al.,	 2022),	 and	 increased	 GEA	
model	power	through	sampling	across	a	range	of	habitats	(Selmoni	
et al., 2020).	Moreover,	while	each	model	detected	 relatively	high	
number	of	candidate	genes	under	selection,	only	four	MFs	and	BPs	
were shared amongst multiple sites across the variable set models 
(Table 2),	with	none	shared	amongst	all	local	sites.	Similarly,	in	a	re-	
assessment of previously identified candidate SNPs using univariate 
GEA	models,	only	11	(31%)	putative	genes	originally	detected	in	one	
set of study populations of Arabidopsis halleri were found in an inde-
pendent set of 18 other populations of the same species across the 
Swiss	Alps	(Rellstab	et	al.,	2017).

The paucity of common enriched genes associated with high- 
resolution topographic variables between four local populations 
in the present study echoes conclusions from a continental- extent 
genome-	wide	 association	 study	 (GWAS)	 in	 Arabidopsis thaliana 
(Lopez-	Arboleda	et	al.,	2021)	that	emphasized	the	detection	of	mo-
lecular patterns are highly sensitive to sample design and population 
structure, with some phenotypic traits influenced by distinct genetic 
effects in each subpopulation. Such specification of local adaptation 
is likely exacerbated in the present study due to limited gene flow in 
highly	selfing	populations	(Buehler	et	al.,	2012;	Zeitler	et	al.,	2023)	
that experience high LD due to reduced recombination rates 
(Nordborg,	2000;	Yant	 and	Bomblies,	2017).	Additionally,	 as	 com-
plex phenotypic responses are generally controlled by many SNPs 
of	small	effect	sizes	(Höllinger	et	al.,	2019),	which	has	been	shown	in	
populations	of	this	species	(Zeitler	et	al.,	2023),	selection	likely	re-
sults in multiple molecular solutions converging on similar functional 
phenotypic	 responses	 in	different	populations	 (Lasky	et	 al.,	2023; 

Yeaman,	2015).	Very	few	outlier	loci	were	detected	at	the	regional	
level	when	compared	to	the	local	RDAs.	Despite	the	reduced	false	
discovery	rates	and	increased	power	of	RDA	analyses	to	detect	mul-
tilocus	adaptation	compared	to	traditional	univariate	GEA	methods	
(Capblancq	et	al.,	2018;	Forester	et	al.,	2018),	signals	of	parallel	local	
adaptation	due	 to	polygenic	 traits	may	still	be	missed	 (Le	Corre	&	
Kremer,	2012; Lotterhos, 2023; Rellstab et al., 2017).	This	 is	exac-
erbated in selfing populations for which the combined effects of 
lower effective population sizes, increased homozygosity, reduced 
effective recombination, stronger drift, greater linkage of beneficial 
mutations to deleterious ones, and the higher rate of fixation of mal-
adaptive alleles, makes it extremely difficult to interpret patterns of 
adaptation	and	strength	of	selection	pressures	(Yant	and	Bomblies,	
2017).	Additionally,	as	this	study	was	intended	to	assess	the	effect	
of	multi-	resolution	environmental	variables	on	GEAs,	rather	than	to	
perform an exhaustive evaluation of local adaptation, analyses were 
limited	 to	 high-	impact	 intragenic	 SNPs.	As	 such,	 other	 outlier	 loci	
due to LD in intergenic and non- high impact intragenic SNP regions 
may have been overlooked, where it may be more informative to 
use whole- genome SNP data than just putatively causal sites when 
an	exhaustive	search	for	 loci	under	selection	 is	 required	 (Le	Corre	
&	Kremer,	2012; Lotterhos, 2023).	Future	studies	might	consider	a	
polygenic	framework,	specifically	investigating	gene	sets	(e.g.	poly-
sel; Daub et al., 2013),	which	could	help	detect	multiple	small-	effect	
loci involved in local adaptation, and include intergenic regions 
within LD of intragenic SNPs into analyses.

4.3  |  Relevance of topographic variables

Topographic variables are powerful tools to investigate local adapta-
tion in heterogeneous environments such as mountainous regions. 
Here,	DEM-	derived	variables	across	six	spatial	resolutions	explained	
between 10% and 30% of intragenic variation at each study site 
based on the uncorrected R2 model values, detecting high- impact 
genes potentially under selection across the genome of A. alpina. 
Interestingly,	these	topographic	variables	captured	evidence	of	BPs	
potentially involved in local adaptation, such as the association be-
tween	VRM	2	m	and	molecular	 response	 to	 insect	herbivory.	This	
follows a suite of studies that have successfully used topographic 
variables to investigate plant distributions across heterogeneous al-
pine	environments	(e.g.,	Gottfried	et	al.,	1998; Guillaume et al., 2021; 
Lassueur et al., 2006),	as	well	as	to	detect	genetic	responses	to	envi-
ronmental	conditions	(e.g.,	Leempoel	et	al.,	2018).	Their	usefulness	
owes to the fact that topographic variables are specifically designed 
as proxies for ecologically relevant environmental variables, includ-
ing	 solar	 radiation	 (Wilson	 &	 Gallant,	 2000),	 terrain	 ruggedness	
(Sappington	et	al.,	2007),	soil	wetness	(Beven	&	Kdirkby,	1979),	soil	
pH	(Böhner	&	Selige,	2006)	and	climate	(Gottfried	et	al.,	1998).

It	has	been	suggested	that	because	DEM-	derived	variables	can	
capture small- scale terrain variation that drives mosaics of micro-
climates	across	landscapes	(Gottfried	et	al.,	1998;	Hörsch,	2003; 
Irl et al., 2015;	Scherrer	&	Körner,	2011),	 they	are	more	relevant	
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for investigations of local adaptation at finer spatial scales than 
climatic	variables	(Fischer	et	al.,	2013).	This	is	not	to	say	that	cli-
mactic variables are irrelevant for investigating local adaptation. 
Indeed, because topographic- induced micro- climates can vary 
over short distances, using fine- resolution climatic variables as 
predictors can improve the modelling of plant trait responses 
to	 alpine-	arctic	 conditions	 (e.g.,	 Kemppinen	 &	 Niittynen,	 2022; 
Scherrer	&	Körner,	2011).	Rather,	because	these	climatic	variables	
must be interpolated from weather stations or relatively- coarse- 
grained	remote	sensed	data	(Gottfried	et	al.,	1998),	climatic	vari-
ables	 may	 be	 more	 appropriate	 for	 regional-	level	 analyses	 (Irl	
et al., 2015).	This	may	be	particularly	true	for	studies	investigating	
long- term, multigenerational processes relevant across larger geo-
graphical	extents	(Fischer	et	al.,	2013).

Of the nine independent derived variables selected to proxy 
for ecologically relevant characteristics in the present study, the 
top-	associated	variables	were	those	representing	hydrology	 (HCU,	
SWI),	 solar	 radiation	 (EAST/NORTH,	SVF,	TI6),	 climate	 (WEX)	 and	
terrain	 ruggedness	 (VRM),	 where	 associations	 with	 elevation	 and	
slope	 (SLO)	were	primarily	only	detected	 in	 the	analysis	at	 the	re-
gional	level.	The	dependence	of	RDA	models	on	grain	size	may	be	at-
tributed to changes in interactions between variables with changes 
in spatial resolutions, where the ecological relevance of a given vari-
able,	and	therefore	its	ability	to	detect	genes	under	selection	(Loke	
& Chisholm, 2022; Pradervand et al., 2014; Thompson et al., 2001),	
changes	as	it	is	generalized	to	different	spatial	resolutions	(Dormann	
et al., 2013;	Kalbermatten	et	al.,	2012).	Here,	only	the	top	variable	
associated with each SNP is described, yet it may be that another 
correlated variable is the one exerting a selection pressure on the 
detected loci. We found that up to 10% of high- impact genes at local 
sites and 20% at the regional had outlier SNPs associated with dif-
ferent variables. Tight correlations between some variables across 
different spatial resolutions meant that the same GO terms were 
associated with different variables depending on the spatial resolu-
tion and the variable set used. These correlations amongst variables 
highlight that once SNP–environment associations are detected, the 
associations require further testing to validate the outlier loci and 
their	drivers	identified	in	the	GEA	(described	in	Lasky	et	al.,	2023).

Elevation	was	 included	as	a	variable	to	act	as	a	proxy	for	tem-
perature	and	biotic	factors	in	general	(Ashcroft	&	Gollan,	2013;	Hof	
et al., 2012).	Despite	being	the	first	variable	retained	in	the	forward	
selection models, it was rarely associated with genes at local sites, 
though	it	was	a	top	association	in	the	regional	VS- single models. This 
is likely because elevation was highly confounded with other fac-
tors at local sites, including population structure, latitude, and some 
derived variables. The inclusion of elevation as a variable in species 
distribution	modelling	is	debated	(reviewed	in	Hof	et	al.,	2012).	The	
primary argument against its inclusion is that organisms do not re-
spond to elevation per se, but rather to other variables that co- vary. 
Even	temperature,	for	which	elevation	proxies,	has	been	shown	to	
not contribute any substantial improvements in plant species dis-
tribution	 modelling	 (Pradervand	 et	 al.,	 2014),	 likely	 as	 tempera-
ture is dependent on topographic features including sky view and 

northness	(de	Villemereuil	et	al.,	2018).	Yet	other	studies	across	large	
spatial extents have found that elevation is amongst one of the most 
important	factors	for	predicting	forest	distribution	(Hörsch,	2003).	
As	such,	we	urge	caution	when	using	elevation	in	GEA	models,	and	
suggest to instead include other topographical variables that may 
more specifically proxy for temperature and humidity at small scales 
(Buri	et	al.,	2020),	such	as	wetness	 indices,	VRM,	slope	 (Leempoel	
et al., 2015)	 and	 solar	 radiation	 levels	 during	 growing	 seasons	
(Körner,	2007).

4.4  |  Integrating multiscale variables into 
GEA models

The	sensitivity	of	GEA	models	to	grain	size	can	make	it	challenging	
to incorporate variables at adequate spatial resolutions. This study 
supports a method to integrate variables at spatial resolutions op-
timized for a specific location by leveraging a multiscale approach 
(Woodcock	&	Strahler,	1987).	Here,	a	fine-	grained	DEM	is	first	gen-
eralized	 to	multiple	 spatial	 resolutions	 (Kalbermatten	 et	 al.,	2012)	
from which topographic variables of interest can be derived. Then, a 
forward	selection	model	(Blanchet	et	al.,	2008)	is	used	to	retain	only	
predictor variables at spatial resolutions most relevant for explain-
ing	genetic	variation,	specific	to	each	site.	The	resulting	VS- fwd	RDA	
models were generally just as good at explaining genetic variation 
as	the	top	performing	single	resolution	models	(VS- single).	 In	addi-
tion	to	their	high	model	performance,	these	VS- fwd models detected 
the	same	signatures	of	selection	as	the	VS- single models, with very 
few	uniquely	 identified	 outlier	 loci.	 Furthermore,	 only	 the	VS- fwd 
model detected enriched GO terms at the regional level, indicating 
that signatures of selection may be missed if using a single spatial 
resolution. These results support this method as an appropriate and 
convenient way to choose variables at multiple spatial resolutions 
for	use	 in	GEA	models	to	detect	candidate	genomic	regions	under	
selection.

The forward selection model provides one predictive approach 
to maximise explained genetic variation without considering the eco-
logical	or	mechanistic	drivers	of	genetic	variation	(Mac	Nally,	2000),	
where different subsets of predictor variables could be selected 
by	 the	model	 due	 to	 small	 perturbations	 in	 the	 data	 (Araújo	 and	
Guisan, 2006).	Consequently,	 such	 resulting	 associations	between	
genotypes and the environmental variables need to be interpreted 
with caution. Indeed, correlations between selected variables may 
remain large when using the forward selection approach, such that 
it can be difficult to disentangle which variable is driving detected 
associations. Likewise, this approach may remove the variables in-
volved	 in	 local	adaptation,	potentially	 impacting	downstream	GEA	
results and missing genomic regions under selection.

Alternative	 predictive	 or	 explanatory	 approaches	 to	 the	 for-
ward	 selection	 model	 exist	 (Mac	 Nally,	 2000).	 While	 PCAs	 can	
condense a large number of potentially collinear variables into 
fewer, synthetic variables, this approach should be reserved for 
when	 the	 ecological	 interpretation	 of	 variables	 to	 PCA	 loadings	
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is	straightforward	(Rellstab	et	al.,	2015).	When	raw	variables	are	
preferred, a pairwise correlation analysis can be used to retain 
only variables independent above a threshold of, e.g., |r| ≥ 0.	 8	
(Fischer	et	al.,	2013),	or	using	variation	inflation	factors	(VIF)	with	
a threshold of, e.g. <10, to iteratively remove the most highly cor-
related	factors	until	only	independent	variables	remain	(Dormann	
et al., 2013).	Alternatively,	machine	learning	approaches,	such	as	
random	forest	algorithms	(Genuer	et	al.,	2010),	can	be	used	to	se-
lect variables. The best selection method for a study will depend 
on the analytical goals or mechanistic understanding of the study 
system	(Capblancq	&	Forester,	2021),	and	it	would	be	interesting	
to test how these alternative variable selection methods compare 
to	the	VS- fwd model in future research.

While	the	present	study	was	focused	on	very	high	resolutions	(i.e.,	
≤16 m),	such	fine	resolutions	below	30 m	are	not	always	available.	The	
relevance of multi- resolution variables between commonly- acquired 
resolutions	of	30 m	to	1 km	(e.g.,	Fick	&	Hijmans,	2017;	NASA	Shuttle	
Radar	Topography	Mission	(SRTM),	2013)	for	detecting	molecular	sig-
natures of adaptation would be interesting to investigate, particularly 
when researching mobile or highly dispersing organisms, or when con-
ducting studies over large, regional study extents. Ideally, research-
ers would consider the necessary spatial scales that are hypothesized 
to	be	important	for	a	particular	context	prior	to	sampling	(Anderson	
et al., 2010;	 Capblancq	 &	 Forester,	2021),	 such	 that	 both	 environ-
mental and genomic data are collected at appropriate spatial scales 
(Dauphin	 et	 al.,	2023)	 to	 allow	 for	 the	 integration	of	multiscale	 ap-
proaches prior to commencing sampling. The finest grain size should 
be at least slightly smaller than the average home range or dispersal 
distance	of	an	organism	(Dale	and	Fortin,	2014),	while	the	maximum	
grain size should dictate the spacing of individuals sampled.

4.5  |  Conclusions

Ecologists	and	evolutionary	biologists	incorporating	environmental	
variables into their models must decide on the discrete spatial scale 
to use in each analysis, with consequences for model outputs and 
subsequent	downstream	analyses.	Although	guidelines	to	select	the	
size	and	shape	of	sampling	units	have	been	available	for	over	25 years	
(e.g.,	Legendre	&	Legendre,	1998),	researchers	usually	make	arbitrary	
decisions with regards to selected spatial scale, often with little to no 
justification	(Dauphin	et	al.,	2023; Dungan et al., 2002).	Here,	sys-
tematic	 comparisons	 of	GEA	models	 highlighted	model	 sensitivity	
to spatial resolutions of explanatory variables, where optimal model 
results depended on variable type, terrain characteristics, and study 
extent.	A	promising	way	to	integrate	optimal	spatial	resolutions	into	
GEAs	is	using	fine-	grain	variables	as	the	base	of	a	multiscale	gener-
alization to produce variables at multiple spatial resolutions, before 
retaining only those that are most relevant for a particular context. 
It is becoming increasingly important to develop methods to effec-
tively select explanatory variables at spatial resolutions appropriate 
for specific ecological questions, especially as high- resolution envi-
ronmental and genetic datasets become ever- more readily available. 

The adoption of multiscale variables in applied conservation frame-
works means that model outputs will have direct impacts on natural 
resource management decisions.

Only	the	multivariate	RDA	method	was	 investigated	here.	This	
method was selected due to the more realistic representation of 
genotype–environment	 interactions	 (Lasky	 et	 al.,	 2023),	 while	
maintaining lower false- positive and higher true- positive rates than 
commonly	 used	 univariate	 GEA	 methods	 (Forester	 et	 al.,	 2018).	
Landscape genomics would benefit from further investigations into 
the	sensitivity	 to	 spatial	 resolutions	of	univariate	GEA	models,	 in-
cluding	 latent	 factor	mixed	modelling	 (LFMM;	Frichot	et	al.,	2013)	
and	SamBada	(Duruz	et	al.,	2019; Stucki et al., 2017).	Furthermore,	
investigating the multiscale variable concept into landscape genomic 
analyses in other environments, such as seascapes and riverscapes, 
would be interesting as environmental variables are becoming avail-
able	 at	 ever	 finer	 resolutions.	 A	 novel	 complementary	 approach	
that could be used to select relevant spatial resolutions and validate 
multiscale	GEA	findings	involves	using	wavelets	to	decompose	the	
spatial	 patterns	 of	 genotypes	 observed	 across	 landscapes	 (Lasky	
et al., 2022).	We	emphasise	that	while	GEA	models	are	most	useful	
for generating hypotheses, the function of candidate loci must still 
be validated with field or laboratory studies. Going forward, the ef-
fect of spatial scale in evolutionary ecology models must be carefully 
considered, where studies will need to be designed taking multiscale 
variables into account. We encourage continued investigation into 
how to best incorporate multiple spatial scales into models and 
stress the importance of justifying choice of spatial resolutions.
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