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Abstract
Landscape genomic analyses associating genetic variation with environmental vari-
ables are powerful tools for studying molecular signatures of species' local adaptation 
and for detecting candidate genes under selection. The development of landscape 
genomics over the past decade has been spurred by improvements in resolutions 
of genomic and environmental datasets, allegedly increasing the power to identify 
putative genes underlying local adaptation in non-model organisms. Although these 
associations have been successfully applied to numerous species across a diverse 
array of taxa, the spatial scale of environmental predictor variables has been largely 
overlooked, potentially limiting conclusions to be reached with these methods. To 
address this knowledge gap, we systematically evaluated performances of genotype–
environment association (GEA) models using predictor variables at multiple spatial 
resolutions. Specifically, we used multivariate redundancy analyses to associate 
whole-genome sequence data from the plant Arabis alpina L. collected across four 
neighboring valleys in the western Swiss Alps, with very high-resolution topographic 
variables derived from digital elevation models of grain sizes between 0.5 m and 16 m. 
These comparisons highlight the sensitivity of landscape genomic models to spatial 
resolution, where the optimal grain sizes were specific to variable type, terrain char-
acteristics, and study extent. To assist in selecting variables at appropriate spatial 
resolutions, we demonstrate a practical approach to produce, select, and integrate 
multiscale variables into GEA models. After generalizing fine-grained variables to mul-
tiple spatial resolutions, a forward selection procedure is applied to retain only the 
most relevant variables for a particular context. Depending on the spatial resolution, 
the relevance for topographic variables in GEA studies calls for integrating multiple 
spatial scales into landscape genomic models. By carefully considering spatial resolu-
tions, candidate genes under selection by a more realistic range of pressures can be 
detected for downstream analyses, with important applied implications for experi-
mental research and conservation management of natural populations.
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1  |  INTRODUC TION

Rapidly changing climatic conditions emphasise an urgent need to 
understand the capacity of organisms to adapt to novel environ-
ments. By studying local adaptation, where populations display in-
creased fitness in their local environment (Kawecki & Ebert, 2004), 
researchers and conservation practitioners can gain insights into 
levels of genetic variance both within and among populations to un-
derstand their adaptive potential to future conditions (Hoffmann & 
Sgró, 2011; Whitlock, 2015). Technological and analytical advances 
over the last decade have unlocked the identification of genomic 
regions putatively involved in adaptation (Hoban et al., 2016), form-
ing the foundation for experimental testing of adaptive phenotypic 
responses to heterogeneous environments (Lasky et  al.,  2023; 
Savolainen et al., 2013). Although genome scans of genetic differ-
entiation and the detection of outlier loci can identify candidate 
genomic regions under selection (Lotterhos & Whitlock, 2014), en-
vironmental variables must be integrated into analyses to identify 
ecological factors potentially driving the adaptive process (i.e., se-
lective agents) and predict how organisms might respond to future 
environmental conditions (Hoban et  al.,  2016; Lasky et  al.,  2023; 
Rellstab et al., 2016).

Genotype–environment association (GEA) methods of landscape 
genomics are an exploratory bottom-up approach to study genomic 
imprints of local adaptation and identify candidate genomic regions 
under selection. Used to correlate genetic variation segregating in 
populations with the environmental conditions that they experience 
(Rellstab et al., 2015), these methods successfully identified putative 
genes involved in local adaptation across various plant and animal 
species (e.g., Bogaerts-Márquez et  al.,  2021; Selmoni et  al.,  2021; 
Todesco et  al.,  2020). Among the many methods available to per-
form GEAs (Forester et  al.,  2018), multivariate redundancy analy-
ses (RDAs) represent promising approaches to detect signatures of 
selection (Capblancq & Forester, 2021; Forester et al., 2016). RDA 
models work by maximizing the explained responses of all input loci 
simultaneously with regards to multiple environmental variables 
(Legendre & Legendre,  1998). Because of this, they have recently 
gained traction in landscape genomic analyses as they provide more 
ecologically relevant models of adaptation than traditional univari-
ate GEA methods (Lasky et al., 2023), including the popular latent 
factor mixed models (LFMM; Frichot et al., 2013) or the SamBada ap-
proach (Duruz et al., 2019; Stucki et al., 2017). Additionally, simula-
tions highlight their robustness to demography and sampling designs 
(Forester et  al.,  2018) while maintaining higher power and lower 
false discovery rates than traditional univariate methods (Capblancq 
et al., 2018). Though improvements in resolutions of genomic and 
environmental datasets have spurred the development of these GEA 
methods (Dauphin et al., 2023), the impact of using high-resolution 

environmental variables on the detection of putative genes under 
selection is still largely speculative and unknown. To avoid ambigu-
ity and facilitate discussion (Anderson et al., 2010), here we define 
spatial resolution as the grain size of environmental variables, extent 
as the boundary size of the study site, and level as the difference 
between individual study sites (local level) and their agglomeration 
(regional level).

The issue of spatial scale in ecology is not new (Levin, 1992), yet a 
current limitation of evolutionary ecology methods, including GEAs, 
is that the full implications of spatial scale on the reliability, accu-
racy and interpretation of model results remains unknown (Dungan 
et al., 2002). Patterns observed in nature are the result of processes 
occurring across a continuum of nested spatial scales, where model-
ling requires a biologically arbitrary selection of variables at distinct 
spatial resolutions (Fitzpatrick & Keller,  2015). Despite awareness 
of this sensitivity, employing the finest spatial resolution available, 
often with little to no justification, remains the main paradigm 
(Moudrý et al., 2023). While “finer-is-better” may be acceptable for 
variables ≥90 m (Chauvier et al., 2022; Cushman & Landguth, 2010), 
the accessibility of very high-resolution terrain variables at resolu-
tions ≤1 m (e.g., Kasser et al., 2019) calls for spatial resolutions to be 
more thoroughly assessed prior to analyses. For instance, species 
distribution models of an alpine plant were optimized when using 
resolutions between 2 and 16 m (Guillaume et al., 2021), despite ex-
pectations that the finest resolutions ≤0.5 m would seem most rele-
vant across such rugged terrain.

Topographic variables derived from digital elevation models 
(DEMs) have gained popularity in evolutionary ecology modelling to 
complement climatic variables when describing spatial patterns of 
plant diversity (Irl et al., 2015; Scherrer & Körner, 2011) and have 
been successfully implemented in species distribution modelling 
(e.g., Gottfried et  al.,  1998; Guillaume et  al.,  2021) and landscape 
genomic analyses (e.g., Leempoel et al., 2018). A plethora of topo-
graphic variables can be derived, which are classified into: (i) pri-
mary terrain attributes calculated directly from DEMs (including 
slope, curvature, and aspect as northness and eastness); and (ii) 
secondary terrain attributes derived from the primary attributes 
to describe a given pattern as a function of a process (e.g., vec-
tor ruggedness measure, soil wetness indices, and solar radiation; 
Wilson & Gallant,  2000). These secondary terrain attribute vari-
ables have been specifically developed to represent measured en-
vironmental characteristics, including the air humidity, soil moisture, 
air temperature (e.g., Leempoel et al., 2015), as well as biophysical 
processes including erosion, water flow, and solar radiation (e.g., 
Moore et al., 1991). Care must be taken when selecting the spatial 
resolution of these variables (Anderson et  al.,  2010), as the same 
variable type that is generalized to different spatial resolutions can 
describe different terrain processes (Keitt & Urban,  2005). Fine 
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resolutions can add high amounts of unnecessary detail and noise 
(Kalbermatten et al., 2012), whereas coarse resolutions may gener-
alise over important topographic structures and thus miss relevant 
ecological patterns (Pain, 2005). The spatial resolution of a variable 
therefore may change its relevance in different ecological contexts 
(Chauvier et al., 2022; Leempoel et al., 2015).

The optimal spatial resolution for ecological modelling de-
pends on species’ biology (e.g., Anderson et  al.,  2010; Loke & 
Chisholm, 2022), study region extent (e.g, Anderson et al., 2010), 
terrain topography (e.g., Guillaume et al., 2021), and variable type 
(e.g., Chauvier et al., 2022; Leempoel et al., 2015), making it chal-
lenging to generalise the selection of the most appropriate spa-
tial resolution for use in evolutionary ecology models (Woodcock 
& Strahler,  1987). One option is to systematically compare the 
performance of models built with predictor variables at various 
spatial resolutions, where different resolution variables can be pro-
duced using a multiscale approach (Woodcock & Strahler,  1987). 
For DEM-derived variables, multiscale can be achieved using a 
Laplace-gradient wavelet transformation to first generalise a fine-
resolution DEM to coarser resolutions, extracting the most prom-
inent nested topographic patterns at each step (Kalbermatten 
et  al.,  2012) before deriving relevant terrain variables (Leempoel 
et al., 2015). A draw-back to this systematic method is that it can 
be time consuming and impractical to investigate each combination 
of variable type and spatial resolution, particularly when investi-
gating multiple study sites with different terrain characteristics. An 
alternative is to obtain the full range of desired variables at multi-
ple resolutions before implementing a selection procedure to re-
tain only the variables at resolutions that are most relevant to the 
data. In species distribution modelling this has been achieved by re-
taining the variables at resolutions that best discriminate presence 
data from random background points (e.g., Guillaume et al., 2021; 
Rochat et al., 2021) or using an automatic collinear variable selec-
tion algorithm (Adde et al., 2023); in landscape genomics by using 
a stepwise forward selection procedure (Blanchet et al., 2008) to 
select the variables that maximise genomic variance explained (e.g., 
Capblancq & Forester, 2021). However, the relevance of such ap-
proaches in GEA models are yet to be investigated.

Here, we implement an approach to obtain environmental prox-
ies at multiple resolutions for conducting GEA analyses, looking 
to assess environmental variable effects on genomes at different 
spatial resolutions. Specifically, multivariate RDA models are used 
to combine very-high resolution genomic and environmental data-
sets, with the aims of (i) systematically assessing the sensitivity of 
GEA models to topographic environmental variables at multiple spa-
tial resolutions, and (ii) investigating a method to select multiscale 
variables for use in GEA models. This work falls in the context of 
a landscape genomics study on the perennial herb Arabis alpina L., 
sampled across four alpine valleys in the western Swiss Alps. As spe-
cies distribution modelling predictions in this system were optimized 
when using variables ranging from 2 to 16 m (Guillaume et al., 2021), 
depending on site characteristics and variable type, it is hypothe-
sized that DEM-derived variables of 2–16 m spatial resolutions will 

be most relevant for detecting signatures of selection in this system. 
We highlight the importance of carefully considering and justifying 
the spatial resolution of predictor variables used in evolutionary 
ecology models and demonstrate a practical method to produce, se-
lect, and integrate multiscale variables into GEA models. By carefully 
considering spatial resolutions, candidate genes under selection can 
be more accurately detected for downstream analyses, with import-
ant applied implications for experimental research and conservation 
management of natural populations.

2  |  METHODS

2.1  |  Study species and sample sites

Arabis alpina (Brassicaceae) is an arctic-alpine perennial plant that is 
becoming a widely used model organism to study ecological genom-
ics (reviewed in Wötzel et al., 2022). In the Alps, individuals occur 
mostly in high-alpine areas with rugged terrain, typically charac-
terized by calcareous scree slopes and unstable rocky structures 
(Buehler et al., 2012). Arabis alpina has a relatively small genome of 
approximately 375 Mbp (Jiao et al., 2017; Willing et al., 2015). The 
present study uses publicly available data from Rogivue et al. (2019a) 
containing information on 304 geo-referenced A. alpina individuals 
located across four valleys in the western Swiss Pre-Alps: Essets 
(ESS; N = 70), Martinets (MAR; N = 96), Para (PAR; N = 69) and 
Pierredar (PIE; N = 69) (Table 1; Figure S1). For each site, individu-
als were sampled in 10 plots of 6–10 individuals, with at least 1 m 
between individuals and a maximum of 10-30 m between individuals 
of a plot (for schema, see figure 1 in Rogivue et al., 2023). Individuals 
were geo-referenced to an accuracy of ±2 cm with a Differential 
Global Positioning System (DGPS) receiver.

Although these four populations have a shared post-glacial an-
cestry (Rogivue et al., 2018), investigations of genome-wide single-
nucleotide polymorphism (SNP) data revealed restricted historical 
gene flow between populations, with pairwise FST values between 
0.09 and 0.18 (Rogivue et  al.,  2019a). Additionally, low observed 
heterozygosity (HO between 0.05 and 0.17) corresponded to sig-
nificantly high inbreeding coefficients (FIS between 0.18 and 0.28) 
coupled with high levels of selfing in this region (Zeitler et al., 2023). 
Given predominant selfing requiring insect pollinators and limited 
dispersal capacities of small wind-dispersed seeds between moun-
tain valleys, gene flow is expected to occur over short distances in 
this species (<1 km; Ansell et al., 2008; Buehler et al., 2012). The dis-
tribution and orientation of the valleys (>7 km between each north-
facing valley) support the four sites as independent replicates, with a 
common genomic background and comparable genetic variation, for 
studying local adaptation.

We investigated the impacts of spatial scale on the detection 
of local adaptation at the local level by assessing each of the four 
valleys independently (local: ESS, MAR, PAR, and PIE), as well as at 
the regional level by grouping the four valleys together (regional). A 
schema providing a workflow of the methods is given in Figure S1.
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2.2  |  Environmental data

The four valleys were characterized using topographic variables 
derived from DEMs at multiple spatial resolutions, following the 
methods of Guillaume et al. (2021). Raw LiDAR (light detection and 
ranging) point clouds produced by the Direction of Land Registry 
and of Geoinformation (DCG), Canton of Vaud, Switzerland, were 
obtained from the ASIT Vaud website (www.​asitvd.​ch; accessed 
12.9.2019) and selected to cover the target study site extents and 
surrounding mountain topography. Point clouds were processed 
using CloudCompare GLP software (version 2.10.2, 2020; retrieved 
from http://​www.​cloud​compa​re.​org/​) to produce DEMs with a 0.5 m 
grain size geo-referenced in the Swiss reference system (MN95: 
CH1903+/LV95).

To obtain multiscale variables, the base DEMs at 0.5 m were 
generalized to 1, 2, 4, 8, and 16 m resolutions using a Gaussian pyr-
amid algorithm in MATLAB (version R2019a, 2019; retrieved from 
https://​www.​mathw​orks.​com) with the impyramid function, follow-
ing the work of Kalbermatten et  al.  (2012). These spatial resolu-
tions were chosen following a multiscale species distribution model 
study using A. alpina occurrence data at MAR and PAR, where topo-
graphic variables were most important at resolutions of 2–16 m 
(Guillaume et al., 2021).

The same nine variable types relating to terrain morphometry, 
hydrology, solar radiation, and climate were derived from each of the 
DEMs at the six spatial resolutions, using SAGA GIS (v7.5.0; Conrad 
et al., 2015). The nine DEM-derived variable types used here include 
the primary terrain attributes of slope (SLO), horizontal curvature 
(HCU), and aspect in the form of eastness (EAST – sine of aspect) 
and northness (NORTH—cosine of aspect), as well as the secondary 
terrain attributes of vector ruggedness measure (VRM), the SAGA 
wetness index (SWI), the sky view factor (SVF), total irradiance in 
June (TI6), and the wind exposure index (WEX). Study sites were 
characterized across the site extents with mean and standard de-
viation of the nine variable types at the middle resolution of 2 m. 

Mean terrain ruggedness (assessed as VRM) was used to classify 
the sites into homogeneous and heterogeneous terrain sites (Loke 
& Chisholm,  2022). Detailed descriptions and parameters used to 
produce the variable types can be found in Table S1.

The geographic coordinates of the 304 sampled plants were 
used to extract corresponding environmental values from each of 
the 54 DEM-derived variables (nine variable types at six spatial res-
olutions), as well as elevation at 0.5 m, using the extract function of 
the raster R package (v.3.5.15; Hijmans, 2022). Upon generalization 
of variables toward coarser resolutions, an average of four samples 
occurred in the same grid at the 16 m resolution (up to maximum of 
10 individuals). While this pseudo-replication could be handled by it-
eratively running GEA analyses with randomly removed individuals, 
we retained all samples to maintain both GEA model power (Selmoni 
et al., 2020) and consistent sample sizes for comparisons between 
models (Guillaume et al., 2021; Guisan et al., 2007).

Environmental variable values were standardized (i.e., cen-
tered and scaled) for each local and regional analysis to remove 
biases arising from differences in variable units (Legendre & 
Legendre, 1998). Due to the large number of variables produced 
upon multiscale generalization, independence amongst the vari-
able types was assessed at the finest resolution of 0.5 m using a 
Spearman rank correlation with a threshold of |rs| ≥ 0.8 (Dormann 
et al., 2013) for each local site to minimise the number of variable 
types for multiscale generalization. Principal component analysis 
(PCA) based on the 0.5 m DEM-derived variables was performed 
for each local site to verify that plots were sampled across a range 
of conditions using the prcomp function in the stats R package 
(v.4.1.2; R Core Team, 2021).

To investigate how to best select variables at appropriate 
spatial resolutions for use in GEA models, we systematically 
tested eight sets of DEM-derived variables for each site and level 
(Table  2). The first six Variable Sets (shortened to “VS”) were 
based on the nine variable types at one of the following spatial 
resolutions: 0.5, 1, 2, 4, 8, or 16 m, along with elevation at 0.5 m, 

TA B L E  1 Location and genomic information (number of SNPs used in analyses) for the four study sites (ESS, MAR, PAR, and PIE) 
separately (local; A–D) and grouped (regional; E).

(A) ESS (B) MAR (C) PAR (D) PIE (E) Regional

Latitude 46°16′2″N 46°12′37″N 46°23′23″N 46°19′13″N

Longitude 7°9′52″E 7°5′12″E 7°9′6″E 7°11′35″E

Overall orientation N NE NNE NW N

Target study site area (km2) 0.7 0.56 0.51 0.43 2.2

Sampled plant individuals 70 96 69 69 304

Genomic data

Total SNPs 220,214 113,900 287,261 160,322 291,396

Intergenic SNPs 183,647 94,904 240,404 133,888 243,622

Intergenic SNPS: LD pruned 6957 5991 7555 5705 11,813

Intragenic SNPs 36,567 18,996 46,857 26,434 47,774

Intragenic SNPs: high-impact 13,945 7813 17,537 10,757 22,806

Genes with high-impact SNPs 6331 3831 7832 5196 9632

http://www.asitvd.ch
http://www.cloudcompare.org/
https://www.mathworks.com
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such that each of these single resolution variable sets (“VS-single”) 
had 10 predictor variables. These will be referred to as “VS-0.5m”, 
“VS-1m”, etc. The seventh variable set (“VS-all”) included all nine 
variable types at all six spatial resolutions, plus elevation at 0.5 m, 
giving a total of 55 predictor variables. As this produced many 
correlated predictor variables, the eighth variable set (“VS-fwd”) 
was created from the VS-all model. To produce VS-fwd, a step-
wise forward model selection procedure was implemented to 
maximise the genetic variance of the intragenic SNP dataset 
(described in Section  2.3 below) explained by the DEM-derived 
variables (Blanchet et  al.,  2008). After ensuring significance of 
the VS-all global RDA model, the forward selection procedure 
began with an empty null model. The null model was complexified 
by adding one explanatory variable at a time, where the model 
stopped either when: (i) the permutation-based significance test 
p < 0.01 threshold was reached (across 1000 permutations), or (ii) 
the model's adjusted-R2 began to decline (following Capblancq 
& Forester,  2021). The resulting VS-fwd variable sets were site-
specific, with 7–14 predictor variables at the local sites, and 31 
predictor variables at the regional level. Forward selection was 
performed with the ordiR2step function of the vegan R package 
(v.2.5.7, Oksanen et al., 2020).

2.3  |  Genomic data

The publicly available “non-TE SNP dataset” containing whole-
genome sequenced SNP variants outside of identified transposable 
element (TE) sequences was obtained from Rogivue et al.  (2019b), 
with complete sampling and data processing details described in 
Rogivue et al. (2019a). Briefly, SNP filtering was done at the local and 
regional levels independently for a minor allele frequency (MAF) of 
<0.025 and a 10% missingness threshold. Missing genotypes were 
independently imputed at each local and regional level using the 
snmf and impute functions in the LEA R package (v.3.6.0, Frichot & 
François, 2015), where the K latent factors retained for imputation 
(ESS: K = 2; MAR: K = 3; PAR: K = 6; PIE: K = 2; Regional: K = 6) were 
based on the lowest genomic inflation factor values.

The annotation based on the reference genome v5.1 (Jiao 
et al., 2017) was used to further divide the imputed SNP dataset 
into two categories, following Capblancq and Forester  (2021): (i) 
intergenic SNPs lying outside of coding regions that are treated as 
putatively neutral, and (ii) intragenic SNPs within coding regions 
that are more likely directly influenced by natural selection. They 
were used in analyses assessing neutral and adaptive processes, 

respectively, where the intergenic SNPs were first pruned for link-
age disequilibrium (LD; threshold = 0.2) using the snpgdsLDpruning 
function of the SNPrelate R package (v.1.28.0; Zheng et al., 2012). 
It is noted that intergenic SNPs may be involved in selective pro-
cesses due to LD, with whole-genome LD decay estimated at 
r2 < 0.1 within 30.98 kb for non-TE SNPs (Rogivue et  al.,  2019a). 
However, as the present study does not look to provide exhaus-
tive evaluations of SNPs under selection, only the intragenic SNP 
set was used as the response variable in downstream analyses. 
This was done to simplify model comparisons, where preliminary 
analyses found that the VS-fwd models explained the most varia-
tion for the intragenic SNP dataset compared with intergenic or 
whole genome (Table  S2). Intragenic SNP variants were further 
annotated using SnpEff (Cingolani et  al.,  2012) to identify high-
impact SNPs as those with a direct impact on gene functionality 
(i.e., within-gene variants involved in non-synonymous mutations 
including missense variants, splice acceptor and intron variants, 
starts lost, stops gained, and splice region variants). All analyses 
were performed at the individual genotype level, with genomic 
data coded as the count of the alternative allele for each locus.

2.4  |  Genotype–environment associations

To identify candidate loci involved in local adaptation at the local 
and regional levels, GEAs using multivariate RDAs were per-
formed following Capblancq and Forester  (2021). A partial RDA 
was used to understand the partitioning of intragenic SNP vari-
ation into neutral (assessed as population structure and spatial 
geographic structure) and adaptive (assessed with environmental 
variables) processes at each local and regional level (full meth-
ods in Appendix S2). A full RDA was then performed for the GEA 
analyses, with intragenic SNPs coded to individual genotypes in 
the response matrix and the DEM-derived variable sets (Table 2) 
in the explanatory variable matrix. Strong population structure 
was corrected in the regional analysis using the first three prin-
cipal components (PC) of the LD-pruned intergenic SNP PCA 
(Appendix  S2) as conditioning variables in a partial RDA. The 
weak population structure detected at MAR was highly correlated 
with elevation (rS = −0.88), such that it was not corrected for. This 
decision to not correct for population structure follows simula-
tions indicating reduced RDA model power and inflated FDR due 
to altered mapping of quantitative trait mutations into the ordi-
nation space when an environmental gradient is correlated with 
structure (Forester et al., 2018; Lotterhos, 2023). For each local 

Variable set Description Variables per set

i–vi VS-single (e.g. 
VS-0.5m)

Each variable at one single spatial 
resolution, plus elevation at 0.5 m

10

vii VS-all All variables at all spatial resolutions, 
plus elevation at 0.5 m

55

viii VS-fwd Site-specific stepwise forward selected 
variables based on the VS-all model

7–14 (local); 
31 (regional)

TA B L E  2 Description of the eight 
Variable Sets (shortened to “VS”) 
produced to investigate the effect of 
spatial resolution in GEA models. Nine 
topographic environmental variables 
(Table S2) were produced at six spatial 
resolutions (0.5, 1, 2, 4, 8, and 16 m).
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and regional level, the effect of variable sets on the detection of 
candidate SNPs under selection was investigated, resulting in 40 
GEA models in total.

Outlier SNPs were identified based on RDA loadings, following 
methods outlined in Capblancq et al. (2018). Scree tests were used 
to select only the first K-constrained RDA axes that most frequently 
explained a majority of the genetic variance associated with the 
predictor variables. The same number of K axes were retained for 
each site to ensure compatibility amongst variable sets, given a min-
imum of two K axes. The custom rdadapt function from Capblancq 
et al. (2018) was used to evaluate the significance of each SNP based 
on its extremeness of its Mahalanobis distance value compared to 
the distribution of the other SNPs in the RDA space of K retained 
axes. The Mahalanobis distances were computed using the covRob 
function of the ROBUST R package (v.0.7.0; Wang et  al.,  2022), 
corrected for inflation factor (François et al., 2016) and distributed 
along a chi-squared distribution with K degrees of freedom to as-
sign a p-value to each SNP (Luu et al., 2017). A stringent Bonferroni 
correction was applied to identify outlier loci, using the threshold 
of p-value <0.01/the number of tests (i.e. the number of SNPs in 
each RDA model). The lists of SNPs detected as outliers by each RDA 
model were compared between variable sets using upset plots made 
with the UpSetR R package (v.1.4.0; Gehlenborg,  2019). Provided 
the putative functional relevance, we focus on the high-impact SNPs 
detected as outliers.

RDA biplots for the K retained axes were used to associate 
outlier SNPs with DEM-derived variables. For each outlier SNP, its 
projection onto each variable vector in the K retained axes was 
used to assign the associated predictor variable as the one with 
the largest absolute scalar value. The proportion of loci detected 
as outliers from the investigated high-impact SNP set (pS; based 
on Ahrens et al., 2018) were calculated to allow for comparisons 
between sites and to identify whether a particular model resulted 
in a higher relative frequency of outlier SNPs compared to other 
models. The number of associations between high-impact outlier 
SNPs and predictor variables that occurred within each gene were 
tallied. Genes with multiple SNP–variable associations were noted 
as “multiple”.

2.5  |  Gene ontology enrichment analyses

Gene ontology (GO) terms associated with genes assessed the puta-
tive function(s) of candidate high-impact SNPs detected by the DEM-
derived variables in each model, following Primmer et  al.  (2013). 
Using the high-quality A. alpina reference genome annotation, GO 
enrichment analyses were performed with the topGO R package 
(v.2.46.0; Alexa & Rahnenführer, 2021), assessing overrepresented 
GO terms among genes associated with each DEM-derived vari-
able. The significance of enriched GO terms was determined using 
Fisher's exact tests using the default weight01 algorithm and ranking 
by p-value to only retain significant GO terms (p < 0.05) associated 
with at least five genes.

3  |  RESULTS

3.1  |  Topographic variables and terrain 
characteristics

DEM-derived topographic variables were successfully used to char-
acterise four alpine study sites. Independence amongst the nine 
DEM-derived variable types (Table  S1) was confirmed for the fin-
est grain size of 0.5 m to avoid redundancy in downstream analyses, 
where only TI6–SLO at MAR (rs = −0.92) and EAST–NORTH at PIE 
(rs = 0.85) had Spearman correlations above the |rs| ≥ 0.8 threshold 
(Figure  S2). Positive correlations observed amongst variables of 
the same type generalized to six spatial resolutions (0.5, 1, 2, 4, 8, 
16 m) were strongest when grain size was similar, and weakened 
with increased differences amongst grain size (Figure S3). Elevation 
at 0.5 m, included to represent temperature and biotic factors, was 
uncorrelated with the DEM-derived variables across all sites, except 
for VRM 4 m (rs = −0.8) at ESS. In contrast, elevation was strongly 
negatively correlated with latitude (Y-coordinate), as expected for 
predominantly north-orientated alpine valleys.

PCAs (Figure S4) confirmed that individuals sampled at the four 
sites were exposed to similar ranges of environmental conditions, 
allowing them to be treated as replicate systems potentially under-
going independent local adaptation within sites. The characteristics 
of the sites based on the 2 m derived variables assisted the interpre-
tations of GEA results (Table S3). The less complex, more homoge-
neous terrain sites of ESS and PIE were characterized by more gentle 
slopes with low rugosity, wetter soils and higher irradiance, while the 
more complex, heterogeneous terrain sites of MAR and PAR were 
characterized by steeper and more rugged slopes, with drier soils, 
moderate irradiance and more wind exposure.

3.2  |  Variable selection: Stepwise forward model

The selection order of DEM-derived variables for forward selec-
tion (VS-fwd; Table 2) hints at their relative contributions in driving 
genomic variation, where in some cases the same variable type was 
selected at multiple spatial resolutions (Table 3). Here, terrain com-
plexity and variable type had the greatest influence on variable rank-
ing. Variables at coarser resolutions (4, 8, 16 m) were predominately 
selected at homogeneous terrain sites (ESS and PIE), while variables 
at finer resolutions down to 1 m grain size were also selected at het-
erogeneous terrain sites (MAR and PAR) (Table 3; Table S4). Notably, 
only elevation was selected at the finest resolution of 0.5 m for 
local sites, where it was always one of the first variables selected. 
Primary terrain variables (i.e., SLO, HCU, EAST, NORTH) were se-
lected at coarse spatial resolutions (8 m, 16 m) at the homogeneous 
sites and at mid to coarse resolutions (2–16 m) at the heterogene-
ous sites. Secondary terrain variables were overall selected at finer 
resolutions: variables representing solar radiation and sky view (TI6, 
SVF) were selected toward the mid-resolutions between 4 and 16 m, 
and variables representing rugosity (VRM), soil wetness (SWI) and 
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wind exposure (WEX) were selected at finer resolutions between 1 
and 16 m. All spatial resolutions were represented among the 31 se-
lected variables at the regional level, with similar trends as with the 
local sites: primary variables were selected between 2 and 16 m; TI6, 
SVF were selected between 2 and 16 m; and VRM, SWI and WEX 
were selected between 0.5 and 16 m.

3.3  |  RDA model evaluation

Multivariate RDAs identified candidate loci strongly associated with 
environmental variables at the local and regional levels, despite neu-
tral processes of population and geographic structures explaining 
approximately a third of explained genomic variation at local sites 
(see Appendix S2 for full results; Figures S5–S8, Tables S4 and S5). 
The K constrained RDA axes retained were selected using Scree 
plots (ESS: K = 3, MAR: K = 2, PAR: K = 2, PIE: K = 3, and regional: 
K = 2; Figure S9; Table S7). Outlier loci were identified as those with 
p-values below the stringent Bonferroni thresholds (ESS: 2.73 × 10−7, 
MAR: 5.26 × 10−7, PAR: 2.13 × 10−7, PIE: 3.78 × 10−7, and regional: 
2.09 × 10−7), after adjusting locus-wise p-value distributions using 
genomic inflation factors (Table S7; Figure S10). Downstream analy-
ses focused on loci annotated as high-impact variants (i.e., SNPs that 
have a direct impact on gene functionality via non-synonymous mu-
tations that change amino acids and are thus more likely influenced 
by selection), which accounted for 40%–65% of outlier SNPs at the 
local levels and 50% at the regional level (Table S7).

GEA models were sensitive to predictor variable spatial res-
olutions, particularly at homogeneous terrain sites (ESS and PIE) 
(Figures  S5 and S6). The sensitivity of RDA models to spatial res-
olution was assessed for the eight variable sets (Table  2) at each 
site using two metrics: (i) the model's adjusted-R2 as an indicator 
for genetic variance captured by the predictor variables, and (ii) the 
proportion of the high-impact SNPs that were detected as outlier 
loci among the investigated high-impact SNPs (pS) to represent the 
signatures of selection detected by the model. The low adjusted-R2 
values of Figure  1 reflect that raw R2 values were divided by the 
number of input variables used, which ranged between seven to 31 
(see Table 2 for number of input variables and Figure S11 for raw 
values). VS-single model adjusted-R2 values reflected variable se-
lection order (Table  3): explained genetic variance was maximized 
with coarser resolutions (VS-16m) at homogeneous sites and with 
intermediate resolutions (VS-2m to VS-8m) at heterogeneous sites 
(Figure 1a). Meanwhile, the proportion of the high-impact SNPs de-
tected as outlier loci (pS) varied amongst variable sets and local sites 
(Figure 1b). At PAR and PIE, pS increased with coarser resolutions in 
VS-single models, whereas ps was very low for all VS-single models 
at ESS except for a peak with the VS-2m model. At MAR, pS peaked 
at VS-0.5m and VS-8m. At the regional level, RDA models had much 
lower adjusted-R2 values (Figure  1a) and detected extremely low 
numbers of high-impact SNPs as outliers (low pS; Figure 1b) when 
compared to the local analyses, regardless of variable spatial resolu-
tions or number of predictor variables.TA
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In support of using a forward selection procedure to incorporate 
multi-resolution variables, the VS-fwd models for all sites had similar 
metrics to the highest-performing VS-single models, except at MAR 
where VS-fwd performed relatively poorly (Figure 1). Although the 
VS-all models had the highest raw R2 at each site (Figure S11A), this 
was attributable to the large number of explanatory variables used. 
Indeed, VS-all had the lowest adjusted-R2 at all sites when corrected 
for the number of input variables (Figure  1a) and detected rela-
tively low proportions of high-impact SNPs as outliers (Figure  1b; 
Figure S11B). Because of overfitting in the VS-all model, we focus 
subsequent GEA interpretations only on VS-single and VS-fwd mod-
els, where comparisons with VS-all can be found in the relevant 
Appendix S2.

A deeper understanding of RDA model sensitivity to differences 
in spatial resolution was obtained by comparing the identity of the 
high-impact SNPs detected as outliers between variable sets at each 
site (Table  4; visualized using UpSet plots in Figure  S12). Overall, 
most RDA models at a given site detected common outlier loci, with 
few models detecting >10% unique SNPs. Almost all outlier loci at 
PAR and PIE were identified by at least two variable sets, regardless 
of how many high-impact SNPs were detected. In contrast, four VS-
single models at ESS and two at MAR detected 20%–80% unique 
SNPs, which was unrelated to the absolute number of high-impact 
SNPs detected.

3.4  |  Genotype–environment associations

Genotype–environment interactions were investigated by as-
sociating each high-impact outlier SNP to a DEM-derived vari-
able based on projections in the RDA space (Table  S8), where 
the locus distributions were generally insensitive to variable sets 
(Figure S13). The high-impact candidate SNPs were then used to 
allocate the corresponding genes (hereafter “high-impact genes”; 
Table 4) to an environmental variable and, rarely, to multiple vari-
ables (generally ≤10% per local model and <20% for the regional 
model; Tables S7 and S9).

The spatial resolutions of associated environmental variables 
reflected the selection order for VS-fwd, where associated vari-
ables varied greatly across the genome, among sites and between 
variable sets (Figure 2; Table S9; Figure S14). Associations at ho-
mogeneous sites were dominated by coarser resolution variables 
(≥2 m), where top associations at ESS were with EAST, VRM, SWI, 
and HCU, and at PAR with SWI, HCU, and WEX. Associations at 
heterogeneous sites were with variables across a greater range 
of spatial resolutions, where top associations at MAR were with 

NORTH, WEX, and SWI, and at PIE with HCU, EAST, NORTH, and 
VRM. Surprisingly, despite being one of the first forward-selected 
variables to explain genetic variation, elevation was rarely associ-
ated with genes at the local sites (generally <4%). At the regional 
level, elevation was a top-associated variable with high-impact 
genes (up to 45% in some VS-single models, but only 2% in VS-
fwd), alongside SLO, EAST, and VRM. The variables NORTH, SWI, 
WEX, TI6 and HCU were rarely associated with high-impact genes 
at the regional level.

The functional significance of high-impact genes was investi-
gated for each variable using GO enrichment analyses (Table 4). 
Significantly associated functions were largely unique to each 
site and detected by different variables (Table S2). Overall, only 
two molecular functions (MFs) and two biological processes (BPs) 
were detected across multiple sites, with one of each detected 
at ESS and in the regional analysis, which predominantly related 
to oxidation or cellular stress responses (Table  S2). Cellular re-
sponse to cold (GO:0070417), for example, was detected at PIE 
with VRM 16m and at MAR with WEX 4m. The variables associ-
ated with significant gene functions followed patterns from the 
top gene–variable associations. Plants at homogeneous sites gen-
erally presented more candidate genes with putatively adaptive 
functions, where the variable type exerting a potential selection 
pressure was relatively consistent amongst variable sets. Plants 
at heterogeneous sites contrastingly presented fewer candidate 
genes with adaptive functions that tended to be associated with 
different variable types and spatial resolutions. VS-fwd models 
captured many of the same significant functions and putative 
processes under selection as the VS-single models, though not al-
ways with the same variable type. Analyses at the regional level 
detected relatively few significant GO terms and only with the 
VS-fwd model (Table 4), consistent with previous results highlight-
ing a lack of power to detect local adaptation with these spatial 
resolutions.

Interestingly, using multiscale DEM-derived variables cap-
tured evidence of biotic pressures on plant local adaptation. Using 
the VS-fwd RDA model at ESS, a significant association was found 
between VRM 2m and the Aa_G76360.h1 gene of the MYB29 
complex, which is involved in A. alpina adaptive response to in-
sect herbivory (GO:0009625). The RDA biplots highlight that the 
associated high-impact SNP is strongly associated with VRM 2m, 
and slightly less strongly with SWI at coarse resolutions (star in 
Figure 3a). This SNP is also found in a genomic region that appears 
to have many genes potentially under selection on Chromosome 
8 (Figure 3b). The positive correlation between the homozygous 
recessive genotype (GG) for this SNP given the values of VRM 

F I G U R E  1 Assessment of RDA model performance based on two metrics: (a) RDA model's adjusted-R2 values, and (b) the proportion of 
high-impact SNPs that were detected as outliers by RDA models (ps), where values on the y-axis for (a) have been corrected for the number 
of input variables (see Table 2). Raw values can be found in Figure S11. For each local (ESS, MAR, PAR, PIE) and regional analysis, model 
performance metrics along the x-axis are VS-single models built with all variables at the same spatial resolution (0.5, 1, 2, 4, 8, and 16 m), 
while the red horizontal line indicates the VS-all model, and the blue horizontal line indicates the VS-fwd model. All models include elevation 
at 0.5 m resolution. Note that gray dashed lines between points are indicative only and each model is independent.
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2m was modelled using linear regression (Figure 3c), which was 
used to produce a probability map of finding the GG genotype 
across the extent of ESS (Figure 3d). This map highlights that the 
GG genotype has a higher probability of being found in rougher 
terrain areas with less soil build-up, which could reduce insect 
herbivory pressure.

4  |  DISCUSSION

By coupling DEM-derived h-topographic environmental vari-
ables at multiple grain sizes with whole genome sequence data, 
we highlighted the sensitivity of GEA models to spatial resolu-
tions. These findings illustrate the importance of incorporating 

Candidate SNPs
Candidate 
genes GO terms: BP GO terms: MF

(A) ESS

VS-0.5m 57 53 2

VS-1m 38 29 3

VS-2m 832 712 3 2

VS-4m 70 59 1

VS-8m 51 47 2 1

VS-16m 115 96 2 2

VS-fwd 642 546 8 5

(B) MAR

VS-0.5m 431 359 3

VS-1m 91 74 1

VS-2m 328 281 1 1

VS-4m 261 233 1

VS-8m 491 402 1

VS-16m 403 335 1

VS-fwd 145 131 2

(C) PAR

VS-0.5m 865 721 2 1

VS-1m 1203 989 1 3

VS-2m 1304 1050 1 5

VS-4m 1762 1389 1 6

VS-8m 1924 1495 1 4

VS-16m 1963 1508 1 5

VS-fwd 1837 1450 4

(D) PIE

VS-0.5m 53 54 2 1

VS-1m 249 196 6 5

VS-2m 309 246 1

VS-4m 522 403 7 7

VS-8m 995 757 10 8

VS-16m 1078 822 5 7

VS-fwd 1064 823 6 8

(E) Regional

VS-0.5m 59 41

VS-1m 66 47

VS-2m 73 56

VS-4m 64 49

VS-8m 55 45

VS-16m 78 59

VS-fwd 448 227 3 2

TA B L E  4 Summary of GEA results 
performed using RDAs for the four sites 
(ESS, MAR, PAR, and PIE) separately 
(local; A–D) and grouped (regional; E). 
Values indicate the number of high-impact 
SNPs, genes and GO terms detected as 
significant outliers in GEA analyses. GO 
terms are separated into BPs and MFs.
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multiscale variables into studies of local adaptation. Furthermore, 
we emphasise that the paradigm of using the finest resolution var-
iables possible for modelling local adaptation in sessile organisms 
may not always hold, and indeed could introduce noise to models 
(Guillaume et al., 2021; Pradervand et al., 2014). Here, we discuss 
how spatial scale affects the relevance of DEM-derived variables 
in GEA models with regards to study extent and variable type, and 
provide suggestions for integrating multiscale variables into GEA 
models.

4.1  |  Spatial scale matters

Systematic comparisons of GEA models highlighted that the spatial 
resolution of environmental variables matters. Variables with grain 
sizes between 2 and 16 m generally improved GEA model perfor-
mance for the alpine plant investigated, where optimal resolution 
depended on variable type, terrain characteristics, and study extent. 
Furthermore, the same variable type was often selected at multiple 
spatial resolutions. This lack of specificity for an optimal spatial reso-
lution reflects findings from multiscale species distribution models 
(Guillaume et al., 2021; Guisan et al., 2007), as well as GEA analyses 
based on low-resolution genetic markers (Leempoel et  al.,  2018). 
While strong correlations were found when the same variable type 
was generalized to similar spatial resolutions, this trend weakened 
between more different grain sizes. Indeed, the same environ-
mental variable at different spatial resolutions can capture distinct 
ecological processes and climatic conditions (Keitt & Urban, 2005; 

Lassueur et al., 2006; Leempoel et al., 2015) with subsequent im-
pacts on model results, downstream analyses, and interpretations 
(Dungan et al., 2002). It is extremely difficult to determine exactly 
which spatial resolution is optimal for a given context, supporting 
the inclusion of the same variable type generalized to multiple spa-
tial resolutions simultaneously in evolutionary ecology modelling.

Contrary to initial expectations (Gottfried et al., 1998; Lassueur 
et al., 2006), no single spatial resolution was identified as the most 
appropriate for any variable type. Generally, primary terrain variables 
(i.e., SLO, HCU and EAST/NORTH) were selected at coarser grain 
sizes (8–16 m), whereas secondary terrain variables were often rele-
vant across a range of resolutions. Primary terrain attributes may be 
favoured at coarser resolutions due to smoothing over of the higher 
details present at finer resolutions (Kalbermatten et al., 2012), result-
ing in variables that better represent landscape processes relevant 
to the organism (Pain, 2005). In contrast, the relevance of secondary 
terrain attributes at finer grain sizes may be because they are spe-
cifically designed to model ecologically relevant hydrological, geo-
morphological, and BPs (Wilson & Gallant, 2000). Secondary terrain 
attributes representing solar radiation and sky availability (TI6, SVF) 
were selected at resolutions between 4 and 16 m, while variables of 
rugosity (VRM), soil wetness (SWI) and wind exposure (WEX) were 
selected across a broader range of resolutions between 1 and 16 m. 
That topographic effects on light are optimized at coarser resolu-
tions than those on rockiness, water drainage and exposure might 
be due to their respective interactions with topographic features. 
For instance, primary attributes of eastness and northness proxy 
for sunlight availability, impacting near-surface temperatures and 

F I G U R E  2 The proportion of high-impact genes with outlier SNPs for the four sites (ESS, MAR, PAR, PIE) separately (local) and grouped 
(regional), grouped by the variable sets used as explanatory variables in the RDA models (columns). The x-axis shows the associated 
variables, colored by the spatial resolution (grain size) for the variable. In cases where a gene had multiple SNP–variable associations, this 
was listed as “multiple”. Descriptions of variable sets found in Table S1. See Table S9 for raw counts of high-impact SNP–variable associations 
in each gene.
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photosynthetic rates (Bennie et  al.,  2008; Gottfried et  al.,  1998; 
Moore et al., 1991). As light and shade are influenced by larger-scale 
topographic features (e.g., mountain crests, boulders) with strong 
seasonal fluctuations, these proxies may have coarser scale effects 
on vegetation and adaptive responses than more complex secondary 
attributes independent of large topographic features and seasonal 
variations (Keitt & Urban, 2005). However, without directly measur-
ing an association between topographic variables and in-field condi-
tions (e.g., climate, soil chemistry, etc.), it remains difficult to assess 
the actual selection pressure that these variables exert on organ-
isms. Indeed, selective pressures in natural environments are rarely 
known with certainty, and the hypothesized associations detected 
between genotypes and topographic variables require further val-
idation via in-field observations or experiments (Lasky et al., 2023).

General landscape topography is also important in dictating 
the appropriate grain size for a variable (Pain,  2005). In the pres-
ent study, GEA models were optimized with variables selected at 
mid to coarse (4–16 m) resolutions for homogeneous terrain sites 
(ESS and PIE), and with a combination of variables at fine to coarse 
(1–16 m) resolutions for heterogeneous terrain sites (MAR and PAR). 
Differences in terrain heterogeneity likely reflects the scale at 

which local adaptation is occurring. Indeed, models of abiotic (e.g., 
Thompson et al., 2001) and biotic (e.g., Guillaume et al., 2021) fac-
tors have highlighted that finer details in variables are required at 
heterogeneous terrains, while natural processes at homogeneous 
terrains are smoothed over and require coarser resolution variables 
to represent environmental processes.

The spatial resolution of variables must appropriately reflect 
landscape processes likely affecting the study organism to en-
sure that signatures of local adaptation are detected (Anderson 
et  al.,  2010; Cushman & Landguth,  2010). Here, the finest spatial 
resolution of 0.5 m typically resulted in the lowest model perfor-
mances at local sites, while model performances increased toward 
the coarser resolutions between 4 and 16 m. Despite the possible 
influence of pseudo-replication arising from the inclusion of up to 10 
samples in a grid upon generalization, the conservative thresholds 
used to detect outlier loci, and the fact that RDA performance met-
rics (adjusted-R2 and ps) were maximized with variables at any of the 
tested grain sizes, indicates that the observed patterns remain valid.

These results call for a need to reassess the general paradigm of 
increased landscape genetic model accuracy with finer grain vari-
ables (Cushman & Landguth, 2010), particularly when investigating 

F I G U R E  3 An example at study site Essets (ESS) to illustrate how a GEA model built with forward-selected variables (VS-fwd) can be used 
to detect a candidate SNP under selection and associate it with a given environmental variable (VRM at 2 m). Biplots (a) show the loading 
distribution of SNPs (points; multiplied by 20 to ease visualization) and environmental variables (arrows) across the first three RDA axes, 
where the projections in the RDA space were used to assign each outlier locus to the predictor variable with the largest absolute scalar 
value. The outlier loci are color-coded to the most associated predictor variable of the same colored label. The location and significance of 
SNPs across the genome was visualized with a Manhattan plot (b), where outlier SNPs are color-coded by their associated variable. In this 
example, locus 4719480 in the Aa_G76360.h1 gene of the MYB29 complex on chromosome 8 (indicated by yellow star in (a) and (b)) was 
most strongly influenced by VRM at 2 m. The logistic regression between the GG genotype at this locus with VRM at 2 m (c) was used to 
calculate the probability of finding the GG genotype across the ESS (d).



    |  13 of 19GUILLAUME et al.

sessile organisms in highly heterogeneous environments (Gottfried 
et  al.,  1998). This is not to say that variables at 0.5 m resolution 
should be discounted, as they can be ecologically relevant depend-
ing on variable type. Indeed, 0.5 m variables improved RDA model 
performance at one site (MAR) in the present study. Additionally, 
common enriched GO terms and similar BPs were detected between 
the present study and a univariate GEA analysis using topographic 
variables only at 0.5 m spatial resolution, including GO terms relating 
to defence responses at ESS (Rogivue et al., 2023). However, it was 
only when using the mixed resolution VS-fwd model that enriched 
GO terms were detected at the regional level, which were missed 
in the VS-single models. Therefore, we emphasise that a spectrum 
of potential ecologically important processes be captured using 
variables at multiple levels of complexity (Anderson et  al.,  2010; 
Cushman & Landguth, 2010), which can be done by integrating pre-
dictor variables at multiple nested spatial resolutions.

4.2  |  Local adaptation is local

Signatures of local adaptation associated with multiscale variables 
were specific for each population. Differences in candidate loci and 
gene functions putatively under selection were found between sites 
despite shared genomic background due to common recent history 
(Rogivue et  al.,  2018), potential parallel adaptation due to similar 
environmental pressures (Wos et  al.,  2022), and increased GEA 
model power through sampling across a range of habitats (Selmoni 
et al., 2020). Moreover, while each model detected relatively high 
number of candidate genes under selection, only four MFs and BPs 
were shared amongst multiple sites across the variable set models 
(Table 2), with none shared amongst all local sites. Similarly, in a re-
assessment of previously identified candidate SNPs using univariate 
GEA models, only 11 (31%) putative genes originally detected in one 
set of study populations of Arabidopsis halleri were found in an inde-
pendent set of 18 other populations of the same species across the 
Swiss Alps (Rellstab et al., 2017).

The paucity of common enriched genes associated with high-
resolution topographic variables between four local populations 
in the present study echoes conclusions from a continental-extent 
genome-wide association study (GWAS) in Arabidopsis thaliana 
(Lopez-Arboleda et al., 2021) that emphasized the detection of mo-
lecular patterns are highly sensitive to sample design and population 
structure, with some phenotypic traits influenced by distinct genetic 
effects in each subpopulation. Such specification of local adaptation 
is likely exacerbated in the present study due to limited gene flow in 
highly selfing populations (Buehler et al., 2012; Zeitler et al., 2023) 
that experience high LD due to reduced recombination rates 
(Nordborg, 2000; Yant and Bomblies, 2017). Additionally, as com-
plex phenotypic responses are generally controlled by many SNPs 
of small effect sizes (Höllinger et al., 2019), which has been shown in 
populations of this species (Zeitler et al., 2023), selection likely re-
sults in multiple molecular solutions converging on similar functional 
phenotypic responses in different populations (Lasky et  al.,  2023; 

Yeaman, 2015). Very few outlier loci were detected at the regional 
level when compared to the local RDAs. Despite the reduced false 
discovery rates and increased power of RDA analyses to detect mul-
tilocus adaptation compared to traditional univariate GEA methods 
(Capblancq et al., 2018; Forester et al., 2018), signals of parallel local 
adaptation due to polygenic traits may still be missed (Le Corre & 
Kremer, 2012; Lotterhos, 2023; Rellstab et al., 2017). This is exac-
erbated in selfing populations for which the combined effects of 
lower effective population sizes, increased homozygosity, reduced 
effective recombination, stronger drift, greater linkage of beneficial 
mutations to deleterious ones, and the higher rate of fixation of mal-
adaptive alleles, makes it extremely difficult to interpret patterns of 
adaptation and strength of selection pressures (Yant and Bomblies, 
2017). Additionally, as this study was intended to assess the effect 
of multi-resolution environmental variables on GEAs, rather than to 
perform an exhaustive evaluation of local adaptation, analyses were 
limited to high-impact intragenic SNPs. As such, other outlier loci 
due to LD in intergenic and non-high impact intragenic SNP regions 
may have been overlooked, where it may be more informative to 
use whole-genome SNP data than just putatively causal sites when 
an exhaustive search for loci under selection is required (Le Corre 
& Kremer, 2012; Lotterhos, 2023). Future studies might consider a 
polygenic framework, specifically investigating gene sets (e.g. poly-
sel; Daub et al., 2013), which could help detect multiple small-effect 
loci involved in local adaptation, and include intergenic regions 
within LD of intragenic SNPs into analyses.

4.3  |  Relevance of topographic variables

Topographic variables are powerful tools to investigate local adapta-
tion in heterogeneous environments such as mountainous regions. 
Here, DEM-derived variables across six spatial resolutions explained 
between 10% and 30% of intragenic variation at each study site 
based on the uncorrected R2 model values, detecting high-impact 
genes potentially under selection across the genome of A. alpina. 
Interestingly, these topographic variables captured evidence of BPs 
potentially involved in local adaptation, such as the association be-
tween VRM 2 m and molecular response to insect herbivory. This 
follows a suite of studies that have successfully used topographic 
variables to investigate plant distributions across heterogeneous al-
pine environments (e.g., Gottfried et al., 1998; Guillaume et al., 2021; 
Lassueur et al., 2006), as well as to detect genetic responses to envi-
ronmental conditions (e.g., Leempoel et al., 2018). Their usefulness 
owes to the fact that topographic variables are specifically designed 
as proxies for ecologically relevant environmental variables, includ-
ing solar radiation (Wilson & Gallant,  2000), terrain ruggedness 
(Sappington et al., 2007), soil wetness (Beven & Kdirkby, 1979), soil 
pH (Böhner & Selige, 2006) and climate (Gottfried et al., 1998).

It has been suggested that because DEM-derived variables can 
capture small-scale terrain variation that drives mosaics of micro-
climates across landscapes (Gottfried et al., 1998; Hörsch, 2003; 
Irl et al., 2015; Scherrer & Körner, 2011), they are more relevant 
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for investigations of local adaptation at finer spatial scales than 
climatic variables (Fischer et al., 2013). This is not to say that cli-
mactic variables are irrelevant for investigating local adaptation. 
Indeed, because topographic-induced micro-climates can vary 
over short distances, using fine-resolution climatic variables as 
predictors can improve the modelling of plant trait responses 
to alpine-arctic conditions (e.g., Kemppinen & Niittynen,  2022; 
Scherrer & Körner, 2011). Rather, because these climatic variables 
must be interpolated from weather stations or relatively-coarse-
grained remote sensed data (Gottfried et al., 1998), climatic vari-
ables may be more appropriate for regional-level analyses (Irl 
et al., 2015). This may be particularly true for studies investigating 
long-term, multigenerational processes relevant across larger geo-
graphical extents (Fischer et al., 2013).

Of the nine independent derived variables selected to proxy 
for ecologically relevant characteristics in the present study, the 
top-associated variables were those representing hydrology (HCU, 
SWI), solar radiation (EAST/NORTH, SVF, TI6), climate (WEX) and 
terrain ruggedness (VRM), where associations with elevation and 
slope (SLO) were primarily only detected in the analysis at the re-
gional level. The dependence of RDA models on grain size may be at-
tributed to changes in interactions between variables with changes 
in spatial resolutions, where the ecological relevance of a given vari-
able, and therefore its ability to detect genes under selection (Loke 
& Chisholm, 2022; Pradervand et al., 2014; Thompson et al., 2001), 
changes as it is generalized to different spatial resolutions (Dormann 
et al., 2013; Kalbermatten et al., 2012). Here, only the top variable 
associated with each SNP is described, yet it may be that another 
correlated variable is the one exerting a selection pressure on the 
detected loci. We found that up to 10% of high-impact genes at local 
sites and 20% at the regional had outlier SNPs associated with dif-
ferent variables. Tight correlations between some variables across 
different spatial resolutions meant that the same GO terms were 
associated with different variables depending on the spatial resolu-
tion and the variable set used. These correlations amongst variables 
highlight that once SNP–environment associations are detected, the 
associations require further testing to validate the outlier loci and 
their drivers identified in the GEA (described in Lasky et al., 2023).

Elevation was included as a variable to act as a proxy for tem-
perature and biotic factors in general (Ashcroft & Gollan, 2013; Hof 
et al., 2012). Despite being the first variable retained in the forward 
selection models, it was rarely associated with genes at local sites, 
though it was a top association in the regional VS-single models. This 
is likely because elevation was highly confounded with other fac-
tors at local sites, including population structure, latitude, and some 
derived variables. The inclusion of elevation as a variable in species 
distribution modelling is debated (reviewed in Hof et al., 2012). The 
primary argument against its inclusion is that organisms do not re-
spond to elevation per se, but rather to other variables that co-vary. 
Even temperature, for which elevation proxies, has been shown to 
not contribute any substantial improvements in plant species dis-
tribution modelling (Pradervand et  al.,  2014), likely as tempera-
ture is dependent on topographic features including sky view and 

northness (de Villemereuil et al., 2018). Yet other studies across large 
spatial extents have found that elevation is amongst one of the most 
important factors for predicting forest distribution (Hörsch, 2003). 
As such, we urge caution when using elevation in GEA models, and 
suggest to instead include other topographical variables that may 
more specifically proxy for temperature and humidity at small scales 
(Buri et al., 2020), such as wetness indices, VRM, slope (Leempoel 
et  al.,  2015) and solar radiation levels during growing seasons 
(Körner, 2007).

4.4  |  Integrating multiscale variables into 
GEA models

The sensitivity of GEA models to grain size can make it challenging 
to incorporate variables at adequate spatial resolutions. This study 
supports a method to integrate variables at spatial resolutions op-
timized for a specific location by leveraging a multiscale approach 
(Woodcock & Strahler, 1987). Here, a fine-grained DEM is first gen-
eralized to multiple spatial resolutions (Kalbermatten et  al.,  2012) 
from which topographic variables of interest can be derived. Then, a 
forward selection model (Blanchet et al., 2008) is used to retain only 
predictor variables at spatial resolutions most relevant for explain-
ing genetic variation, specific to each site. The resulting VS-fwd RDA 
models were generally just as good at explaining genetic variation 
as the top performing single resolution models (VS-single). In addi-
tion to their high model performance, these VS-fwd models detected 
the same signatures of selection as the VS-single models, with very 
few uniquely identified outlier loci. Furthermore, only the VS-fwd 
model detected enriched GO terms at the regional level, indicating 
that signatures of selection may be missed if using a single spatial 
resolution. These results support this method as an appropriate and 
convenient way to choose variables at multiple spatial resolutions 
for use in GEA models to detect candidate genomic regions under 
selection.

The forward selection model provides one predictive approach 
to maximise explained genetic variation without considering the eco-
logical or mechanistic drivers of genetic variation (Mac Nally, 2000), 
where different subsets of predictor variables could be selected 
by the model due to small perturbations in the data (Araújo and 
Guisan, 2006). Consequently, such resulting associations between 
genotypes and the environmental variables need to be interpreted 
with caution. Indeed, correlations between selected variables may 
remain large when using the forward selection approach, such that 
it can be difficult to disentangle which variable is driving detected 
associations. Likewise, this approach may remove the variables in-
volved in local adaptation, potentially impacting downstream GEA 
results and missing genomic regions under selection.

Alternative predictive or explanatory approaches to the for-
ward selection model exist (Mac Nally,  2000). While PCAs can 
condense a large number of potentially collinear variables into 
fewer, synthetic variables, this approach should be reserved for 
when the ecological interpretation of variables to PCA loadings 
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is straightforward (Rellstab et al., 2015). When raw variables are 
preferred, a pairwise correlation analysis can be used to retain 
only variables independent above a threshold of, e.g., |r| ≥ 0. 8 
(Fischer et al., 2013), or using variation inflation factors (VIF) with 
a threshold of, e.g. <10, to iteratively remove the most highly cor-
related factors until only independent variables remain (Dormann 
et al., 2013). Alternatively, machine learning approaches, such as 
random forest algorithms (Genuer et al., 2010), can be used to se-
lect variables. The best selection method for a study will depend 
on the analytical goals or mechanistic understanding of the study 
system (Capblancq & Forester, 2021), and it would be interesting 
to test how these alternative variable selection methods compare 
to the VS-fwd model in future research.

While the present study was focused on very high resolutions (i.e., 
≤16 m), such fine resolutions below 30 m are not always available. The 
relevance of multi-resolution variables between commonly-acquired 
resolutions of 30 m to 1 km (e.g., Fick & Hijmans, 2017; NASA Shuttle 
Radar Topography Mission (SRTM), 2013) for detecting molecular sig-
natures of adaptation would be interesting to investigate, particularly 
when researching mobile or highly dispersing organisms, or when con-
ducting studies over large, regional study extents. Ideally, research-
ers would consider the necessary spatial scales that are hypothesized 
to be important for a particular context prior to sampling (Anderson 
et  al.,  2010; Capblancq & Forester,  2021), such that both environ-
mental and genomic data are collected at appropriate spatial scales 
(Dauphin et  al.,  2023) to allow for the integration of multiscale ap-
proaches prior to commencing sampling. The finest grain size should 
be at least slightly smaller than the average home range or dispersal 
distance of an organism (Dale and Fortin, 2014), while the maximum 
grain size should dictate the spacing of individuals sampled.

4.5  |  Conclusions

Ecologists and evolutionary biologists incorporating environmental 
variables into their models must decide on the discrete spatial scale 
to use in each analysis, with consequences for model outputs and 
subsequent downstream analyses. Although guidelines to select the 
size and shape of sampling units have been available for over 25 years 
(e.g., Legendre & Legendre, 1998), researchers usually make arbitrary 
decisions with regards to selected spatial scale, often with little to no 
justification (Dauphin et al., 2023; Dungan et al., 2002). Here, sys-
tematic comparisons of GEA models highlighted model sensitivity 
to spatial resolutions of explanatory variables, where optimal model 
results depended on variable type, terrain characteristics, and study 
extent. A promising way to integrate optimal spatial resolutions into 
GEAs is using fine-grain variables as the base of a multiscale gener-
alization to produce variables at multiple spatial resolutions, before 
retaining only those that are most relevant for a particular context. 
It is becoming increasingly important to develop methods to effec-
tively select explanatory variables at spatial resolutions appropriate 
for specific ecological questions, especially as high-resolution envi-
ronmental and genetic datasets become ever-more readily available. 

The adoption of multiscale variables in applied conservation frame-
works means that model outputs will have direct impacts on natural 
resource management decisions.

Only the multivariate RDA method was investigated here. This 
method was selected due to the more realistic representation of 
genotype–environment interactions (Lasky et  al.,  2023), while 
maintaining lower false-positive and higher true-positive rates than 
commonly used univariate GEA methods (Forester et  al.,  2018). 
Landscape genomics would benefit from further investigations into 
the sensitivity to spatial resolutions of univariate GEA models, in-
cluding latent factor mixed modelling (LFMM; Frichot et al., 2013) 
and SamBada (Duruz et al., 2019; Stucki et al., 2017). Furthermore, 
investigating the multiscale variable concept into landscape genomic 
analyses in other environments, such as seascapes and riverscapes, 
would be interesting as environmental variables are becoming avail-
able at ever finer resolutions. A novel complementary approach 
that could be used to select relevant spatial resolutions and validate 
multiscale GEA findings involves using wavelets to decompose the 
spatial patterns of genotypes observed across landscapes (Lasky 
et al., 2022). We emphasise that while GEA models are most useful 
for generating hypotheses, the function of candidate loci must still 
be validated with field or laboratory studies. Going forward, the ef-
fect of spatial scale in evolutionary ecology models must be carefully 
considered, where studies will need to be designed taking multiscale 
variables into account. We encourage continued investigation into 
how to best incorporate multiple spatial scales into models and 
stress the importance of justifying choice of spatial resolutions.
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