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Abstract 
Motivation: Effective drug delivery systems are paramount in enhancing pharmaceutical outcomes, particularly through the use of cell- 
penetrating peptides (CPPs). These peptides are gaining prominence due to their ability to penetrate eukaryotic cells efficiently without inflicting 
significant damage to the cellular membrane, thereby ensuring optimal drug delivery. However, the identification and characterization of CPPs 
remain a challenge due to the laborious and time-consuming nature of conventional methods, despite advances in proteomics. Current compu
tational models, however, are predominantly tailored for balanced datasets, an approach that falls short in real-world applications characterized 
by a scarcity of known positive CPP instances.
Results: To navigate this shortfall, we introduce PractiCPP, a novel deep-learning framework tailored for CPP prediction in highly imbalanced 
data scenarios. Uniquely designed with the integration of hard negative sampling and a sophisticated feature extraction and prediction module, 
PractiCPP facilitates an intricate understanding and learning from imbalanced data. Our extensive computational validations highlight 
PractiCPP’s exceptional ability to outperform existing state-of-the-art methods, demonstrating remarkable accuracy, even in datasets with an 
extreme positive-to-negative ratio of 1:1000. Furthermore, through methodical embedding visualizations, we have established that models 
trained on balanced datasets are not conducive to practical, large-scale CPP identification, as they do not accurately reflect real-world complexi
ties. In summary, PractiCPP potentially offers new perspectives in CPP prediction methodologies. Its design and validation, informed by real- 
world dataset constraints, suggest its utility as a valuable tool in supporting the acceleration of drug delivery advancements.
Availability and implementation: The source code of PractiCPP is available on Figshare at https://doi.org/10.6084/m9.figshare.25053878.v1.

1 Introduction
In the realm of therapeutic treatment, the efficiency of drug 
delivery signs significantly impacts the therapeutic efficacy of 
pharmaceuticals (Zhang et al. 2013). To enhance drug deliv
ery efficiency and augment the interventional impact on in
tracellular targets, researchers have developed various drug 
delivery systems, including cell-penetrating peptides (CPPs) 
(Qian et al. 2014). CPPs, typically consisting of 5–30 amino 
acids, possess the ability to penetrate eukaryotic cells without 
causing substantial damage to the cell membrane (Qian et al. 
2014). Consequently, CPPs hold potential for delivering 
membrane-impermeable cargoes, such as peptides, proteins, 
nucleic acids, and nanoparticles, into the interior of mamma
lian cells as novel therapeutics. Since the initial discovery of 

Tat (Richard et al. 2003) (Truncated HIV-1 Tat protein basic 
domain, which rapidly translocates through the plasma mem
brane and accumulates in the cell nucleus), thousands of 
CPPs have been reported (Gautam et al. 2012). These CPPs 
are categorized into three types based on their topological 
structures: linear peptides, cyclic peptides, and bicyclic pepti
des. Peptides with different topological structures exhibit 
varying loading capacities, thereby influencing the efficacy of 
the final drug delivery (Buyanova et al. 2022).

The advent of next-generation proteomics technologies has 
facilitated the sequencing of peptide and protein molecules 
(Altelaar et al. 2013). Pei et al. used gene editing technology 
and phage display technology to design novel polypeptides 
(Rhodes and Pei 2017) and utilized fluorescent labeling and 
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Caco-2 cell array technology to assess the membrane penetra
tion ability of the polypeptides (Dougherty et al. 2019). 
However, the identification and characterization of specific 
CPPs with optimal uptake efficiency through conventional 
in vitro assays remain time-consuming and labor-intensive 
(Ragin et al. 2002). On the other hand, the membrane perme
ability and cellular uptake efficiency of penetrating peptides 
are closely related to their sequence characteristics (Schmidt 
et al. 2010) and physical and chemical properties (Milletti 
2012). Therefore, the development of computational meth
ods is a rational choice for accurately identifying prospective 
CPPs, thereby reducing the experimental burden on research
ers (Manavalan and Patra 2022).

Recently, machine learning has been successfully applied to 
numerous computational biology and chemistry problems, 
including drug–target interaction prediction (Chen et al. 
2016), blood–brain barrier permeability prediction (Liu et al. 
2004), and passive membrane permeability prediction 
(Lomize et al. 2019). Several statistical methods have also 
been proposed for CPP prediction, such as ARF motif based 
preditor (Johansson et al. 2008). Subsequently, a multitude 
of algorithms based on statistical learning and deep learning 
have been continuously proposed, including CPPpred 
(Holton et al. 2013), CellPPD (Gautam et al. 2015), C2Pred 
(Tang et al. 2016), SkipCPP-Pred (Wei et al. 2017a), CPPred- 
RF (Wei et al. 2017b), MLCPP-2.0 (Manavalan and Patra 
2022), and BChemRF-CPPred (de Oliveira et al. 2021). 
Recent studies have provided a detailed description of exist
ing CPP prediction methods in terms of algorithms, feature 
encodings, and evaluation strategies (Su et al. 2020). Some of 
these methods cannot only predict whether molecules can 
pass through the cell membrane but also predict their endocy
tosis efficiency, such as CPPred-RF, StackCPPred, and 
MLCPP-2.0. However, existing methods often focus on bal
anced datasets, which is fundamentally different from real- 
world scenarios where only a limited number of known 
positive CPP samples are available, while a large number of 
peptides have an undetermined CPP status.

In this study, we propose a deep learning framework, 
PractiCPP, specifically designed for the extremely imbalanced 
binary classification challenge inherent to CPP prediction. 
PractiCPP primarily consists of two components: (i) hard 
negative sampling, which selectively incorporates challenging 
negative samples from the negative set, and (ii) feature extrac
tion and prediction module, termed as PractiCPPbase, which 
extracts three distinct features: sequential features, local 
structure features, and pretrained features originated from 
large language model (LLM). This approach not only miti
gates the imbalance between negative and positive instances 
but also forces the model to learn more fine-grained features, 
consequently enhancing its overall performance.

Comprehensive experiments demonstrate that PractiCPP 
exhibits outstanding prediction performance on both bal
anced and imbalanced datasets. In the balanced dataset 
(CPP924), PractiCPP consistently outperforms seven top- 
performing baselines in terms of accuracy, sensitivity, 
specificity, and MCC. On the imbalanced dataset with a 
positive-to-negative ratio of 1:1000, PractiCPP yields the best 
performance among all baselines under various evaluation 
metrics, such as AUPR (the area under the precision–recall 
curve), precision, F1 score, and FP per correct (the average 
number of false positive samples for each correctly predicted 
sample). We also visualize the embeddings generated by 

different versions of our model and exhibit that our models 
trained on balanced data might be impractical for guiding 
large-scale peptide selection for wet-lab experiments in CPP 
identification while training with imbalanced data has the po
tential to empower real-world applications. In summary, 
PractiCPP offers a promising solution for the prediction of 
CPPs in real-world scenarios, where only a limited number of 
known positive CPP samples are available. The model’s abil
ity to handle imbalanced data and its state-of-the-art perfor
mance on both balanced and imbalanced datasets 
demonstrate its potential for practical deployment in drug de
livery research and development.

2 Materials and methods
2.1 Datasets
In this paper, we use two distinct datasets for training and 
testing our model, i.e. balanced dataset CPP924 and 1:1000 
imbalanced dataset. The CPP924 dataset is obtained from 
CPPsite 2.0 (Kardani and Bolhassani 2021), containing 462 
known CPPs and 462 non-CPPs, which is commonly used in 
CPP prediction tasks. For a fair comparison, we also evaluate 
the proposed method PractiCPP on this balanced 
CPP924 dataset.

To form a 1:1000 imbalanced dataset, the positive samples 
primarily originated from CPP924 and CPPsite3 in 
StackCPPred (Fu et al. 2020). To avoid sequence redundancy, 
we use CD-HIT (Fu et al. 2012) for sequence deduplication, 
with a threshold of 80%. Additionally, we remove data con
taining non-natural amino acids, as the modification of 
non-natural amino acids in peptides is a more general topic 
beyond the scope of this paper. Furthermore, we eliminate 
some sequences with conflicting labels based on cross- 
comparison. These sequences are marked as highly 
membrane-permeable in some studies, while in others, they 
are found to have weak or non-permeable properties 
(Gautam et al. 2012). Ultimately, it results in a balanced 
dataset consisting of 649 positive samples. To construct the 
negative set, we download 17 059 888 protein sequences 
from UniProt (Consortium 2019) and PeptideAtlas (Deutsch 
et al. 2008) and filter the data with a length threshold of 50, 
the maximum size of peptide based on its definition. To pre
vent data leakage, we also perform deduplication using 
CD-HIT at an 80% threshold (both individually and in com
bination with the positive samples), resulting in a final data
set of 16 689 857 sequences. These sequences are generally 
considered negative samples, but in reality, they should be 
regarded as an unlabeled dataset. Then, we randomly sample 
649 000 samples from this unlabeled dataset to form a 
1:1000 imbalanced dataset. In addition, we split out an inde
pendent test set where the ratio of positive to negative sam
ples is maintained at 1:1000 for performance evaluation.

2.2 Framework of PractiCPP
Previous studies on CPP prediction typically focus on bal
anced datasets with a 1:1 ratio of positive to negative sam
ples. However, our work adopts a more practical approach. 
In real-world contexts, we only have a limited number of 
laboratory-verified CPPs, and there is an overwhelming 
amount of unlabeled peptides whose actual status (CPP or 
non-CPP) remains unknown. To streamline our model repre
sentation, we approach this scenario as an imbalanced two- 
class classification problem, where the ratio between positive 
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samples and negative samples is approximately 1:1000. Here, 
we refer to unlabeled data as the negative data.

In this study, we propose a deep learning framework, 
PractiCPP, designed specifically for the imbalanced binary 
classification challenge inherent to CPP prediction. PractiCPP 
mainly consists of two components: (i) hard negative sampling, 
and (ii) feature extraction and prediction module, termed as 
PractiCPPbase, constituting the base model of PractiCPP. These 
two steps are repeated iteratively until convergence (Fig. 1).

During the hard negative sampling phase, we selectively in
corporate challenging negative samples from the negative set, 
pairing them with positive instances for model training.

In the feature extraction and prediction module, we use 
solely the peptide sequence (amino acid sequence) as our in
put. From this, we derive three distinct features: sequential 
features, local structure features and pretrained features, us
ing varied techniques.

2.2.1 Hard negative sampling
Hard negative sampling (Rendle and Freudenthaler 2014) is 
adopted to address the challenges presented by the severe 
class imbalance in our dataset, by selecting negative examples 
that the model finds most challenging to update the model, 
thereby refining its decision boundaries for improved 
generalization.

Specifically, let P be the positive set, N the negative set 
and Pbatch the positive instances in a batch. Given a batch 
containing positive instances, we first randomly sample a 
subset of negative instances N sample with a size of K� jPbatchj

from the whole negative set N . It can be represented 
as follows: 

N sample 2 N and jN samplej ¼ K� jPbatchj;

where jPbatchj denotes the number of positive instances in the 
current batch and K (with K � 1) is a manually defined multi
plicative factor.

Next, we apply PractiCPPbase to compute the probability of 
instances in N sample being classified as positive. We then se
lect the top M� jPbatchjð1 �M � KÞ negatives with the high
est probabilities, denoted as N hard. To balance the 
computational efficiency with the adequate representation of 
the negative set in our imbalanced classification task, we em
pirically set the negative sampling ratio M to 3 as suggested 
in previous works (Yang et al. 2016). In general, the selection 
of N hard can be represented as follows: 

N hard ¼ TOP3�jPbatchj
ðPractiCPPbaseðN sampleÞÞ:

Then, the training set T for the current batch is constituted 
by merging N hard with Pbatch as follows: 

T ¼ Pbatch [ N hard:

Note that the choice of K plays a critical role in regulating 
the difficulty of the negatives in the training set. Specifically, 
a larger K broadens the sampled subset N sample, increasing 
the likelihood of capturing negatives that are closer to the 
classifier’s decision boundary, thus increasing the hardness 
level of N hard. In experiments on imbalanced data, we search 
K in f3; 9;15; 21; 30g and the optimal performance is ob
served at K ¼ 9: (See Supplementary Notes S2 for a de
tailed analysis.)

2.2.2 Sequential feature extraction in PractiCPPbase

For a peptide p ¼ ða1; a2; . . . ; alÞ, where ai is the amino acid 
at position i and l is the sequence length, we map it to a nu
meric vector vp by uniquely numbering each amino acid and 
padding to a consistent length. In addition, we generate the 
positional embedding for vp to encode positional information 
of each amino acid in p as follows: 

x ¼ vpþPosðvpÞ;

where Posð�Þ is the positional information encoder utilizing 
sine and cosine functions (Vaswani et al. 2017), and x, which 
combines vp and its positional embedding, act as the input to 
a transformer encoder layer. Transformer encoding operation 
(Vaswani et al. 2017) is as follows: 

x0 ¼ LayerNormðxþMultiHeadðxÞÞ;

xTrans ¼ LayerNormðx0 þFeedForwardðx0ÞÞ;

where xTrans represents the embedding derived from the trans
former encoder, MultiHeadðj � jÞ denotes the multi-head at
tention mechanism, LayerNormð�Þ is the layer normalization, 
and FeedForward is a feed-forward network. Then, we apply 
a pooling layer Poolð�Þ, which aggregates the information 
from the encoder’s output to generate the sequential features 
xseq 2 R1�512 of a peptide, as follows: 

xseq ¼ PoolðxTransÞ

2.2.3 Local feature extraction in PractiCPPbase

The Morgan fingerprint (Rogers and Hahn 2010) is a molecular 
descriptor used in cheminformatics to capture the local struc
tural environment of each atom in a molecule. Peptides are es
sentially small to medium-sized polymers and have distinct 
atoms, bonds, and functional groups like any other organic mol
ecule. Thus, we treat peptides as molecules and compute their 
Morgan fingerprints to get the structural features of peptides.

Specifically, let O be the set of atoms in peptide p and 
LnðoÞ denote the label of atom o 2 O after n iterations, then: 

L0ðoÞ ¼ InitðoÞ;

Lnþ1ðoÞ ¼ Hash
�

LnðoÞ [ [b2NeighborsðoÞ LnðbÞ
�
;

where InitðoÞ is the initial label of atom o, Hashð�Þ is the 
hashing function used to generate a new label, and 
NeighborsðoÞ is the set of atoms bonded to atom o. this pro
cess is repeated until a specified radius from each atom is 
reached (we set the radius as 2 in experiments). Finally, the 
generated labels from each iteration, which represent atom 
local environments, are hashed into a bit vector fingerprint of 
length 1024 as follows: 

fingerprint ¼ ðb1;b2; . . . ;b1024Þ;

where bi 2 f0; 1g for i ¼ 1; 2; . . . ;1024: To fully exploit lo
cal structure patterns in the fingerprint, we use a 1D convolu
tion layer to detect adjacent bit interactions as follows: 
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xlocal ¼ FCðPoolðConvðfingerprintÞÞÞ;

where xlocal 2 R1�512 is generated local features of a peptide, 
with Convð�Þ representing a 1-d convolution layer, Poolð�Þ
the max-pooling operation and FCð�Þ a fully connected layer.

2.2.4 Pretrained features in PractiCPPbase

In this study, the available dataset for model training is re
stricted to a few hundred positive samples, specifically cell- 
penetrating peptides. Such a limitation often hampers the ac
curacy of feature extraction (Thirunavukarasu et al. 2023). 
Recently, advanced language models developed for protein 
structures have emerged (Brandes et al. 2023). These models, 
trained on larger datasets, can transfer knowledge, improving 
performance on limited datasets and enhancing our under
standing of peptide attributes. In this context, we use ESM-2 
(Lin et al. 2022), a cutting-edge language model for large- 
scale protein structure prediction, to generate pretrained fea
ture embeddings xpre in our experiments.

Specifically, for a peptide, we first tokenize its sequence 
into individual amino acids and map them to a numeric vec
tor vp 2 R1�l with one-hot encoding, where l is the sequence 
length. Then, for ith position in the sequence, a contextual
ized representation Hi 2 R1�1280 is computed with the pre
trained ESM-2 model. Hence, we have: 

H ¼ ESM � 2ðvpÞ;

where H 2 Rl�1280. Next, we apply a mean pooling operation 
on the contextualized representations H to obtain a single 
embedding vector xesm 2 R1�1280: 

xesm ¼
Xl

i¼1

Hi

0

@

1

A=l:

Finally, a fully connected layer FC(�) is used to generate the 
pretrained embedding xpre 2 R1�512: 

xpre ¼ FCðxesmÞ

To form a comprehensive representation of each peptide, 
the above three embeddings xseq; xlocal and xpre, are 
concatenated. This integrated feature vector is subsequently 
input into a Multi-Layer Perceptron (MLP) for classification. 
The objective of the MLP is to discern cell-penetrating pepti
des and to facilitate this, we use the cross-entropy loss func
tion during the training phase.

3 Results
In this research, we present the model PractiCPP, which is tai
lored to address the challenges presented by realistic scenar
ios in cell-penetrating peptide (CPP) prediction, facilitating 
its practical deployment in real-world settings. Specifically, in 
many practical contexts, we have a small number of known 
positive CPP samples, while a large number of peptides have 
an undetermined CPP status (CPP or non-CPP). Therefore, 
our study focus on imbalanced binary classification, with a 
positive-to-negative sample ratio of 1:1000. However, prior 
efforts on CPP prediction have largely centered on balanced 
datasets, like the commonly used CPP924 dataset, which con
tains 462 CPPs and 462 non-CPPs. Thus, to validate the 

effectiveness of PractiCPP, we first benchmark it against 
state-of-the-art models on the balanced CPP924 dataset. We 
then exhibit the superiority of PractiCPP in tackling imbal
anced CPP data.

3.1 Performance comparison on balanced data
Table 1 shows the result comparison between the proposed 
PractiCPP and seven top-performing baselines, i.e. CellPPD- 
1, CellPPD-2, CellPPD-3 (Gautam et al. 2013), StackCPPred 
(Fu et al. 2020), SkipCPP-Pred (Wei et al. 2017a), TargetCPP 
(Arif et al. 2020), and CPPred-RF (Wei et al. 2017b) on data
set CPP924. For the evaluation of balanced data, we utilize 
accuracy, sensitivity, specificity, and MCC as metrics. To en
sure a fair comparison, we train the model on CPP924 and 
present the results of PractiCPP’s 10-fold cross-validation. In 
the training phase of PractiCPP, hard negative sampling is un
necessary given that CPP924 is a balanced dataset. Thus, we 
directly train the PractiCPP base model, PractiCPPbase.

From Table 1, we observe that PractiCPP consistently out
performs seven baselines in terms of above four metrics, 
achieving an accuracy of 95.65%, sensitivity of 94.29%, spe
cificity of 97.06% and MCC of 91.34%. Compared to the 
best baseline (StackCPPred), our model shows the relative 
improvements of 1.22% in accuracy, 2.38% in specificity 
and 2.63% in MCC while achieving a comparable sensitivity.

3.2 Performance comparison on imbalanced data
To evaluate the performance of different methods on imbal
anced CPP classification, we split out an independent test set 
where the ratio of positive to negative samples maintains 
1:1000, and report models’ results on this test set as in  
Tables 2 and 3. We benchmark against three methods: 
SiameseCPP (Zhang et al. 2023), BChemRF-CPPred (de 
Oliveira et al. 2021), and ML-CPP2 (Manavalan and Patra 
2022). We train SiameseCPP on our imbalanced dataset. For 
BChemRF-CPPred and ML-CPP2, we use their released web 
servers for CPP prediction. All these three baselines are state- 
of-the-art in CPP prediction tasks and show great capability 
in CPP prediction on balanced data, such as CPP924 dataset, 
but lack a specific design to handle highly imbalanced data. 
In addition, to emphasize the necessity of hard negative sam
pling in our proposed model PractiCPP, we also compare 
PractiCPP with PractiCPPbase, the variant includes only the 
feature extraction and prediction module. During the 
PractiCPPbase training process, uniform sampling, rather than 
the hard negative sampling, is leveraged to form the negative 
training set. In Tables 2 and 3, in addition to AUPR, we 

Table 1. Performance comparison on dataset CPP924 (10-fold cross 
validation).a

Method Acc (%) Sn (%) Sp (%) MCC (%)

CellPPD-1 90.70 90.90 90.50 81.60
CellPPD-2 87.00 83.30 90.70 74.50
CellPPD-3 83.70 78.10 89.20 68.00
SkipCPP-Pred 90.60 88.50 92.60 81.20
CPPred-RF 91.60 90.50 92.60 83.10
TargetCPP 93.54 93.41 93.68 87.10
StackCPPred 94.50 94.20 94.80 89.00
PractiCPPbase 95.65 94.29 97.06 91.34

a The evaluation metrics for balanced data are accuracy (Acc), sensitivity 
(Sn), specificity (Sp), and MCC. The best results are highlighted in bold.
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report precision, F1 score, and FP per correct at recall of 0.6 
and 0.7, respectively. We observe that:

• In this experimental setting with a positive-to-negative ra
tio of 1:1000, PractiCPP yields the best performance 
among all the baselines under AUPR and other metrics 
(precision, F1 score and FP per correct) at recall of 0.6 
and 0.7, exhibiting the superiority of our method. 
Specifically, in terms of AUPR, PractiCPP outperforms 
the best baseline (SiameseCPP) by a large margin, the rela
tive improvement reaching 7.08%. At a recall of 0.6, 
PractiCPP achieves a precision of 0.8056, which is a sub
stantial improvement over SiameseCPP’s 0.1662, while at 
a recall of 0.7, the performance gap between PractiCPP 
and other methods is reduced. Nevertheless, PractiCPP’s 
precision (0.2048) is still more than twice that of 
SiameseCPP (0.0961). For BChemRF-CPPred and ML- 
CPP2 which are trained on the limited-scale dataset and 
do not specifically adjust for imbalanced samples during 
model training, their accuracies (0.0032 and 0.0018, re
spectively) are superior to random guessing (0.001) on the 
1:1000 imbalanced dataset, but remain insufficient for 
addressing real-world tasks. 

Figure 1. Workflow of PractiCPP for imbalanced CPP prediction. It includes two components: (a) hard negative sampling to select the most challenging 
negative instances for model updating. (b) Feature extraction and prediction module (named PractiCPPbase) that aims at extracting three types of peptide 
features: sequential features from peptide sequences, local features from peptides’ Morgan fingerprints and pretrained features. The hard negative 
sampling process is guided by PractiCPPbase, and these two steps are executed iteratively until model convergence.

Table 2. Results on the 1:1000 independent test set.a

Method AUPR Rec Prec F1 FP/C

PractiCPP 0.6400 0.6 0.8056 0.6864 0.2414
PractiCPPbase 0.5977 0.6 0.3841 0.4677 1.6034
SiameseCPP 0.5645 0.6 0.1662 0.2601 5.0172
BChemRF-CPPred 0.1210 0.6 0.0030 0.0019 527.65
ML-CPP2 0.0110 0.6 0.0021 0.0730 921.379

a For a fair comparison, the decision thresholds of PractiCPP and 
baselines are adjusted to yield a recall (Rec) of 0.6. The evaluation metrics 
for imbalanced data are precision (Prec), F1 score (F1), and FP per correct 
(FP/C). The best results are highlighted in bold.

Table 3. Results on the 1:1000 independent test set.a

Method AUPR Rec Prec F1 FP/C

PractiCPP 0.6400 0.7 0.2048 0.317 3.8824
PractiCPPbase 0.5977 0.7 0.1193 0.2039 7.3823
SiameseCPP 0.5645 0.7 0.0961 0.1692 9.3971
BChemRF-CPPred 0.1210 0.7 0.0032 0.0016 616.39
ML-CPP2 0.0110 0.7 0.0018 0.0520 1120.529

a The decision thresholds are adjusted to achieve a recall of 0.7. The best 
results are highlighted in bold.
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• PractiCPP consistently performs better than the variant 
PractiCPPbase, exhibiting a 7.08% improvement over 
PractiCPPbase in terms of AUPR, revealing that the hard 
negative sampling plays a critical role in imbalanced CPP 
classification. The precision–recall curves of these two 
methods are also drawn in Fig. 2a. From Fig. 2a, we ob
serve that for recall values below 0.5 and above 0.8, the 
precision metrics of the two methods exhibit slight differ
ence, but in the recall range of 0.5–0.8, PractiCPP’s preci
sion notably surpasses that of PractiCPPbase. This insight 
supports our model’s real-world deployments, as it can 
benefit from achieving good precision at a relatively 
high recall. 

3.3 Ablation study
In the aforementioned two sections, we already study the im
pact of the hard negative sampling technique in PractiCPP, 
and exhibit its great contribution to the model’s overall per
formance. To investigate how much other components of 
PractiCPP influence the final performance, we conduct an ab
lation study in this section. We use PractiCPP with uniform 
sampling (K¼3) as the baseline and compare it with 
three variants.

• PractiCPP (w/o ESM): PractiCPP without embeddings 
generated from pretrained model ESM-2. 

• PractiCPP (w/o FP): PractiCPP without local feature 
embeddings derived from peptide Morgan fingerprints. 

• PractiCPP (w/o ESM-FP): PractiCPP without both ESM-2 
pretrained embeddings and local feature embeddings. 

The precision–recall curves of above four methods are drawn 
in Fig. 2b. We observe that PractiCPP (w/o ESM-FP) per
forms the worst, only achieving 0.483 in terms of AUPR. In 
addition, the relative improvements of PractiCPP over 
PractiCPP (w/o FP) and PractiCPP (w/o ESM) are 6.03% and 
7.36% respectively, indicating that both ESM pretrained 
model and Morgan fingerprints can be beneficial in CPP pre
diction, and the pretrained embeddings contribute more to 
the model performance than Morgan fingerprints 

information. To further explain why we add Morgan finger
prints to our model, we use t-SNE to visualize the Morgan 
fingerprint distributions across CPPs, non-CPPs and unla
beled peptides as in Fig. 3. Here, non-CPPs are the 462 nega
tive instances in dataset CPP924. CPPs and unlabeled 
peptides are from the 1:1000 dataset in our experiments. To 
provide a clear visualization without overwhelming the fig
ure, we have randomly selected 6490 unlabeled peptides as a 
representative subset of the entire unlabeled distribution.  
Figure 3a and b presents the clustering of CPPs, non-CPPs, 
and unlabeled peptides, illustrating their shared chemical 
properties. The distributions of CPPs and non-CPPs are simi
lar, yet exhibit slight shifts, which could be instrumental in 
their classification. Unlabeled peptides display a wider clus
tering, where CPPs and non-CPPs sourced from CPP924 cen
ter in several certain clusters, which highlights the 
significance of Morgan fingerprint in distinguishing CPPs. 
More detailed analyses can be found in Supplementary 
Note S3.

3.4 Embedding visualization
In this section, we visualize the embeddings of PractiCPP to 
highlight the significance of learning on highly imbalanced 
positive-unlabeled datasets. We use two trained models for 
deriving embeddings: (i) PractiCPP trained on the balanced 
positive-negative CPP924 dataset, (ii) PractiCPP trained on 
our 1:1000 positive-unlabeled dataset. Their embeddings of 
CPPs, non-CPPs and unlabeled peptides are generated from 
the penultimate fully connected layer of PractiCPP’s MLP. 
These are then projected into a 2D space using t-SNE.

As shown in Fig. 4a, PractiCPP, when trained on imbal
anced data, clearly separates three groups: CPPs, non-CPPs, 
and peptides without labels, with few instances where they 
overlap. Conversely, when trained on the balanced dataset 
(as in Fig. 4b), although CPPs and non-CPPs are separated, 
they fail to distinctly separate from unlabeled peptides. This 
suggests that models trained on balanced data might be im
practical for guiding large-scale peptide selection for wet-lab 
experiments in CPP identification. In contrast, training with 
imbalanced data has the potential to empower real-world 
applications.

(a) (b)

Figure 2. (a) Precision–recall curves of PractiCPP under uniform sampling (K¼3) and hard sampling (K¼ 9) on the 1:1000 test set. (b) Precision–recall 
curves of PractiCPP and its three variants, with K set to 3 (without using hard negative sampling).
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3.5 Motif visualization
As shown in the previous section, the feature embedding ca
pability of PractiCPP has effectively transformed the original, 
inseparable features into separable, high-dimensional ones, 
enabling accurate discrimination between positive and nega
tive samples. In this section, we aim to dive deeper into visu
alizing and analyzing the sequence features captured by the 
model, including both real-world and predicted samples. 
More specifically, we first use the MEME suite (Bailey et al. 
2015) to calculate sequence motifs of 649 real CPPs. These 
sequences are then ranked based on the statistical significance 
provided by MEME, and top motifs are selected (Fig. 5a). 
This process reveals the sequence characteristics present in 
real-world data with existing labels. As a result, Arginine(R) 
and Lysine(K) are prevalent in the initial motifs, indicating 
their role as typical components in cationic cell-penetrating 
peptides (Schmidt et al. 2010). Pei et al.’s research also sup
ports this, suggesting that functional cell-penetrating peptides 
require at least two arginines (Dougherty et al. 2019). 
Tryptophan (W) and Leucine (L) are also identified as the sig
nificant elements of hydrophobic peptides, i.e. CorTS1 and 

RW9 (Chan et al. 2006, Wang et al. 2017). While the 649 
cell-penetrating peptides exhibit these typical features, we 
broaden our analysis by applying PractiCPP to a wider range 
of unlabeled natural peptides and virtually design peptides to 
uncover new characteristics. We process all samples from the 
independent test set through PractiCPP, identifying sequences 
deemed as positive samples (at a recall of 0.65). Using 
MEME, we calculate motifs for these sequences and rank 
their features based on statistical significance (as shown in  
Fig. 5b). This analysis reveals that the sequences identified by 
the model as cell-penetrating peptides not only confirm 
the classical components (R, W, K) but also highlight three 
novel components: Glutamine(Q), Asparagine(N), and 
Phenylalanine(F) (though Q being less prominent in the origi
nal data). Although further validation is needed for the role 
of Glutamine and Asparagine, Phenylalanine is known to en
hance cell penetration and also has significant associations 
with passive cell permeability (Sayers et al. 2014). These anal
yses demonstrate the potential of our model to contribute 
new insights to the field of cell-penetrating peptides in the 
real world.

(a) (b)

Figure 3. The t-SNE visualization of peptides’ Morgan fingerprints. (a) The t-SNE plot of Morgan fingerprints from CPPs (positives) and non-CPPs 
(negatives). (b) The t-SNE plot of Morgan fingerprints from CPPs, non-CPPs, and unlabeled peptides.

(a) (b)

Figure 4. The t-SNE visualization of PractiCPP generated embeddings for CPPs, non-CPPs, and unlabeled peptides. In (a), PractiCPP is trained on the 
1:1000 imbalanced dataset. In (b), PractiCPP is trained on the balanced dataset CPP924.
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4 Discussion
In this paper, we introduce PractiCPP, a deep learning frame
work specifically designed to address the challenges posed by 
imbalanced binary classification in CPP prediction. Our 
model achieves state-of-the-art performance on both bal
anced and imbalanced datasets, underscoring the efficacy of 
our approach. The hard negative sampling technique plays a 
pivotal role in enhancing the model’s performance, as it com
pels the model to concentrate on challenging negative sam
ples, refining its decision boundaries, and augmenting its 
overall performance. The visualization of the model’s embed
dings demonstrates PractiCPP’s ability to distinguish between 
CPPs, non-CPPs, and unlabeled peptides when trained on im
balanced data. In conclusion, PractiCPP offers a promising 
solution for the prediction of CPPs in real-world scenarios, 
where only a limited number of known positive CPP samples 
are available. The model’s ability to handle imbalanced data 
and its state-of-the-art performance on both balanced and 
imbalanced datasets demonstrate its potential for practical 
deployment in drug delivery research and development. We 
believe that the success of PractiCPP in predicting CPPs could 
inspire its application to other related problems in computa
tional biology and chemistry, such as protein–protein interac
tion prediction, drug–target interaction prediction, and 
protein structure prediction. By adapting the framework to 
these tasks, we may be able to develop novel methods to 
tackle these challenges more effectively.

Supplementary data
Supplementary data are available at Bioinformatics online.
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