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Abstract

Flexible needle insertion procedures are common in minimally-invasive surgeries for diagnosing 

and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the 

needle during long insertions to avoid vital anatomical structures in the patient and reduce post-

operative patient discomfort. To provide needle placement feedback to the physician, sensors are 

embedded into needles for determining the real-time 3D shape of the needle during operation 

without needing to visualize the needle intra-operatively. Through expansive research in fiber 

optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed 

to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In 

this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-

sensing through similarly constructed, four-active area sensorized bevel-tip needles inserted into 

phantom and ex-vivo tissue on the same experimental platform. In this work, we found that for 

shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 

0.05, but in ex-vivo real tissue, the single-core fiber sensorized needle significantly outperformed 

the multicore fiber configuration with a p-value of 0.0005 < 0.05. This paper also presents the 

experimental platform and method for directly comparing these optical shape sensors for the 

needle shape-sensing task, as well as provides direction, insight and required considerations for 

future work in constructively optimizing sensorized needles.
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1. Introduction

Bevel-tip needle insertion procedures are pervasive surgical techniques for minimally-

invasive surgeries, including but not limited to biopsy, brachytherapy, and prostate 
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cryoablation.1–3 Bevel-tip needles enable needle steering, leveraging the asymmetric force 

distribution applied to the tip of the needle during needle insertion. Due to randomness 

observed in surgeries such as tissue obstruction, movement of patient, or practitioner error 

a needle may deviate from its intended trajectory. From these challenges, corrections to 

the needle’s trajectory are typically performed from repetitive reinsertions into the patient, 

angulating the needle to better reach the needle’s intended target. These reinsertions cause 

unnecessary tissue damage to the patient, damaging nearby sensitive anatomical structures 

and resulting in post-operative patient discomfort.4 Thus, guidance solutions are imperative 

to mitigate needle insertion error, providing real-time feedback to the needle’s location in 

the patient, minimizing risk and improving patient outcomes.5 Conventional methods for 

surgical guidance include real-time imaging modalities such as ultrasound imaging6–10 and 

MRI11–13 for tracking the needle’s trajectory during the needle insertion. CT is another 

modality for imaging and tracking the needle’s trajectory, however is not usually real-time 

and requires high doses of radiation to be delivered to the patient.14–16 An alternative 

approach utilizes needles embedded with fiber-Bragg grating (FBG) sensors.7,17–22 FBG 

fibers are optical sensors capable of detecting locally induced strain derived from Bragg’s 

law using peak backscattered optical wavelength at the sensing locations along the fiber, 

denoted as active areas (AAs). Using the local curvature estimates from the FBGs along 

the needle, the needle’s shape can be accurately estimated without direct observation of the 

needle using an imaging modality. Furthermore, FBG sensors are MRI-compatible, allowing 

for shape-sensing to be used in conjunction with the aforementioned imaging modalities.7, 

23–25

Currently, standardized FBG-sensorized bevel-tip needles are not readily found on the 

market, thus requiring for these devices to be built by individuals according to their own 

requirements. Without a standardized needle, optimizing the needle’s hardware design 

becomes an important topic of research for the development of any FBG shape-sensing 

needles. Previous works into the optimization of sensorized needle construction have ranged 

from sensor placement to experiments leveraging fiber imperfections for improving shape-

sensing accuracy.18, 26–31 These efforts typically propose a single needle hardware design 

and discuss the optimization methods of such design in comparison with other works.

Through the advancement of optical sensor fabrication technology, several novel variants 

of FBG sensor have emerged, providing researchers different options for choosing shape 

sensors. In this work, we fabricated two needles with identical form factors and similar 

sensor structure but used two different variants of FBG sensors: one using single-core 

FBGs (SCFs) and the other with a multicore FBG (MCF).32, 33 SCFs are FBG-inscribed 

fiber o ptic cables with only a single core, while MCFs contain multiple cores embedded 

into a single fiber optic c able.34 Other ongoing research in optical shape-sensors include 

using distributed FBGs and advanced signal processing methods in SCFs and MCFs for 3D 

shape-sensing methods, improving upon discrete FBG placement, however typically require 

specialized interrogators for processing distributed FBG signals.35–38 Given all of the 

research to develop novel shape sensors, there exists a gap in current state-of-art evaluating 

these directly to each other for needle shape-sensing. Considerations needed for sensorized 

needles for shape estimation require to be cost-effective, real-time, bio-compatible, and 
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reliable. Therefore, the need for direct comparisons of these sensing modalities is imperative 

to determine the optimal construction of shape-sensing needles.

In this work, we provide a baseline evaluation comparison of two identically configured 

needles, one embedded with SCFs and the other with an MCF, for the needle shape-sensing 

task through needle insertions into phantom and ex-vivo tissue. Furthermore, this work 

develops an evaluation platform for direct comparison of future sensing modalities for 

needle shape-sensing and provides direction for future research in constructive optimization 

for MCF-based needle shape-sensing. For three-dimensional SCF shape-sensing, at least 

two channels non-180° increments of each other are required within one cross-section.39 

We incorporated a third channel in our SCF needle design to enable temperature-invariant 

shape sensing. The two needles realize an identical channel orientation, with the three 

channels lying on the same circle and 120° apart from one another, but at varying radial 

distances from the needle’s central axis. There exists a central core in the MCF needle 

lying along the needle’s central axis, typically used for temperature compensation.40 This 

work extends upon our previous work comparing SCF and MCF performance presented 

in [41] through experiments in phantom and ex-vivo tissue and deeper analysis discussion 

upon the advantages and disadvantages of these shape-sensing modalities. The novelty of 

this work includes a direct performance comparison of SCF-sensorized and MCF-sensorized 

needles in phantom and ex-vivo tissue, a presentation of possible sources of errors for using 

SCFs and MCFs as needle shape sensors, and identification of future research directions in 

optimally constructing MCF-sensorized needles for shape-sensing.

2. Needle Construction

We fabricated two similar MRI-compatible 18G (OD ~ 1.3 mm) needles that are 200 

mm in length (KIM18/20, ITP GmbH, Bochum, Germany), but fabricated one with three 

SCF sensors and the other with an MCF sensor. Each of the sensors had four FBG AAs, 

identically located at points along the needle, as shown in Fig. 1a. AAs are labeled according 

to their unstrained wavelength values in increasing order of the wavelengths.

2.1. Three-Channel Single-Core Fiber Needle

For the SCF needle, there are three single-core fibers (80-micron cladding diameter, 

Technica Optical Components LLC, Atlanta, GA) embedded at 120° increments from each 

other, illustrated in Fig. 1b. The fibers were glued to a nitinol inner stylet’s grooves with 

a bio-compatible adhesive (Loctite AA 3322, Henkel, Rocky Hill, CT). Glue was applied 

and cured in 3–4 mm increments along the needle for each of the three SCFs to ensure 

proper adhesion of the sensors to the needle. The entire SCF needle construction process 

took longer than four hours to complete and was followed with an overnight cure. Since the 

most bending that will naturally occur with the bevel-tip needle aligns in the direction of the 

bevel, we ensured that one of the SCFs embedded in the needle align directly in the direction 

of the bevel, to maximize strain experienced in one of these fibers and ensuring that the 

other two fibers experience strain.

Lezcano et al. Page 3

J Med Robot Res. Author manuscript; available in PMC 2024 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Multicore Fiber Needle

The MCF needle required only a single fiber-optic cable attached with a fanout. The 

MCF sensor (125-micron cladding diameter, Fujikura America, Sunnyvale, CA) had seven 

channels embedded into a single fiber-optic cable, one central core channel at the center of 

the cable and six outer channels in a hexagonal pattern around the central core, shown in 

Fig. 2. In this experiment, we used the even cores and the central core for shape-sensing 

where our decision was informed by the results from [41]. Different from the SCF needle, 

the MCF needle had an additional inner stylet to increase the strain transfer from the 

needle’s outer stylet, illustrated in Fig. 1c. The additional inner stylet was imperative since 

the single fiber-optic cable was placed close to the needle’s central axis, which reduced 

the amount of strain induced for the same curvature, resulting in lower sensor sensitivity. 

The MCF sensor was mounted to the needle by gluing one end of the cable to the base of 

the needle, ensuring the sensor was placed coaxially with the needle. Similarly to the SCF 

needle, two channels were placed in the natural bending plane of the needle, aligned with the 

needle’s bevel-tip for the same reasons listed in Sec. 2.1.

3. Models and Methods

3.1. FBG Sensor Model

FBG sensors are capable of detecting curvature through strain measurements from shifts in 

the sensor’s Bragg wavelength, λB. Due to the periodicity of the grating in the fiber, the 

unstrained Bragg wavelength, λB, 0, will shift from a change in strain, Δϵ, and temperature ΔT
according to

ΔλB
λB, 0

= SϵΔϵ + STΔT ,

(1)

where Sϵ and ST are the strain and temperature sensitivity coefficients of the grating, 

respectively.

Applying Euler-Bernoulli beam theory, we have that the strain measured in the fiber, ϵ, is 

proportional to the curvature of the beam, κ, by

ϵ = κy,

(2)

where y is the distance from the neutral bending plane of the beam.

After eliminating any temperature change effects for Eq. (1) using the method described in 

Sec. 3.2, from combining Eqs. (1) and (2) a direct linear proportionality between the shift in 

FBG’s Bragg wavelength and the curvature of the rod is observed by

κ = 1
λB, 0Sϵy ⋅ ΔλB = c ⋅ ΔλB,
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(3)

where c is a constant of proportionality. Combining three-channels in different directions 

and Eq. (3) of the rod’s cross-section, we derive a linear relationship between the curvature 

induced in the rod’s AA, κ = κx, κy
T , and the wavelength shifts of the three different 

channels in the AA, ΔλB = ΔλB, 1, ΔλB, 2, ΔλB, 3
T , as

κ = C ⋅ ΔλB,

(4)

where C ∈ ℝ2 × 3 is defined as the constant calibration matrix of the AA.

3.2. Temperature Compensation

As mentioned in Eq. (1), the Bragg wavelength shift is temperature-dependent42. In order 

to directly compute strain, a method to remove the effect of temperature from the sensor 

measurements is warranted. Using the method presented in [41], we present the temperature 

compensation method here.

Given that the channels corresponding to an AA are close to each other, we make 

the assumption that they will experience the same temperature at any point of time. 

Furthermore, since the fibers are identical, their temperature coefficients are assumed to 

be equivalent. Therefore, wavelength shifts induced in the AA from temperature changes are 

equivalent between all of the channels in an AA. Therefore, we remove the temperature’s 

effect on the wavelength shift by deducting the common mode of the channels’ wavelength 

shifts within an AA.41,42

3.3. Shape Reconstruction Model

Using our sensor-based Lie-group theoretic model,28 we describe the local curvature (ω1 and 

ω2 along the local x- and y-axes, respectively) and torsion (ω3 along the local z-axis) of the 

needle as

ω s = ω1 ω2 ω3
T = RT s dR s

ds
∨

,

(5)

where R s :ℝ SO 3  denotes the orientation of the needle’s local body-fixed frame, 

parameterized along the needle’s arclength.

The arclength is denoted by s ∈ 0, L  for an insertion with insertion depth L. The 

⋅ ∨ :ℝ3 so(3) operation defines a function mapping a 3D real-valued vector to the Lie 

algebra of SO 3 , so 3 , a set of 3 × 3 skew-symmetric matrices where RT dR
ds ∈ so(3).43

For single-layered tissue with a non-rotating insertion of a bevel-tip needle, the needle is 

modelled as an inextensible elastic rod under uniformly distributed loads.44 Naturally, the 
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bevel-tip needle deflects towards the bevel direction, the local yz-plane, as show in Fig. 3. 

Reducing the natural beam mechanics of a uniformly distributed load, we can define an 

intrinsic curvature that the needle experiences along the needle’s arclength as κ0(s), where

κ0 s = κc 1 − s
L

2
.

(6)

Here, κc is the intrinsic curvature coefficient, combining the effects of the mechanics of 

the needle-tissue interaction, to be determined using FBG sensor measurements. Ideally, 

the needle will deflect in the needle’s natural bending plane of the needle, in the direction 

of the needle’s bevel-tip. Given this, we denote the 3D intrinsic curvature, ω0 s :ℝ ℝ3, 

parameterized along the needle’s arclength, as

ω0 s = κ0 s ⋅ 1 0 0 T ,

(7)

using Eq. (6).

The intrinsic curvature defined in Eq. (7) provides a reference for the needle deformation to 

follow. Using this, we can define the elastic potential energy of the rod as

V =
0

L 1
2 ω − ω0

TB ω − ω0 ds,

(8)

where ω s :ℝ ℝ3, is the local needle deformation parameterized along the needle and B is 

the needle’s stiffness matrix. Minimizing Eq. (8) yields the differential equation,45,46

d
ds B ω − ω0 + ω × B ω − ω0 = 0,

(9)

to be solved in conjuction with (5) to determine the body-fixed local deformation, ω s , and 

needle orientation, R s . Finally, the needle shape, r s :ℝ ℝ3, is computed by integrating 

the body-fixed needle orientation along the length of the needle by

r s =
0

s

R σ e3dσ,

(10)

where e3 = 0 0 1 T

Incorporating the FBG sensor measurements of curvature, we can optimize the measured 

curvature with the model’s determined curvature from the solution of Eq. (9), by optimizing 
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the model’s parameters including the initial angular deformation at the insertion point, ωinit, 

and κc, collectively denoted as η, using the cost function

C(η) = ∑
j = 1

m
(ωj, 1

m − ω1 sj )2 + (ωj, 2
m − ω2 sj )2 ,

(11)

where ωj, 1
m  and ωj, 2

m  denote the FBG’s curvature measurements from the m-th AA. We solve 

the optimization problem using the interior-point nonlinear optimization algorithm.47

3.4. Ground Truth Reconstruction: CT and Stereo

Two methods were used for generating ground truth needle shapes for phantom and real-

tissue insertion experiments. For phantom insertion experiments, the phantom tissue used 

was transparent and a stereo reconstruction algorithm referred to in [44] was used for 3D 

needle reconstruction, referenced to have reconstruction errors of 0.16±0.06 mm.

In real tissue, ground truth was generated from CT images after each insertion depth 

is achieved. Since real tissue is not transparent like the phantom tissue, stereo camera 

visualization is not viable, requiring for another visualization scheme. A 3D CT scan was 

used to visualize fiducials and needle inserted into tissue. The fiducials are used to register 

the needle’s coordinate frame with the CT coordinate frame. Fiducials are segmented and 

localized in the CT image using the k-means algorithm.48 After the fiducials locations in CT 

were determined, a point cloud registration was used to determine the CT coordinate frame 

relative to the needle’s frame. This registration was used to compare the CT-reconstructed 

needle shape with needle shape-sensing results. Then, the needle was segmented from the 

CT scan using simple thresholding and interpolated with second order, 3D B-splines. The 

interpolation allowed for determining a curve of the needle shape with the discrete slices 

attained from the CT scan. Second order 3D B-splines were used for their robust ability to fit 

complex curves.49 CT reconstruction errors were found to be within 0.14 ± 0.03 mm using 

this method.

4. Experimental Setup

The two sensorized needles underwent characterization and calibration as seen in [41]. After 

characterization and calibration, needle insertions were performed in gel phantom and real 

meat for each of the needles.

4.1. Characterization

In order to ensure proper construction of the needles in Sec. 2, we deflected each needle’s 

tip in increments of 1.5 mm to 15 mm at three different loading angles as performed in 

[44]. Proper construction of the needles would be indicated by a linear relationship between 

the needle tip’s deflection distance and the wavelength shift observed from the straight 

configuration. Characterization was performed as referenced in [41,50]. The needles were 

deflected using a robotic platform similar to the one in Sec. 4.4 for accurate measurements 

of the tip deflection.
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4.2. Calibration and Validation

After a successful characterization, the FBG-sensorized needles were calibrated according 

to [41] with constant curvature jigs in order to determine the relationship referenced in 

Eq. (4). Constant curvature grooves of varying known curvatures, embedded with larger 

needle sheaths for the insertion of the sensorized needle. The jig, shown in Fig. 4, contained 

constant curvature grooves with groove curvatures ranging from 0.5 to 4.0 1/m in value. 

A straight groove was added to the jigs in order to establish a baseline of unstrained 

wavelength from all of the FBG sensors for the calculation of wavelength shifts. Five 

insertion trials per curved groove at four different needle orientations (0°, 90°, 180°, and 

270°) were performed to remove any experimental noise from the insertions and to calibrate 

the sensors for 2D curvature estimation. At the end of the calibration, calibration matrices, 

C, for Eq. (4) were derived for each of the AAs, used for 2D curvature estimates at each of 

the AA locations along the needle. Finally, using the derived calibration matrices, reliability 

weightings for all of the active areas were determined as performed in [44] through a linear 

least squares optimization of the weighted mean-squared error of curvatures across the active 

areas in order to optimally weight the curvature information provided to the sensor-based 

shape-sensing method, as FBG sensors are observed to perform differently along the needle.

4.3. Needle Insertion Robotic Platform

For both gel phantom and ex-vivo tissue insertion experiments, the same robotic insertion 

platform was used. The only difference between the two experiments was the modality for 

ground truth needle shape generation. To hold the tissue subject in-place, an acrylic box 

of dimensions allowing for 130 mm insertion depths was used during needle insertion 

experiments. For gathering FBG sensor data from either sensorized needle, an optical 

interrogator (HYPER-ION si155, Luna Inc., Virginia, United States) was used to collect 

200 FBG wavelength samples, for each insertion depth per trial. Unstrained wavelengths are 

collected prior to the start of each insertion experiment to establish a baseline for calculating 

wavelength shifts. Needle insertion was performed using a 4-degree of freedom (DoF) 

robotic insertion platform integrated into a ROS 2 system.51 The 4-DoF robotic insertion 

platform was identical to the one in [44]. The robotic insertion platform was attached with a 

manual rotation stage containing a custom 3D-printed needle holder.

The ROS 2 system contained custom-written packages for handling the ground truth stereo 

vision, for phantom insertion experiments; FBG interrogator nodes; needle shape-sensing; 

and robotic control. A custom user interface was developed for robotic platform control and 

RQT was used for needle visualization. The ROS bagging system was used for recording 

data to be post-processed after each experiment.

4.4. Phantom Insertions

Needle insertion into gel phantom is important to provide a baseline characterization of 

the performance of sensorized needles. Phantom tissue allows us to isolate the needle’s 

performance minimizing the consideration of random needle-tissue interactions with 

homogeneous phantoms. For SCF needle insertion into gel phantom, experimental results 

were used from [44] since the SCF needle configurations were identical between that work 

and this one, as well as similar calibration performance, as described in Sec. 5.2. To evaluate 
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MCF needle shape-sensing in phantom tissue, the MCF needle was inserted into soft gel for 

five trials at insertion depths of 30, 60, 90, and 120 mm.

The homogeneous gel phantom was constructed according to [44]. Plastic (MF-

Manufacturing Company, Texas, United States) melted and formed into a mold for creating 

the phantom tissue.

4.5. Ex-vivo Tissue Insertions

Needle insertion into ex-vivo tissue was performed for both the SCF and MCF needles for 

insertion depths of 65 and 125 mm. The SCF needle was inserted into pork tissue for three 

trials and the MCF needle was inserted into beef tissue for 5 trials. Since our study focuses 

on FBG-based needle shape-sensing compared with an image-based ground truth, the type 

of real tissue used between the needles is not important for our study. Nine registration 

fiducials were attached to the acrylic box to identify the coordinate system of the CT 

scanner. A CT scanner (Loop-X, Brainlab, Munich, Germany) visualized the needle inserted 

into tissue as well as fiducials attached to the acrylic box, holding the tissue, shown in Fig. 

5. Each CT image was a collection of 2D slices with pixel spacings of 0.447 mm/pixel, and 

each slice thickness was 0.667 mm, with a field of view with dimensions approximately of 

20 cm × 25 cm × 23 cm. Needle insertion trials were limited to the CT scanner’s available 

number of 3D scans prior to overheating, hence the fewer number of performed insertion 

depths per trial than in phantom tissue.

5. Results

We used several metrics to compare the ground truth needle shape, rgt, to the sensed needle 

shape, r, that are discretized by their arclength si, i = 1, …, N. They are listed below:

Tip Error (TE):

the location error from the tip of the needle,

TE = ∥ rgt L − r L ∥ .

(12)

Root-Mean Square Error (RMSE):

the overall RMS error of the needle shape,

RMSE = 1
N ∑

i = 1

N
rgt si − r si

2 .

(13)

In-Plane Error (IPE):

the error measured in the natural bending plane of the needle,
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IPE = 1
N ∑

i = 1

N
0 1 1 ⋅ rgt si − r si .

(14)

Out-of-Plane Error (OPE):

the error measured in the plane orthogonal to the natural bending plane of the needle,

OPE = 1
N ∑

i = 1

N
1 0 1 ⋅ rgt si − r si .

(15)

Max Error (MAX):

the maximum error measured along the needle,

MAX = max
i

∥ rgt si − r si ∥

(16)

Note that · here denotes matrix multiplication.

Equivalence tests like the t- and p-value tests are performed in this work in order to compare 

the aforementioned metrics between different sensorized needle’s shape-sensing results. For 

these equivalence tests, we test the null hypothesis that these errors are the same and adopt 

the alternative hypothesis that the errors are significantly different at a 95% confidence 

interval.

5.1. Characterization

Characterization results presented were from [41]. The SCF needle presented a linear 

relationship with the loading of the needle’s tip, in all of the channels. We also observed 

that AA1, furthest from the needle tip, was strained the most with the largest wavelength 

shifts, while AA4, closest to the needle tip, was strained the least with the smallest 

wavelength shifts. The characterization results indicated a proper construction enabling a 

proper calibration of these sensors.

The MCF needle demonstrated a linear relationship within a small-loading regime and 

afterwards reached a second regime where there was a jump into different linear regime. 

Particularly seen in AA1, we observed a shift in the slope of the wavelength response to 

the loading distance. There was also a jump where AA1 became the most activated. Similar 

to the SCF, in the first linear regime AA4, furthest from the tip, experienced the most 

strain induced in the FBGs, while AA1, experienced the least. The MCF needle in this 

construction experienced a large amount of non-linearity, increasing in non-linearity as the 

FBG sensor approached the tip. Notably, the scale of the signal response experienced by the 

MCF FBGs was much smaller than the ones induced in the SCF. This feature could indicate 
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a potential low signal-to-noise ratio (SNR) for the MCF, potentientially attributing to the 

non-linear behavior observed by the MCF characterization.

5.2. Calibration and Validation

To justify using the SCF needle shape-sensing results from [44], we use a t-test to compare 

that needle’s calibration with the SCF needle from this work. Using a two-tailed t-test to 

compare SCF from [44] and this work yielded presented in Table 1: 11 mm — |t| = 0.26 

< 1, 31 mm — |t| = 0.62 < 1, 66 mm — |t| = 0.56 < 1, 101 mm — |t| = 0.31 < 1, found 

to be insignificant, concluding that there is no significant difference between the needles’ 

shape-sensing calibration errors.

A notable feature found in Table 1 is that the curvature estimation error was much higher 

and less precise in the MCF needle than the SCF needle. This indicates an issue when trying 

to reconstruct the shape as the calibration was not as reliable. The increased error from the 

MCF could be attributed to the low SNR discussed in Sec. 5.4.

5.3. Phantom Insertions

Insertion experiment results are presented for the soft-tissue single-layer C-shape insertion 

for the MCF-sensorized needle for insertion depths of 30, 60, 90, and 120 mm, and from 

[44] for the SCF needle at comparable insertion depths of 35, 65, 95, and 125 mm. Shape-

sensing results for sensorized needles using SCF and MCF FBG sensors presented in Fig. 7 

demonstrate good correspondence with the ground truth generated from stereo visualization. 

There was poor visualization of the needle near the insertion point due to tissue deformation, 

causing for the lack of ground truth information near the insertion point seen in Fig. 7b. 

Demonstrated in Figs. 8a and 8b, we see that all shape-sensing errors for both the SCF- 

and MCF-sensorized needles were within 1 mm, with average errors within 0.5 mm. When 

looking at the error contributions between the IPE and OPE to the total RMSE, we observed 

equal contributions, indicating uniform performance of the SCF and MCF sensors in the 

needles in gel phantom. Notably in Fig. 8b as compared to Fig. 8a, the MCF needle at 

the maximum insertion depth had a spike for shape-sensing error, as compared to the SCF 

needle where shape-sensing error remained comparable. Both the SCF and MCF needle 

overall performed comparably with each other, yielding errors that were well within each 

other’s range. When performing a p-test between the SCF and MCF shape-sensing results 

in phantom tissue, we get a p = 0.164 > 0.05 for the RMSE, indicating insignificant 

discrepancy between the two needles’ performances. Overall shape-sensing errors for these 

insertion depths were 0.35 ± 0.12 mm and 0.19 ± 0.09 mm for the SCF needle and MCF 

needle, respectively.

5.4. Ex-vivo Tissue Insertions

Insertion experiments in ex-vivo tissue are reported for the SCF and MCF needle insertions 

for insertion depths of 65 and 125 mm. The SCF needle presented similar results in real 

tissue as compared to in phantom tissue, illustrated in Fig. 8c. All errors were within 1 

mm, with average shape-sensing errors hovering around 0.5 mm. Furthermore, we see that 

the shape-sensing errors remained consistent between varying insertion depths. We observed 

large insertion errors, up to 2.5 mm, for the MCF needle, on the other hand, as seen in Fig. 
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8d. Particularly, this error spiked for smaller insertion depths, when only two AAs were 

inserted into the tissue. At full insertion depth, the MCF needle performed similarly to its 

performance in phantom tissue with larger averages. However, we observed a large error at 

the tip from the MCF needle at all insertion depths, ranging up to 2 mm for both insertion 

depths. p-value between SCF and MCF yield for RMSE: p = 0.0005 < 0.05, which indicated 

a significant discrepancy. Overall shape-sensing errors at these insertion depths were 0.64 ± 

0.31 mm and 1.33 ± 0.65 mm for the SCF needle and MCF needle, respectively.

6. Discussion

For phantom insertions, we observed that both the SCF- and MCF-sensorized needles 

perform similarly. As mentioned in Sec. 5.3, the calculated p-value indicated insignificant 

discrepancy between the shape-sensing error distributions for these insertions. Furthermore, 

average errors were within 0.5 mm with the exception of the MCF needle at 125 mm 

insertion depth. At 125 mm insertion depth of the MCF, we observed a jump in the 

maximum error measured in the FBG-based shape-sensing. This could be attributed to the 

noise found in AA4. Upon inserting from 125 mm from 95 mm, AA4 was inserted into the 

tissue and then was used for shape-sensing. As found in Fig. 9, AA1 and AA4 experienced 

large amounts of sensor noise affecting the curvature reconstruction of the needle. This was 

largely due to the strain induced in these fibers was not large enough in order to strain. 

Furthermore, the construction of the MCF needle was embedded with the MCF by gluing 

the base of the needle to the sensor, holding the sensor as taut as possible. However, AA4 

was located at the middle of the 200 mm length needle, where the sensor experienced 

significant slack, therefore reducing the needle’s strain transfer to this sensor. As seen in Fig. 

9, AA4’s curvature estimation was found to be entirely noisy and was deemed unreliable for 

needle shape estimation. Due to this sensor noise, AA4 of the MCF was manually given a 

minimal reliability weight in order to remove it from needle shape estimation. Due to loose 

tolerances in the constant curvature jig, noise and error are experienced when calibrating 

the FBG sensors closest to the tip of the needle. Therefore, the noise seen in Fig. 9 was 

largely contributed to calibration errors. These tolerances could potentially be mitigated 

through tightening the tolerances of the constant curvature jig. However by reducing the 

inner diameter of the tubes used to calibrate the needles, it becomes very difficult to insert 

the sensorized needle into the jig. With this difficulty, large forces and manipulation are 

required to insert the needle into the jig, increasing the risk of breaking the needle and 

embedded sensors. Furthermore, a finite element model could be used to estimate what the 

experienced curvature by incorporating the estimated tolerances of the embedded sensors in 

the MCF, however we leave this as a future work.

As seen in Fig. 10, the MCF needle has the largest shape-sensing error when the needle 

was deflected less. All of the shape-sensing errors were found to be when the maximum 

deflection was less than 6 mm, primarily seen in the real-tissue insertion experiment. The 

average maximum deflection observed over all of the MCF needle insertion trials for the 

maximal insertion depth in soft-tissue gel phantom was 18.1 ± 2.1 mm, while in real tissue 

was 2.4 ± 1.4 mm. The larger shape-sensing errors were expected to occur at smaller 

deflections of the needle since the embedded MCF sensors in this construction suffered 

from low SNR. Thus, when the needle was deflected less, the FBGs experienced less 
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strain, exasperating the SNR issue and finally deteriorating shape-sensing performance. 

Compared to the SCF needle, while maximum deflections were similar to those found in the 

MCF needle in ex-vivo tissue, the configuration of the fibers in this needle did not suffer 

from the low SNR problem found in the MCF needle’s configuration. Since the fibers in 

the SCF needle were embedded radially further from the needle’s central axis, the strain 

transferred to the SCF from needle bending was much larger than found in the MCF, as the 

MCF was co-axially mounted with its needle. This is justified by looking at the needle’s 

characterization results found in Sec. 5.1, as the SCF needle experienced larger and more 

linear signal responses over all of the AAs, as compared to the MCF. Furthermore, since 

adhesive was uniformly applied to the fibers in the SCF needle, the fibers were consistently 

joined to the needle, while in the MCF needle, there was only one mounting point, causing 

for the extra noise found from AA4 in the MCF needle.

From this study, we find that single-core fibers and multicore fibers have distinct advantages 

and disadvantages for needle shape-sensing. Using SCFs, we found that controlling the 

direct placement of each of the sensing benefited needle shape-sensing performance since 

strain transfer is able to be maximized by placing the sensors further from the needle’s 

central axis. Since needles are typically not bent in large curvatures like endoscopes or 

catheters, fine realization of curvatures for small curvatures is imperative for proper shape-

sensing performance. Thus, since MCF FBGs are constrained by their closer placement 

within the sensing array, the FBGs across the array experiences a limited variation of strain 

transfer. This limited variation of strain transfer over the MCF’s cross-section warrants a 

lack of fine estimation of needle curvature, especially when the MCF is co-axially mounted 

with the needle, as the MCF is minimally strained in this configuration. However, using the 

MCF’s central core with a co-axially mounted MCF, temperature compensation is able to 

be performed since the MCF’s central core undergoes no strain, while in SCF fibers, the 

temperature compensation method presented in Sec. 3.2 works empirically. Furthermore, 

given that the MCF is mounted with seven FBGs, the MCF sensor configuration is able 

to determine its own shape without relying upon mechanical models. However, this would 

require a more dense placement of FBGs along the sensor or distributed FBGs, hence the 

necessity of using the shape-sensing model presented in this paper. For SCFs, a medium 

is required to attach multiple fibers to enable 3D shape-sensing, as the SCFs alone are 

unable to determine their own shape. Thus, SCF calibration is on a per-needle basis, while 

MCFs can be interchanged between needles given that the MCF location is constrained 

mechanically to a single cable. Embedding SCFs into needles is also more intensive and 

laborous task with many points of failure, while MCF embeddings has a single point of 

failure. While embedding SCFs, we have encountered issues with improper adhesion to the 

needle as the SCF needs full adhesion to the needle, as well as potential twisting of SCFs 

inside the inner stylet’s grooves. However, given that the MCFs are only mounted at the 

base of the needle, strain transfer at points closer to the center of the needle degrade due to 

slack of the sensor inside the needle, as seen in Fig. 9. Finally, fiber adhesion degrades over 

many uses of the needle, and since SCF embedded needles rely heavily on proper adhesion 

of the fibers, SCFs will need to be re-glued to the needle and the needle will need to be 

recalibrated for research purposes. In contrast, as MCF embedded needles degrade, the only 

requirement to fix the needle is to re-apply glue to at one, accessible point on the needle 
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and does not require recalibration since the FBG locations inside the MCF relative to each 

other is fixed. In practice, these needles will be treated as a disposable consumable, where 

they will be discarded once the needle deviates from its specified calibration. Therefore, 

the cost of MCFs become a larger concern to their viability, however, with only one point 

of failure, it is likely the MCF-sensorized needles will fail after more insertions than the 

SCF-sensorized needles.

For our current usage of MCFs in this comparative study, we found better shape-sensing 

reliability with SCFs. Nonetheless, we still find MCF-based needle shape-sensing as an 

important research for continued study, thus we provide points of potential improvement 

that could be used for better using MCFs in needles. Firstly, using a higher resolution 

interrogator to better resolve MCF signals for small curvature estimation would mitigate 

the encountered SNR issue. An off-axis placement of the MCFs could be used to increase 

strain transfer to the FBGs, further addressing the MCF’s low SNR. In this study, we 

only used four of the MCF’s channels, the central core and three outer cores, due to 

hardware limitations of our four-channel interrogator. To use all of the cores with standard 

market interrogators, an interrogator with at least eight channels are required which greatly 

increases the cost of using these sensors in needle shape-sensing, thus we proceeded with 

our four-channel interrogator to directly compare their shape-sensing performance in a 

cost-effective manner. Better MCF performance could be attained through using all of the 

MCF’s outer cores, which may also balance the low SNR through using redundant sensors. 

Moreover, methods to address inherent twist in the MCFs were not used in this study in 

order to directly compare the raw shape-sensing performance of these sensors, though these 

methods may increase the MCF’s performance to realize the needle’s 3D shape. Finally, 

the method and analysis used in this paper to compare the shape-sensing performance for 

sensorized needles can extend to optimizing the FBG sensor locations along the needle.

7. Conclusion

This paper provides a baseline evaluation of SCFs and MCFs performance for needle 

shape-sensing through identical experiments, establishes a method for evaluating future 

optical sensors for needle shape-sensing, and provides points of improvement for integrating 

MCFs into needles for shape-sensing tasks. We configured these sensors identically in 

18G needles in order to provide a direct comparison of raw shape-sensing capabilities in 

needles, with similar costs to fabricate and use these needles. We realized mean accuracies 

for SCF-based needle shape-sensing of 0.35±0.13 mm and 0.64±0.31 mm for phantom and 

ex-vivo tissues, respectively. MCF-based needle shape-sensing performance was found to 

have average accuracies of 0.19±0.09 mm and 1.33±0.65 mm for phantom and ex-vivo 
tissues, respectively. We found that MCF-based shape-sensing in phantom tissue, where the 

needle incurred the largest deflection, performed similarly to the SCF-based configuration 

with a p-value of 0.164 > 0.5, but in ex-vivo tissue the MCF needle performed drastically 

worse than the SCF needle with a p-value of 0.0005 < 0.5 due to low SNR found in the 

MCF. Points of improvement for MCF-based needle shape-sensing are provided in this 

paper to mitigate the low SNR issue found in MCF-embedded needles. The analysis of 

MCF-based shape-sensing presented in this work is limited to using only four of the seven 

available channels in the MCF and could potentially change by using all seven channels. 
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Limitations of this work include using only four out of the seven channels in the MCF 

needle, the smaller sample size of experimental insertions in ex-vivo tissue, and the lack 

of testing MCF twist compensation methods in order to directly compare raw capabilities 

of the SCF and MCF sensor for a baseline evaluation. Future work includes extending this 

study to the utilization of all MCF channels for needle curvature estimation, evaluation of 

distributed sensing modalities as compared to discrete sensing, and implementing and testing 

the points of improvement for MCF-based needle shape-sensing presented in this paper for 

MCF constructive optimization.
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Fig. 1: 
The sensor configuration for the two 18G sensorized needles used in this work. (a) The FBG 

placements and AA numbering along both the SCF and MCF needles. (b) and (c) are the 

cross-sections of the SCF and MCF needles, respectively. The blue points mark the FBG 

active areas in (a) and the fiber optic cables containing FBG active areas in (b) and (c).
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Fig. 2: 
Cross-section of the multicore fiber containing seven cores, six outer cores and a central 

core. In this work, we use the even cores and the central core.
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Fig. 3: 
The local body-fixed frame of the needle relative to its central axis.
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Fig. 4: 
Experimental setup for calibrating FBG-sensorized needles with constant curvature jigs. 

FBG sensor data was collected using interrogator when the sensorized needle was inserted 

into the tubes embedded into the constant curvature grooves.
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Fig. 5: 
Robotic insertion experimental setup for ex-vivo needle insertions. Needle insertion was 

performed using a needle insertion robot with 4 DoFs, controlled with a ROS 2 system. 

FBG sensor feedback was streamed over the ROS 2 network, where real-time needle 

shape-sensing results were provided. The needle’s shape was visualized using a Loop-X 

CT scanner.
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Fig. 6: 
Characterization results from [41] for the SCF (a) and MCF (b) needle over a loading 

distance of 15 mm in 1.5 mm increments.
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Fig. 7: 
3D shape-sensing resultant (blue) and ground truth (red) needle shapes for sensorized 

needles using SCF (a) and MCF (b) FBG sensors in phantom tissue at the maximum 

insertion depth. Ground truth needle shapes are generated from stereo camera visualization.
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Fig. 8: 
shape-sensing error statistics for the SCF and MCF needles in phantom, (a) and (b), real, 

(c) and (d), tissue. Ground truth needle shapes were measured from stereo and 3D CT 

reconstruction for the phantom and real tissue insertions, respectively.
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Fig. 9: 
The x- (top) and y-curvature (bottom) sensed in the MCF needle’s AAs over time during 

a static insertion depth of 125 mm in ex-vivo tissue. The sensor noise in AA1 and AA4 

dominate the signal’s output and contribute to large error in the measured curvature.
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Fig. 10: 
The relationship between the needle’s sensed maximum deflection to shape-sensing error 

(RMSE) found for the SCF and MCF sensors embedded into flexible needles over all 

insertion depths.
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Table 1:

Calibration curvature error statistics, mean and standard deviation, comparing the SCF and MCF needles from 

this work and [44] for each active areas based on their sensor location from the tip of the needle.

Location (mm)
Curvature Error (1/m)

[44] SCF This SCF MCF

11 0.47 ± 0.39 0.36 ± 0.16 0.55 ± 0.44

31 0.34 ± 0.24 0.15 ± 0.10 0.31 ± 0.28

66 0.15 ± 0.11 0.08 ± 0.06 0.50 ± 0.34

101 0.16 ± 0.11 0.21 ± 0.12 0.35 ± 0.27
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