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Abstract 17 
Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various 18 
brain domains. We present a novel approach based on static and dynamic inter-network connectivity 19 
entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain 20 
networks. This novel approach enables the investigation of how connectivity strength is 21 
heterogeneously distributed across available targets in both SZ patients and healthy controls. We 22 
analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy 23 
controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences 24 
in the heterogeneity of connectivity levels across available brain networks between SZ patients and 25 
healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), 26 
sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar 27 
(CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients 28 
exhibit significantly higher randomness in the distribution of time-varying connectivity strength across 29 
functional regions from each source network, compared to healthy control group. C-means fuzzy 30 
clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly 31 
higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the 32 
control group shows greater occupancy weights in clusters with strong, large-scale functional entropy 33 
correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest 34 
ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have 35 
larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it 36 
appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, 37 
with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle 38 
with transiently attaining these more focused and structured connectivity patterns. Proposed ICE 39 
measure presents a novel framework for gaining deeper insights into understanding mechanisms of 40 
healthy and disease brain states and a substantial step forward in the developing advanced methods of 41 
diagnostics of mental health conditions.  42 
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1 Introduction 47 
The advancement of tools designed to provide quantitative biomarkers for various psychiatric disorders 48 
is of increasing interest. These tools seek to enhance the diagnosis and screening of the condition, while 49 
also offering further insights into the underlying neural mechanisms of mental disorders (Racz et al., 50 
2020). Evaluating properties of brain network connectivity obtained from resting-state (task-free) 51 
functional magnetic resonance imaging (rs-fMRI) is widely used for identifying characteristic and 52 
reproducible brain activation patterns associated with distinct cognitive and clinical conditions (Allen 53 
et al., 2014; Arbabshirani et al., 2013; Damaraju et al., 2014; Du et al., 2020; Li et al., 2020; Liu et al., 54 
2008; Lurie et al., 2020; Miller, Vergara, et al., 2016; Sakoğlu et al., 2010). In contrast to task-based 55 
fMRI, rs-fMRI is obtained without external stimuli or tasks, allowing for the capture of the brain's 56 
spontaneous activity during rest. Thus, rs-fMRI allows to explore spatiotemporal organization of the 57 
brain on macro-scale level. The primary signal utilized in rs-fMRI is the blood oxygenation-level 58 
dependent (BOLD) signal, reflecting alterations in oxygenation levels that are associated with neural 59 
activity across various brain regions. From a clinical perspective rs-fMRI provides several advantages. 60 
It is a non-invasive technique that is relatively straightforward to administer, placing fewer demands 61 
on patients compared to other imaging methods or task-based fMRI paradigms (Alaçam et al., 2023; 62 
Arbabshirani et al., 2013; Duda et al., 2023; Iraji et al., 2022; Iraji et al., 2023; Lee et al., 2013), it show 63 
robustness in clinical applications even at short scan time (2-5 min) (Duda et al., 2023), as well as it 64 
allows to identify individual’s unique functional brain connectivity profile (Finn et al., 2015). This is 65 
particularly crucial for clinical populations who may struggle to perform standardized tasks within the 66 
scanner.  67 
The traditional approach to functional brain connectivity has involved assuming a static connectivity 68 
pattern throughout the data acquisition period (Hutchison, Womelsdorf, Allen, et al., 2013). However, 69 
it has been shown that spontaneous BOLD signals recorded during periods of rest display inherent 70 
spatiotemporal dynamic organization (Chang & Glover, 2010; Hutchison, Womelsdorf, Gati, et al., 71 
2013; Sakoğlu et al., 2010). Dynamic functional network connectivity (dFNC) is one of the strategies 72 
proposed to characterize time-varying brain properties (Sakoğlu et al., 2010). Within this framework, 73 
the brain is partitioned into independent networks using a method known as group independent 74 
component analysis (ICA) each with its unique temporal profile (Calhoun & Adalı, 2012; Calhoun et 75 
al., 2014). The subsequent examination of time-varying changes among component time courses, 76 
known as functional network connectivity (FNC), involves calculating cross-correlations between 77 
brain networks (components) over time (Calhoun et al., 2014; Jafri et al., 2008). The correlation 78 
patterns evolve over time, reflecting fluctuations in neural activity at the macroscopic level and provide 79 
insights into how brain networks evolve and interact over different time scales. Afterward, clustering 80 
analysis is executed on the time series of correlation patterns to identify matrices representing 81 
connectivity "states". These states are considered to be fundamental to cognition and behavior and 82 
useful for characterizing distinct clinical conditions (Calhoun et al., 2014; Hutchison, Womelsdorf, 83 
Allen, et al., 2013). Although patterns of both static (calculated over an entire scan) and functional 84 
connectivity exhibit sensitivity to individual variations in health and disease, dynamic functional 85 
network connectivity provides additional results and is considered to be a more sensitive biomarker 86 
when compared to static FNC (Damaraju et al., 2014; Jin et al., 2017; Sakoğlu et al., 2010). Altered 87 
dFNC patterns have been observed in an expanding range of neurological and psychiatric disorders 88 
compared to control groups (Alaçam et al., 2023; Allen et al., 2014; Damaraju et al., 2014; de Lacy & 89 
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Calhoun, 2019; de Lacy et al., 2017; Duda et al., 2023; Jin et al., 2017; Lurie et al., 2020; Miller, 90 
Vergara, et al., 2016; Sakoğlu et al., 2010). 91 
Schizophrenia (SZ), a prevalent mental disorder affecting around 1% of the world's population, 92 
encompasses a complex array of symptoms that impact cognition, perception, and emotional 93 
regulation, often resulting in disruptions to daily functioning (Bhugra, 2005; Wyatt et al., 1995). 94 
Ongoing research endeavors aim to elucidate its intricate mechanisms, with a particular focus on 95 
comprehending changes in dFNC, which offer invaluable insights into the dynamic brain processes 96 
associated with SZ. SZ is characterized by dysconnectivity, which refers to the abnormal functional 97 
integration of brain processes. This dysconnectivity implies disrupted communication between 98 
different brain regions. Individuals diagnosed with schizophrenia, particularly those exhibiting 99 
heightened hallucinatory propensities, exhibit a notable decrease in the dynamic activity of time-100 
varying whole-brain network connectivity patterns (Miller, Vergara, et al., 2016; Miller, Yaesoubi, et 101 
al., 2016). Also, SZ patients showed a reduction in temporal autocorrelations, reduced multifractality 102 
and increased self-similarity (Alamian et al., 2022). Furthermore, SZ affects the sensitivity of intra-103 
network connectivity to broader functional brain interactions (Miller, Vergara, et al., 2016). In healthy 104 
subjects, patterns of connectivity within the intra-auditory-visual-sensorimotor networks (AVSN) 105 
show responsiveness to variations in network relationships across various domains. Conversely, 106 
individuals with SZ exhibit isolated intra-AVSN connectivity, which does not influence or respond to 107 
changes in network relationships within domain pairs containing at least one non-AVSN functional 108 
domain (Miller, Vergara, et al., 2016). The neural mechanisms of dysconnectivity observed in SZ 109 
patients remain to be fully unraveled, and research continues to investigate their dynamics and clinical 110 
significance. Schizophrenia presents as a complex disorder exhibiting disrupted brain network 111 
interactions at both static and dynamic levels, thus requiring sophisticated approaches to reveal its 112 
underlying neural mechanisms. 113 
In recent years, there has been a notable increase in empirical studies with a focus on integration of 114 
both structural and functional connectivity analyses with information theory offering a powerful 115 
framework for advancing our understanding of brain organization (Poza et al., 2021). Metrics 116 
originating from information theory, particularly those linked with entropy, have shown their ability in 117 
extracting meaningful information from underlying brain networks, in both healthy and mental disorder 118 
state (Poza et al., 2021). Thus, current study (Blair et al., 2024) tracked subject trajectories in dynamic 119 
functional connectivity state space during brain scans evaluating entropy production along each 120 
dimension of the proposed basis space. Authors found that schizophrenia patients demonstrate lower 121 
entropy, suggesting simpler trajectories compared to healthy controls. 122 
In present work we introduced novel measure combining FNC and information theory approaches – 123 
inter-network connectivity entropy (ICE), entropy of distribution of time-varying connectivity strength 124 
across functional brain regions. We investigated static and dynamic ICE across 53 functional intrinsic 125 
brain networks extracted from rs-fMRI data from 311 subjects, including 151 schizophrenia patients 126 
and 160 healthy controls, to discern potential differences in ICE between SZ patients and controls and 127 
to determine functional brain networks that exhibit those differences and evaluate whether they 128 
manifest as higher or lower values in SZ patients relative to controls. Higher values of ICE indicate 129 
higher randomness and more heterogeneity of connectivity levels across available networks whereas 130 
lower ICE values are evidence of less randomness and more concentration (less heterogeneity) in 131 
connectivity levels. In addition, we performed C-means fuzzy clustering on functional ICE correlation 132 
matrices to uncover potential differences in functional entropy correlation between and within intrinsic 133 
brain networks in both the SZ patient and control groups. Furthermore, we employed k-means 134 
clustering of time-indexed ICE vectors to identify characteristic ICE states and their occupancies for 135 
each group. Our approach provides new insights into unraveling the neural mechanisms of 136 
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dysconnectivity in SZ patients and for developing advanced biomarkers of the of mental health 137 
conditions. 138 

2 Materials and Methods 139 

2.1 fMRI Data 140 

We used resting-state fMRI data collected from a total of 311 participants, comprising 160 healthy 141 
controls (HC) and 151 individuals diagnosed with SZ, matched for age and gender. The data were 142 
acquired as part of the multi-site fBIRN project (Potkin & Ford, 2009). Participants were directed to 143 
keep their eyes closed throughout the scans. Data collection occurred every 2 seconds (TR) for a total 144 
of 160 TRs, equivalent to 5.33 minutes. The data underwent preprocessing using a standard pipeline, 145 
as detailed in (Damaraju et al., 2014; Du et al., 2020), and underwent decomposition with group-146 
independent component analysis. This process yielded 100 group-level functional network spatial 147 
maps along with their corresponding timecourses (Figure 1). Among these components, 53 were 148 
identified as intrinsic connectivity networks (ICNs), in accordance with the methods described in 149 
earlier publications (Damaraju et al., 2014; Du et al., 2020). Subject-specific spatial maps and temporal 150 
profiles were obtained using spatiotemporal regression. The temporal profiles of each subject's ICNs 151 
were detrended, orthogonally aligned with motion parameters, and despiked. Detailed description of 152 
data collection, estimation of the functional networks, their functional connectivity and number of 153 
temporally independent sources are provided in (Blair et al., 2024; Du et al., 2020). 154 

 155 
Figure 1. Schematics of main steps of analysis, modified from R. L. Miller et al., "Higher Dimensional Meta-State 156 
Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients," PLoS One, 2016. (A) 157 
Decomposition of resting-state fMRI data with GICA into network spatial maps and corresponding time courses. (B) 158 
Obtaining dynamic functional connectivity matrices for each of subject. (C) Computing intra-network connectivity 159 
entropy (ICE) for controls and SZ patients from dynamic functional connectivity matrices. After we applied clustering 160 
algorithms and regression analysis to determine group difference between SZ and HC (D). 161 
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2.2 Inter-network Connectivity Entropy (ICE)  162 

First, we calculated network connectivity distributions from dFNC matrices. Next, we determined the 163 
entropies of these distributions (inter-network connectivity entropies (ICE)). Network connectivity 164 
distributions and ICE were calculated in static and dynamic ways, obtaining ICE aggregated over all 165 
time windows, static ICE (SICE), and window-wise ICE or dynamic ICE (DICE).  166 

For each network i, we look at its connectivities 𝑐(𝑖, 𝑗) obtained from dFNC matrices across 𝑗 ≠ 𝑖 as a 167 
distribution of connectivity strengths across functional intrinsic brain networks. We map each 𝑐(𝑖, 𝑗) 168 
to a non-negative translate denoted as 𝑐!(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − 𝐶"#$, where 𝐶"#$ minimal connectivity on a 169 
global level. A probability distribution for each network i was computed as 𝑃# consisting of the 170 
sequence {𝑝(𝑖, 1), 𝑝(𝑖, 2), … 𝑝(𝑖, 𝑘)}, 𝑗 ≠ 𝑖 , where 𝑝(𝑖, 𝑗) = %!(#,()

∑ %!(#,+)"
#$%	

,  𝑗 ≠ 𝑖, is a summed 171 

connectivity of component to each other network rescaled to be a distribution, k is a number of 172 
components (networks). After that we computed the connectivity entropy these distributions for every 173 
network i as 𝐸#: = −∑ 𝑝(𝑖, 𝑗)+

(,- ∗ log	(𝑝(𝑖, 𝑗)). 174 

We obtained tensors of dynamic and static ICE values in dimensions of 53x137x311 and 53x311, 175 
respectively. Here, 53 represents the number of functional intrinsic networks, 137 indicates the number 176 
of time windows, and 311 signifies the number of subjects. Functional entropy correlation matrices of 177 
dimensions 53x53 for both SZ patients and controls were generated by autocorrelation of the 53x137 178 
matrices of DICE for each subject. All computations and data analyses were performed utilizing 179 
custom MATLAB scripts. Connectograms depicting functional ICE correlations were generated using 180 
GIFT toolbox function ‘icatb_plot_connectogram’ (http://trendscenter.org/software/gift) (Iraji et al., 181 
2021) and Neuromark fMRI 1.0 template (Du et al., 2020). 182 

2.3 Clustering Analysis 183 

The C-means fuzzy clustering was performed on functional ICE correlation matrices of all subjects 184 
with the Euclidean distance, 500 iterates, fuzziness parameter equal 1.05. The set of functional ICE 185 
correlation matrices was segmented into five clusters, with their centroids serving as basis correlation 186 
patterns. Cluster occupancy weights were derived from the fuzzy partition matrix, which contains the 187 
percentage of cluster membership for each observation. 188 
The k-means clustering algorithm was applied to the time-indexed entropy vectors partitioning data 189 
into five different clusters using Euclidean distance, 500 iterates, and 50 replicates followed by 190 
assessment of subject-level cluster occupancy rates and dwell time for both SZ patients and HC. 191 
Number of clusters was established using the elbow criterion. Both k-means and c-means clustering 192 
utilized MATLAB's functions. 193 

2.4 Statistics 194 

A linear regression model and two-sample t-test were employed to assess the impact of schizophrenia 195 
on ICE. The reported p-values underwent correction for multiple comparisons using FDR (false 196 
discovery rate) at 𝛼./0 = 0.05. The regression model accounts for potential confounding variables 197 
such as age, gender, and mean frame displacement (motion). The diagnosis variable is binary, where 198 
'1' represents SZ and '0' represents HC. Therefore, a positive regression coefficient for diagnosis 199 
indicates a positive correlation with SZ, while a negative value of regression coefficient for diagnosis 200 
indicates a negative correlation with SZ.  201 
 202 
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3 Results 203 

3.1 SZ patients tend to display higher static and dynamic ICE across the majority of intrinsic 204 
brain connectivity networks when contrasted with healthy controls 205 

In our study, our goal was to examine heterogeneity in connectivity strength distributions across 206 
intrinsic connectivity brain networks in both SZ patients and healthy controls. To accomplish this, we 207 
computed the entropy of connectivity strength distributions within functional brain regions of each 208 
source network, termed as intra-network connectivity entropy (ICE). Among the 53 functional brain 209 
networks examined, 36 exhibited statistically significant difference in static ICE between SZ patients 210 
and controls (p≤0.0274 (FDR)) (Table 1). These implicated networks encompass diverse functional 211 
brain domains, such as with subcortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), 212 
cognitive control (CC), default mode networks (DMN) and cerebellar (CB). Furthermore, dynamic 213 
ICE showed significant differences in 41 out of the 53 functional networks (p≤0.0379 (FDR)) affecting 214 
same functional brain domains (Table 1). Mean static and mean dynamic ICEs computed across 53 215 
functional connectivity networks for both healthy controls and SZ patients are illustrated in Figures 2 216 
and 3. 217 
Next, we assessed whether SZ patients exhibit higher or lower levels of ICE compared to healthy 218 
controls. Except for the posterior cingulate cortex, all networks with significant differences in dynamic 219 
ICE between patients and controls demonstrated higher ICE in schizophrenia patients compared to 220 
controls. While the posterior cingulate cortex network demonstrated higher static ICE in HC, no 221 
statistically significant difference in dynamic ICE was observed between SZ patients and HC in this 222 
network. 223 
To investigate the effects of age and gender on ICE, we employed a linear regression model while 224 
correcting for multiple comparisons. Our analysis indicated that gender does not significantly affect 225 
heterogeneity of intra-network connectivity strength distribution for both static and dynamic measures, 226 
whereas age has statistically significant effect on Precuneus intrinsic connectivity network for static 227 
ICE measure. Additionally, we investigated the effect of the composite cognitive score and the 228 
combined effect of the composite cognitive score and diagnosis (composite cognitive score by 229 
diagnosis interaction) on ICE group differences. To this end, we added terms for the composite 230 
cognitive score and the composite cognitive score by diagnosis interaction to the regression model. 231 
The regression analysis showed that there was no statistically significant effect of either the composite 232 
cognitive score or the interaction of the composite cognitive score and diagnosis on both static and 233 
dynamic ICE. 234 
 235 
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 236 
Figure 2. The majority functional brain networks demonstrate significantly higher mean static ICE in SZ patients 237 
compared to control group. Networks that have significant differences in mean static intra-network connectivity entropies 238 
(SICE) between SZ patients and controls are shown with red “*” marks. The statistical results were acquired from the 239 
diagnosis term in univariate multiple regression models.  240 
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 241 
Figure 3. The majority of functional brain networks demonstrate significantly higher mean dynamic ICE (DICE) in SZ 242 
patients compared to control group. Networks that have significant differences in mean dynamic intra-network 243 
connectivity entropies (DICE) between SZ patients and controls are shown with red “*” marks. The statistical results 244 
were acquired from the diagnosis term in univariate multiple regression models.  245 
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 246 
Table 1. Mean ICE associated with intrinsic connectivity networks  247 
 248 

# Functional networks SICE DICE # Functional networks SICE DICE 
 Subcortical (SC)    Cognitive Control (CC)  

1 Caudate (69) + + 26 Inferior parietal lobule (68)   

2 Subthalamus/hypothalamus (53) + + 27 Insula (33) + + 

3 Putamen (98)   + 28 Superior medial frontal gyrus (43)   

4 Caudate (99) + + 29 Inferior frontal gyrus (70)   

5 Thalamus (45) + + 30 Right inferior frontal gyrus (61)  + 
 Auditory (AUD)  31 Middle frontal gyrus (55)   

6 Superior temporal gyrus (21) + + 32 Inferior parietal lobule (63) + + 

7 Middle temporal gyrus (56)     33 Left inferior parietal lobule (79)   

 Sensorimotor (SM)  34 Supplementary motor area (84) + + 

8 Postcentral gyrus (3) + + 35 Superior frontal gyrus (96)   

9 Left postcentral gyrus (9) + + 36 Middle frontal gyrus (88) + + 

10 Paracentral lobule (2) + + 37 Hippocampus (48) + + 

11 Right postcentral gyrus (11) + + 38 Left inferior parietal lobule (81)   

12 Superior parietal lobule (27) + + 39 Middle cingulate cortex (37)  + 

13 Paracentral lobule (54) + + 40 Inferior frontal gyrus (67) + + 

14 Precentral gyrus (66) + + 41 Middle frontal gyrus (38) + + 

15 Superior parietal lobule (80) + + 42 Hippocampus (83) + + 

16 Postcentral gyrus (72)  +  Default Mode (DMN)  
 Visual (VIS)  43 Precuneus (32)   

17 Calcarine gyrus (16) + + 44 Precuneus (40)   

18 Middle occipital gyrus (5) + + 45 Anterior cingulate cortex (23) + + 

19 Middle temporal gyrus (62) + + 46 Posterior cingulate cortex (71)  + 

20 Cuneus (15) + + 47 Anterior cingulate cortex (17) + + 

21 Right middle occipital gyrus (12) + + 48 Precuneus (51)   

22 Fusiform gyrus (93)  + 49 Posterior cingulate cortex (94) +  

23 Inferior occipital gyrus (20) + +  Cerebellum (CB)  
24 Lingual gyrus (8) + + 50 Cerebellum (13) + + 

25 Middle temporal gyrus (77) + + 51 Cerebellum (18) + + 

  SZ < C   52 Cerebellum (4) + + 

  SZ > C   53 Cerebellum (7) + + 

 249 
Note: The majority of functionally relevant intrinsic connectivity networks have significant differences in static and mean 250 
dynamic intra-network connectivity entropies (SICE and DICE correspondingly) between SZ patients and controls. These 251 
networks are shown with “+” marks). Statistics are obtained via linear regression to assess the impact of diagnosis on 252 
ICE, FDR < 0.05. Regression coefficients and p-values for every observation are presented in Table S1. Numbers in 253 
brackets indicate Brodmann areas. 254 
 255 
 256 
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3.2 SZ patients and control group have distinct distribution of ICE across a variety of 257 
intrinsic connectivity networks 258 

Mean values of dynamic ICE computed across windows and subjects provide limited information. 259 
Therefore, we examined the distributions of dynamic ICE across different subjects for all networks 260 
with statistically significant difference between patients and healthy controls. Six representative 261 
histograms of dynamic and static ICE for control and SZ groups are shown in Figures 4 and 5. The 262 
histograms are left-skewed for both patients and controls whereas SZ histograms have bulk of the mass 263 
at the higher end in the distributions compared to controls. Among all 41 networks with p≤0.0379 264 
(FDR), the distributions associated with SZ patients were shifted toward higher connectivity entropies 265 
compared to controls. This result is consistent and complementary with the findings presented in the 266 
previous section, which described a higher mean ICE in SZ patients. 267 

 268 
Figure 4. The DICE histograms characterizing SZ patients are skewed towards higher connectivity entropies and contain 269 
a larger portion of the mass at the higher end compared to the control group. Six representative functional brain networks 270 
Thalamus (SC), Caudate (SC), Cerebellum 4 (CB), Calcarine gyrus (VIS), Middle temporal gyrus (VIS) and Paracentral 271 
lobule (SM) with significant difference in dynamic ICE with corresponding p-values: 2.56*10-10, 1.27*10-8, 2.98*10-8, 272 
1.29*10-7, 2.28*10-6, 4.90*10-6. Distributions were obtained for ICE aggregated over all windows and subjects of each 273 
group.  274 
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 275 
Figure 5. Similarly to DICE histograms, SICE histograms characterizing SZ patients are skewed towards higher 276 
connectivity entropies and contain a larger portion of the mass at the higher end compared to the control group. Same as 277 
in Figure 4 six representative functional brain networks are Thalamus (SC), Caudate (SC), Cerebellum 4 (CB), Calcarine 278 
gyrus (VIS), Middle temporal gyrus (VIS) and Paracentral lobule (SM) with significant difference in dynamic ICE with 279 
corresponding p-values: 4.22*10-9, 3.96*10-8, 6.77*10-8, 1.66*10-6, 2.61*10-6, 8.16*10-6. Distributions were obtained 280 
averaging ICE over time windows for every subject of each group.  281 
 282 

3.3 SZ patients have lower variability in intra-network connectivity strength distribution 283 
over time compared to the control group 284 

To explore the variability in network connectivity strength distribution over time, we examined the 285 
standard deviations (STDs) of the dynamic ICEs across all intrinsic functional brain networks. 46 of 286 
53 functionally relevant intrinsic connectivity networks (shown with red “*” marks in Figure 6) have 287 
significantly higher STD of the DICE in healthy controls compared to SZ patients. All functional 288 
networks with significant differences in SICE and DICE between SZ patients and controls, except 289 
posterior cingulate cortex, characterized with high variability in network connectivity strength 290 
distribution over time. Moreover, intra-network connectivity in SZ patients exhibits a more uniform 291 
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distribution, showing relatively consistent temporal patterns, rather than displaying high average 292 
entropy driven by specific periods of elevated entropy that skew the average upwards.  293 
 294 

 295 
Figure 6.  46 out of 53 functionally relevant intrinsic connectivity networks exhibit significantly lower STDs of DICE in 296 
SZ patients compared to healthy controls. These networks are shown with “*” marks. Standard deviations were calculated 297 
for seven brain domains comprising of 53 functional networks. The majority of these 46 networks have significant 298 
differences in SICE and DICE between SZ patients and controls.   299 
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3.4 SZ patients have distinct ICE patterns in SC, AUD, SM, VIS and CB brain domains 300 
compared to healthy controls 301 

To explore correlation of ICE between different brain domains and find potential difference in ICE 302 
patterns between SZ patients and control group we investigated whole-brain subject-level functional 303 
entropy correlation matrices obtained on time courses of ICE for each component. Averaged functional 304 
ICE correlation matrices for both patients and healthy controls and their difference are presented in 305 
Figure 7, A,B correspondingly. Notably that all network show either positive or no correlation in ICE 306 
for both groups. Significant difference is observed in SC, AUD, SM, VIS and CB domains where SZ 307 
patients have reduced correlation of ICE between and within networks of these domains, when 308 
compared to control group (Figure 7, C) what is also depicted on connectograms (Figure 7, D,E).  309 
Next, we performed clustering analysis of these functional entropy correlation patterns using C-means 310 
clustering approach (Figure 7, F-I). As a result, we obtained two clusters with strong, large-scale 311 
functional entropy correlation, two clusters with weak, low-scale correlation and one cluster with 312 
medium functional entropy correlation. Clusters with strong, large-scale functional entropy correlation 313 
have larger cluster occupancy weights for controls, whereas clusters with low-scale functional entropy 314 
correlation are more occupied by SZ patients (Figure 7, K). The results are consistent with FNC 315 
clusters for SZ and control groups (Damaraju et al., 2014).  316 
 317 

3.5 SZ patients and controls exhibit different occupancy rates for clusters exhibiting distinct 318 
dynamic ICE patterns 319 

In addition, we performed k-means clustering on the time-indexed ICE vectors. We obtained 5 cluster 320 
centroids, that have different ICE patterns (Figure 8A). Two of them (1 and 5) are characterized with 321 
high entropy and another two (2 and 4) have low entropy values. Noticeably that clusters with high 322 
entropy exhibit high ICE across all 53 components, while clusters with low entropy display larger 323 
variability in ICE among functional brain networks. Interestingly that SC, AUD, VIS and CB brain 324 
domains of clusters 2 and 4 are characterized with lower ICE values compared to other functional brain 325 
networks.  326 
Next, we computed the mean values of subject-level occupancy rates (Figure 8B) and dwell times 327 
(Figure 8C) for each obtained cluster. Cluster 1, with the highest entropy across all networks, exhibits 328 
significantly greater occupancy rates for SZ patients than controls, while controls demonstrate 329 
significantly higher occupancy rates in clusters (2 and 4) which have low ICE values. Cluster 5 is 330 
characterized by high ICE values across all networks along with high occupancy for both groups. Mean 331 
dwell time for high-entropy cluster 1 is higher in SZ patients whereas low-entropy cluster 2 has higher 332 
mean dwell time for HCs. Clusters 3, 4, and 5 exhibit the same mean dwell time for both SZs and HCs. 333 
Despite strong effect of the diagnosis on mean dwell time in clusters 1 and 2 these results are not 334 
statistically significant after FDR correction (Table S2).  335 
Also we calculated average ICE values across windows and individuals for two groups (Figure 8D,E) 336 
and their difference (Figure 8F). The clusters 2 and 4, which exhibit low entropy, demonstrate more 337 
distinct patterns of ICE in both SZ and control groups across various functional brain networks. The 338 
group difference (SZ–HC) in average DICE values for each cluster is shown in Figure 8J. Table with 339 
group difference p-values (Table S3) corresponding to each ICN and each cluster is presented in 340 
‘Supplementary Materials’ section. Although most ICNs in low-entropy clusters 2 and 4 exhibit 341 
significant group differences in average ICE (Figure 8F), high-entropy clusters 1, 3, and 5 demonstrate 342 
statistically stronger results. This phenomenon is explained by the fact that the standard deviation for 343 
ICE in most ICNs is much higher in clusters 2 and 4 than in clusters 1, 3, and 5 (Figure S1A,B). 344 
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Furthermore, Cluster 4, which has the lowest ICE, exhibits higher standard deviation of ICE for healthy 345 
controls compared to schizophrenia patients for the majority of ICNs (Figure S1C). 346 
 347 

 348 
Figure 7. (A, B) SZ patients exhibit reduced correlation of ICE between brain regions compared to controls. Mean 349 
functional entropy correlation matrices obtained from dynamic ICE for SZ patients and control group correspondingly. C 350 
The group difference (SZ–HC) in functional entropy correlation matrices. Values are plotted as −log10(p-value)*sign(t-351 
value), where statistics are obtained via t-test across diagnosis groups, FDR < 0.05. The graph displays only the p-values 352 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.15.599084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.15.599084
http://creativecommons.org/licenses/by-nd/4.0/


 
15 

that correspond to statistical significance. D and E illustrate connectograms derived from mean functional entropy 353 
correlation matrices for both the patient and control groups. Connections with correlation values lower than 0.4 are 354 
omitted on the connectograms. The c-means algorithm is utilized to cluster functional entropy correlation matrices 355 
obtained for all subjects, resulting in the identification of five cluster centroids (F-I). K Occupancy weights across five 356 
clusters for SZ and healthy control group. 357 
 358 

  359 
Figure 8. SZ patients are characterized by distinct cluster occupancy rates and different ICE patterns compared to 360 
controls (A) The k-means clustering algorithm was applied to cluster dynamic ICE obtained for all subjects, resulting in 361 
the 5 cluster centroids. (B) Mean cluster occupancy rates for all obtained clusters. Cluster 1 with highest entropy across 362 
all networks is more occupied by SZs than controls, whereas cluster 4 with lowest entropy is occupied more by healthy 363 
controls. (C) Mean dwell time associated with each cluster. The mean DICE values corresponding to the five clusters on 364 
are shown for healthy controls (D) and SZ patients (E) and their difference (F). (J) The group difference (SZ–HC) in 365 
mean DICE values for each ICN of each cluster. The values are plotted as −log10(p-value)*sign(t-value), where statistics 366 
are obtained via t-test across diagnosis groups, FDR < 0.05. The graph displays only the p-values that correspond to 367 
statistical significance.  368 
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Next, we examined the distributions of dynamic ICE values for each cluster (Figure 9). The histograms 369 
validate that the patterns in the centroids are highly characteristic of the cluster elements. Histograms 370 
for less-occupied clusters 2 and 4 exhibit a bimodal distribution and broader spread compared to the 371 
high-occupancy, high-entropy clusters 1 and 5, which are unimodal and narrowly distributed. 372 
Bimodality of distributions related to clusters 2 and 4 is in alignment with significantly higher STD of 373 
ICE for these clusters (Figure S1A,B). To compare SZ and HC dynamic ICE distributions we utilized 374 
the Kolmogorov-Smirnov (K-S) test. K-S rejected the null hypothesis at 5% significance level for all 375 
clusters. This means that SZ and HC distributions of dynamic ICE associated with given cluster are 376 
statistically different for all five clusters.  377 
 378 

 379 
Figure 9. The histograms associated with less occupied low-entropy clusters 2 and 4 are bimodal and more broadly 380 
distributed, whereas histograms associated with high occupied high entropy clusters1 and 5 are unimodal and more 381 
narrowly distributed. For every histogram corresponding to a specific cluster of each group, we collapsed and aggregated 382 
the 53-length vectors present within the cluster, then showed how many of these individual elements from dynamic ICEs 383 
in this cluster are in each bin referenced on the x-axis. 384 
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4 Discussion 385 
Our results demonstrated that with the proposed new measure – ICE, we were able to identify links to 386 
SZ among a range of functional brain domains: SC, AUD, VIS, SM, CC, DM and CB. All these 387 
domains showed higher mean ICE in SZ patients compared to HC. Higher ICE associated with 388 
individuals with SZ indicates that patients demonstrate higher randomness in distribution of time-389 
varying connectivity strength across functional regions from each source network. This is consistent 390 
with, and extends, prior studies showing more randomness/disorganization in functional brain 391 
connectivity in SZ patients when compared to control group (He et al., 2012; Ramirez-Mahaluf et al., 392 
2022) as well as with (Carhart-Harris et al., 2014) work that uses other entropy approaches not based 393 
on ICA and dFNC. According to (Carhart-Harris et al., 2014) brain entropy is suppressed during normal 394 
waking consciousness when brain operates just below criticality, however, at psychedelic state entropy 395 
is increased, particularly at hippocampus and anterior cingulate cortex, the networks that showed 396 
increased ICE in SZ patients in our study. It is known that SZ and psychedelics share similar effects 397 
on mental health, particularly in their neural activation patterns during hallucinations (Leptourgos et 398 
al., 2020).  399 
In addition, our ICE metric revealed that SZ predominantly affected intrinsic functional brain networks 400 
associated with the SC, VIS, SM and CB, domains while approximately half of the AUD, CC and DM 401 
ICNs were impacted. (Table1, Figure 7C). Our findings align with prior research suggesting that 402 
individuals with SZ demonstrate pervasive alterations in perception and sensory processing, exhibit 403 
distorted thinking, and experience impaired cognitive functions (Kalkstein et al., 2010; Uhlhaas & 404 
Singer, 2010). Individuals with schizophrenia also exhibit disruptions in the mechanisms responsible 405 
for processing auditory (Dondé et al., 2019), visual (Adámek et al., 2022; Dondé et al., 2019), and 406 
somatosensory modalities and motor functions. Also, DMN has been widely observed to be abnormal 407 
in schizophrenia, and the mental processes associated with this network are pertinent to the disease 408 
(Hu et al., 2017; Zhou et al., 2015). Abnormal activity and functional connectivity in the DMN regions 409 
of SZ patients is also related to cognitive deficits and psychopathology related to the disease (Calhoun 410 
et al., 2011; Hu et al., 2017; Zhou et al., 2007).  411 
Reduced ICE correlation between SC, AUD, VIS, SM and CB reflects hypoconnectivity between 412 
AUD, VIS and SM ICNs in SZ patients reported in study (Damaraju et al., 2014) and weaker 413 
connectivity between SC and CB ICNs in SZ patients in research (Soleimani et al., 2024) that uses 414 
same dataset as in our study. In addition, we revealed increased ICE correlation between CC (inferior 415 
parietal lobule) and DMN (all ICNs) in patients (Figure 7C,D). Particularly high ICE correlation was 416 
observed between Inferior parietal lobule (network 26 in CC domain) and Posterior cingulate cortex 417 
(network 49 in DM domain) in patients (Figure 7D).  418 
Furthermore, we showed that SZ patients tend to have larger occupancy weights in clusters 419 
characterized by weak, low-scale functional entropy correlation, whereas the control group exhibits 420 
higher occupancy weights in clusters with strong, large-scale functional entropy correlation. These 421 
results are consistent with, but extend, FNC state difference between SZ patients and controls shown 422 
in (Damaraju et al., 2014) which demonstrated that clusters characterized by weak and low-scale 423 
functional connectivity have greater occupancy among SZ patients compared to HC, whereas clusters 424 
with strong and large-scale connectivity are predominantly occupied by HC rather than SZ patients.  425 
Our research demonstrated that both static and dynamic mean ICE was higher in SZ patients than in 426 
healthy controls. Histograms of both static and dynamic ICE for SZ patients have a larger portion of 427 
the mass at the higher end of the distributions compared to controls. Nevertheless, dynamic ICE 428 
enabled us to find additional parameters that transiently discern SZ patients from controls. Thus, we 429 
showed that distributions of network connectivity strength across ICNs of patients are less variable in 430 
time maintaining relatively consistent levels of ICE compared to controls. In addition, dynamic ICE 431 
analysis enabled us to reveal that human brain can function in distinct states of ICE: states with 432 
uniformly high entropy in connectivity strength for all ICN (states 1 and 5) and states with relatively 433 
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low and uneven entropy in connectivity strength across different brain networks (clusters 2 and 4) 434 
(Figure 8A). Individuals with SZ have larger occupancy rates for state 1 with highest ICE, whereas 435 
healthy controls have higher occupancy for low-entropy states 2 and 4 with more structured given 436 
network's connectivity to all the other brain networks (Figure 8B). Moreover, states 1 and 5 with high 437 
entropy are largely occupied by both HCs and SZ when compared to low-entropy states 2 and 4. States 438 
with lower or mixed entropy are relatively rare, and significantly rarer in SZ patients. Thus, broadly 439 
speaking, dynamic ICE analysis reveals a prevailing tendency for the brain to be circulating through 440 
connectivity patterns with relatively high entropy levels, which aligns with or complexity in 441 
distribution of time-varying connectivity strength across functional brain networks. Thus, circulating 442 
through less organized/structured connectivity patterns as long as these fluctuations occasionally 443 
converge into more focused patterns appears healthy. In individuals with SZ, there seems to be some 444 
impediment preventing them from transiently achieving these more focused and structured 445 
connectivity patterns.  446 
It is important to notice that many intrinsic functional brain networks exhibit the most noticeable group 447 
differences in states (1, 3, 5) where ICE is high for majority of ICNs (Figure 8J). Also, cluster 1 with 448 
highest DICE and highest occupancy and dwell time for SZ patients is an only cluster where all ICNs 449 
(except for Precuneus, ICN of DMN) have higher DICE for SZ patients than HCs. Particularly SC, 450 
SM, VIS and CB brain domains have significantly larger DICE in SZ patients compared to healthy 451 
controls. This tells us that SZ patients’ brain circulates mostly through more chaotic/less organized 452 
functional connectivity patterns. It is also crucial to observe inability of SZs to achieve states (cluster 453 
2 and 4) in which the SC (particularly Subthalamus/Hypothalamus and Thalamus), VIS (particularly 454 
Middle temporal gyrus), and cerebellar networks specifically are not concentrating their connectivity 455 
in specific brain regions. 456 
It is interesting to observe that both SZs and HCs exhibit the highest mean dwell time for high-entropy 457 
state 1 compared to other states. Thus, both SZs and HCs spend the majority of their time in high-458 
entropy state 1, with patients having a higher mean dwell time. While SZs have a higher mean dwell 459 
time for state 1, and HC spend more time in state 2, the effect of diagnosis is strong but not statistically 460 
significant after FDR correction. The differences between HC and SZ in mean dwell time appear to be 461 
less significant than mean occupancy rates, suggesting that the rate at which the groups change states 462 
is more similar between HC and SZ than which states they change to. 463 
Despite offering valuable insights into time-varying heterogeneity of brain network’s connectivity at 464 
healthy and disease state using a novel ICE approach the presented study has at least two limitations. 465 
First, the applicability of the findings may be limited by the specific dataset used, which included 311 466 
participants, comprising 151 schizophrenia patients and 160 age and gender-matched healthy controls. 467 
Enlarging the sample size and introducing more diversity could offer a broader representation of the 468 
population and could improve the reliability of the findings. Second, this study does not account for 469 
common confounding factors such as the use of antipsychotics and other psychotropic medications, 470 
current smoking, and prior history of substance use. Further research is needed to consider these 471 
varying confounding factors. Also, it would be interesting to explore the relationships between ICE 472 
findings and illness characteristics, such as positive and negative symptoms, various cognitive deficits, 473 
and the duration of illness.  474 

5 Conclusion 475 
The proposed inter-network connectivity entropy (ICE) measure together with functional brain 476 
connectivity analyses appear to be simple and reliable way to summarize time-varying FNC data and 477 
investigate group effects for potential clinical application. In addition to the advantages of the time-478 
varying whole-brain FNC approach—such as robustness, reproducibility, and freedom from 479 
constraints related to the selection of specific seeds or regions of interest—our approach provides a 480 
new level of understanding of both physiological and pathophysiological brain states. Firstly, both 481 
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static and dynamic ICE measures showed that schizophrenia patients exhibit greater 482 
randomness/disorganization in the distribution of connectivity strength across various intrinsic 483 
connectivity networks spanning a wide range of functional brain domains, including subcortical, 484 
auditory, visual, sensorimotor, cognitive control, default mode, and cerebellar regions when compared 485 
to control group. Secondly, in general, the brains of schizophrenia patients are characterized by weak, 486 
low-scale functional entropy correlation across various functional brain regions, while healthy brains 487 
tend to show strong, large-scale functional entropy correlation. The dynamic ICE measure 488 
complements and extends our findings, revealing that, firstly, the healthy brain primarily navigates 489 
through complex, less focused connectivity patterns, with occasional transitions into more organized 490 
configurations of a given network's connectivity to all other brain networks. However, schizophrenia 491 
patients' brains circulate through more disorganized connectivity patterns compared to healthy controls 492 
and fail to achieve more focused functional connectivity patterns, especially evident in ICNs associated 493 
with subcortical (particularly subthalamus/hypothalamus and thalamus), visual (particularly middle 494 
temporal gyrus), and cerebellar brain domains which do not concentrate their connectivity in specific 495 
brain regions in individuals with schizophrenia. Secondly, ICE in schizophrenia patients shows 496 
significantly less variability over time compared to controls, suggesting lower temporal dynamics in 497 
functional connectivity strength distribution in patients. These insights highlight the potential 498 
applications of our methodology beyond schizophrenia. Our ICE measure can serve as the basis for a 499 
pipeline designed to classify and compare the impact of various diseases on the brain or to study the 500 
healthy brain and behavior relationships.  501 
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