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 10 

Abstract 11 

Childhood and adolescence are associated with protracted developmental remodeling of 12 
cortico-cortical structural connectivity. However, how heterochronous development in white 13 
matter structural connectivity spatially and temporally unfolds across the macroscale human 14 
connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-15 
sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) 16 
developmental datasets, we found that structural connectivity development diverges along a pre-17 
defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, 18 
we observed a continuum of developmental profiles that spans from an early childhood increase 19 
in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in 20 
association-association connectional strength. The S-A connectional axis also captured spatial 21 
variations in associations between structural connectivity and both higher-order cognition and 22 
general psychopathology. Together, our findings reveal a hierarchical axis in the development of 23 
structural connectivity across the human connectome. 24 
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 2 

Introduction 1 

Myelinated axons play a central role in neuronal signal conduction, with large bundles of 2 
parallel axons comprising macroscopic white matter tracts(Sampaio-Baptista and Johansen-Berg, 3 
2017). These white matter tracts interconnect the human cerebral cortex, forming a complex 4 
network of structural connectivity known as the connectome(Sporns et al., 2005). Both animal 5 
studies and human neuroimaging have provided evidence that the white matter structural 6 
connectivity is refined throughout childhood and adolescence(Baum et al., 2017; Bethlehem et al., 7 
2022; de Faria et al., 2021; Lebel et al., 2019; Riccomagno and Kolodkin, 2015). The 8 
developmental refinement of structural connectivity results from a combination of microscale 9 
changes, such as myelination and alterations of axon diameter, which occur during varying 10 
developmental periods for different white matter tracts (de Faria et al., 2021; Riccomagno and 11 
Kolodkin, 2015; Sampaio-Baptista and Johansen-Berg, 2017). Elucidating how developmental 12 
changes in structural connectivity strength spatially and temporally progress across the human 13 
connectome can reveal how the brain prioritizes refining structural connectivity at specific 14 
developmental stages and how heterogeneity in connection-specific developmental refinement 15 
impacts cognitive development. This understanding provides insight into how structural 16 
connectivity is susceptible to influences such as exposure to psychopathology and interventions at 17 
distinct developmental periods.  18 

Animal studies have revealed that activity- and experience-dependent plasticity in myelination 19 
and axonal remodeling are driving factors in the developmental maturation of white matter 20 
structural connectivity in youth(Chereau et al., 2017; de Faria et al., 2021; Fields, 2015; 21 
Riccomagno and Kolodkin, 2015). During early development, sensorimotor connections 22 
experience high levels of neural activity transmission due to the rapid acquisition of motor skills 23 
and exposure to new sensory inputs. This heightened activity leads to increased expression of 24 
growth factors such as brain-derived neurotrophic factor (BDNF) and neuregulin-1, which 25 
subsequently promote axonal remodeling, dendritic arborization, and myelination in sensorimotor 26 
pathways(Fields, 2015). In contrast, association connections undergo a more prolonged period of 27 
development into young adulthood, which may be attributed to continued cognitive development 28 
and the capacity for more varied experiences to engage the neural circuits underlying higher-order 29 
cognitive functions(Sydnor et al., 2021). However, beyond this coarse division between 30 
sensorimotor and association connections, there is marked spatiotemporal variability in the 31 
developmental patterns of structural connectivity, particularly in the human connectome, which 32 
remains under-characterized. Moreover, it remains unclear how the spatial heterogeneity in 33 
connection-specific developmental refinement across the human connectome associates with 34 
cognitive and psychopathological outcomes during youth. 35 

Recent studies support a unifying developmental framework that the asynchronous cortical 36 
maturation progresses along the sensorimotor-association (S-A) axis: a hierarchical axis of human 37 
brain organization that spans continuously from primary sensorimotor to transmodal association 38 
cortices(Sydnor et al., 2021). This framework posits that during childhood and adolescence, 39 
sensorimotor cortices tend to mature earliest, while association cortices exhibit a protracted 40 
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developmental trajectory, with a continuous spectrum of maturational patterns observed between 1 
them. Recent empirical data indicate that the development of regional intracortical myelin(Baum 2 
et al., 2022), intrinsic activity amplitude(Sydnor et al., 2023), and functional connectivity((Luo et 3 
al., 2024; Pines et al., 2022) unfolds along the S-A axis across the cortex during youth. In this 4 
study, we aimed to test the hypothesis that the developmental maturation of white matter structural 5 
connectivity is spatiotemporally organized along the S-A axis of the human connectome, with a 6 
spectrum of varying developmental trajectories with sensorimotor-sensorimotor and association-7 
association connections as two ends. As brain development in youth is linked to both higher-order 8 
cognition and a variety of mental disorders(Baum et al., 2017; Insel, 2014a; Sydnor et al., 2021), 9 
we also hypothesized that the spatiotemporal heterogeneity of structural connectivity development 10 
would have implications in both cognitions and psychopathology. The asynchronous maturation 11 
of white matter structural connectivity can be studied non-invasively with diffusion MRI (dMRI) 12 
tractography, which reconstructs the connectivity of white matter tracts by tracing the diffusion of 13 
water molecules in the human brain(Le Bihan, 2003; Thiebaut de Schotten and Forkel, 2022). 14 
While challenged by limitations in resolving crossing fibers, white matter tracts derived from 15 
dMRI have been shown to be a valid approximation when compared to both classical dissections 16 
of post-mortem brain tissues and in vivo animal tract-tracing, particularly for large-scale 17 
anatomical pathways(Girard et al., 2020; Lawes et al., 2008; van den Heuvel et al., 2015; Yendiki 18 
et al., 2022).   19 

Here, we employed dMRI to measure large-scale white matter connectivity to evaluate our 20 
hypothesis that the developmental program governing structural connectivity refinement is 21 
hierarchically organized along an S-A axis of the human connectome during youth. Based on the 22 
canonical S-A cortical axis(Sydnor et al., 2021), we first defined an S-A connectional axis that 23 
continuously progresses from sensorimotor-sensorimotor to association-association connections 24 
across the human connectome. We then quantified structural connectivity strength with the number 25 
of white matter streamlines, which were reconstructed with probabilistic fiber tractography, 26 
connecting pairs of large-scale cortical systems. We hypothesized that the development of 27 
structural connectivity strength would be primarily characterized by heterochronous increases that 28 
align with the S-A connectional axis. Moreover, we hypothesized that the associations between 29 
structural connectivity strength and the individual differences in higher-order cognition would also 30 
be patterned on the human connectome along the S-A connectional axis. Human neuroimaging 31 
research has shown that increased segregation of structural connectivity in association networks is 32 
related to improved performance in higher-order cognitions(Baum et al., 2017). Therefore, we 33 
predicted that large-scale structural connectivity strength declined with higher cognitive 34 
performances. We particularly expected that the effect sizes of these associations increase along 35 
the S-A connectional axis, as association connections are more strongly related to the higher-order 36 
cognitions. Finally, given that mental disorders in youth are characterized by abnormal 37 
neurodevelopment(Insel, 2014a), we hypothesized significant associations between structural 38 
connectivity strength and psychopathological symptoms, and the strength of these associations 39 
would increase along the S-A connectional axis. Altogether, this work aims to contextualize the 40 
asynchronous maturation of structural connectome and connectome-linked cognitive and 41 
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psychiatric phenotypes in the framework of the S-A connectional axis.   1 

 2 

Results 3 

To delineate how age-related structural connectivity refinements spatiotemporally progress 4 
throughout the human connectome, we studied two independent datasets with both structural and 5 
diffusion MRI data. The first dataset consisted of 590 youths aged 8.1 to 21.9 years from the 6 
Lifespan Human Connectome Project in Development (HCP-D, Figure 1A, Table S1). The second 7 
data comprised children and adolescents from both baseline (N = 3,949, age 8.9–11.0 years) and 8 
two-year follow-up (N = 3,155, aged 10.6–13.8 years) within the longitudinal Adolescence Brain 9 
Cognitive Development (ABCD) study (Figure 1B, Table S2). See Figure S1 and Figure S2 for 10 
the detailed exclusion criteria of the two datasets. We constructed individuals’ structural 11 
connectivity matrices using white matter tracts reconstructed from diffusion MRI data. Prior work 12 
has shown that diffusion MRI is reliable in detecting large-scale white matter tracts(Donahue et 13 
al., 2016; Girard et al., 2020). Our study mainly focused on the large-scale white matter 14 
connectivity between cortical systems.  15 

We partitioned the cerebral cortex into 12 large-scale distributed systems with approximately 16 
equal size according to regions’ ranks in a priori defined regional sensorimotor-association (S-A) 17 
cortical axis map (Figure 1C), which was derived by averaging various cortical neurobiological 18 
properties(Sydnor et al., 2021). Cortical regions were ranked continuously along this axis, with 19 
sensorimotor cortices representing the lowest ranks and association cortices representing the 20 
highest. Consequently, our 12 large-scale cortical systems (Figure 1D) progressively spanned from 21 
primary sensorimotor to higher-order association cortices. After deriving this map of 12 cortical 22 
systems based on S-A axis rankings, we reconstructed individuals’ whole-brain white matter tracts 23 
(Figure 1E) using probabilistic fiber tractography with multi-shell, multi-tissue constrained 24 
spherical deconvolution(Jeurissen et al., 2014). Anatomically constrained tractography 25 
(ACT)(Smith et al., 2012) and spherical deconvolution informed filtering of tractograms 26 
(SIFT)(Smith et al., 2015b) were applied to improve the biological accuracy of fiber reconstruction. 27 
We quantified the number of streamlines connecting each pair of the 12 cortical systems, scaled 28 
by their respective cortical volumes, resulting in a structural connectome of streamline counts for 29 
each participant (Figure 1F). The structural connectome was represented as a matrix of structural 30 
connectivity, organized into 12 rows and 12 columns based on the systems’ ranking along the S-A 31 
cortical axis, progressing from the lower ranks of sensorimotor cortices to the highest ranks of 32 
association cortices. 33 

 34 
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 1 

Figure 1. Distribution of participants’ age and structural connectivity construction. A, Age 2 
distribution (8.1–21.9 years) of 590 participants from the HCP-D dataset. B, Age distribution of 3 
participants from baseline (N = 3,949, 8.9–11.0 years) and 2-year follow-up (N = 3,155, 10.6–13.8 4 
years) within the ABCD study. Using the Schaefer-400 atlas based S-A cortical axis map(Sydnor 5 
et al., 2021) (C), a cortical atlas comprising 12 cortical systems (D) was generated. In the S-A 6 
cortical axis map, cortical regions were ranked continuously along this axis, ranging from the 7 
lowest rank in the sensorimotor cortices to the highest rank in the association cortices. The 12-8 
system cortical atlas was constructed by approximately equally dividing the cortex into 12 9 
fractions according to the regions’ S-A cortical axis rank. For each scan, tractography was utilized 10 
to reconstruct the whole-brain white matter tracts with diffusion MRI dataset (E), and the large-11 
scale white matter tracts connecting each pair of the 12 cortical systems were extracted and counted 12 
to generate the structural connectivity matrix (F). The connectivity matrix comprised 12 rows and 13 
12 columns, with each element determined by the counts of white matter streamlines between 14 
every pair of systems, scaled by their respective cortical volumes. The matrix was arranged based 15 
on the average S-A axis cortical ranks of all regions within each system, from sensorimotor to 16 
association systems. HCP-D: the Lifespan Human Connectome Project Development; ABCD: the 17 
Adolescent Brain Cognitive Development; S-A: sensorimotor-association. 18 
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 1 

Developmental refinement of structural connectivity varies across the connectome 2 

We initially investigated the refinement of structural connectivity from ages 8.1 to 21.9 years 3 
using the HCP-D dataset(Somerville et al., 2018). Using a generalized additive model (GAM), we 4 
found that 70 out of 78 connectivity edges exhibited a significant age-related developmental effect 5 
(false discovery rate-corrected P value, PFDR < 0.05), while controlling for sex and head motion 6 
(Figure 2A). We assessed the magnitude of age effects using the variance explained by age (partial 7 
R2) and determined their direction based on the sign of the average first derivative of the age 8 
smooth function. Our analysis revealed variations in age effects across all 78 connections, with the 9 
strongest effects observed in connections among primary sensorimotor systems, a relatively 10 
weaker effect in connections among higher-order association systems, and the lowest effect in 11 
connections between sensorimotor and association connections. By visualizing the developmental 12 
trajectories of each connection, we observed a continuous spectrum spanning connections that 13 
display an early steep increase followed by a plateau, to those exhibiting a late increase (Figure 14 
2B). 15 

To capture the variations in the shapes of developmental trajectories among structural 16 
connections, we calculated the average second derivative of age fits for each connection, allowing 17 
us to quantify the curvature shape of the curves. A negative second derivative indicates a 18 
developmental curve that is concave downward characterized by an earlier strengthening and 19 
plateaus, while a positive average second derivative signifies a curve that is concave upward with 20 
a temporally delayed developmental strengthening. We found that the second derivatives displayed 21 
a substantial heterogeneity across the connectome edges. Specifically, we observed positive 22 
second derivatives in connections among association systems and negative values in connections 23 
among sensorimotor systems (Figure 2C). Z-scoring the developmental fits for each connection 24 
to remove the effect size variance revealed a continuous spectrum ranging from the downward 25 
concavity observed in sensorimotor connections to the upward concavity observed in association 26 
connections (Figure 2D). As an illustration, the structural connectivity between primary 27 
sensorimotor systems demonstrated a significant increase in connection strength during childhood, 28 
reaching its peak during mid-adolescence (Figure 2E). In contrast, the structural connectivity 29 
between higher-order association systems is largely stable from childhood to early adolescence, 30 
followed by a significant and prolonged increase that accelerates notably into young adulthood 31 
(Figure 2F). By evaluating the rate of developmental change at each age window, we found that 32 
the declines were not significant for sensorimotor connection during late period (Figure 2E) or for 33 
association connection during early period (Figure 2F). Notably, with this analysis, we did not 34 
observe any periods of significant (PFDR < 0.05) decrease among all 78 connections (Figure S3). 35 

 36 
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 1 

Figure 2. Developmental trajectories of large-scale structural connectivity spatiotemporally 2 
vary across the connectome in youth. A, The age effects (partial R2) of structural connectivity 3 
strength were heterogeneously distributed across the connectome edges. Developmental effects 4 
were modeled using generalized additive models (GAMs). The black asterisks indicate statistically 5 
significant age effects (PFDR < 0.05). B, The developmental trajectories of structural connectivity 6 
strength showed a continuous spectrum, ranging from an early increase to a later and prolonged 7 
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increase. The color of each curve was determined by the corresponding color in the effect size 1 
matrix shown in panel (A). C, The second-order derivatives of developmental curves in structural 2 
connectivity strength reveal a continuous spectrum of developmental trajectories across 3 
connectome edges. D, The z-scored developmental curves clearly illustrate that the curvature 4 
shapes of developmental trajectories continuously change along a spectrum from sensorimotor to 5 
association connections. The color of each curve was matched to the corresponding color in the 6 
matrix displayed in panel (C). E,F, Scatterplots depicting the developmental trajectories of 7 
structural connectivity between the 1st and 2nd systems involving primary visual and somatomotor 8 
cortices (E), and structural connectivity between the 11th and 12th systems involving higher-order 9 
frontal and temporal cortices (F). Data points in the scatter plots represent each participant (N = 10 
590), the bold line indicates the best fit from a GAM, and the shaded envelope denotes the 95% 11 
confidence interval. The color bars below the two scatter plots depict the age windows wherein 12 
structural connectivity strength significantly changed, shaded by the rate of change. Diagrams of 13 
the two white matter tracts are situated above the scatter plots. SC: structural connectivity. 14 

 15 

Developmental variability of structural connectivity aligns with the S-A connectional axis 16 

Having demonstrated that the curvature shapes of the developmental profiles exhibit 17 
substantial heterogeneity across the connectome edges, particularly showing divergence between 18 
sensorimotor and association connections, we next evaluated whether variability in developmental 19 
trajectories of structural connectivity spatially aligns with the S-A axis. The S-A cortical axis 20 
serves as a unifying organizing principle encompassing diverse neurobiological properties, with a 21 
continuous progression observed along the axis from primary and unimodal sensorimotor to 22 
multimodal and transmodal association cortices(Sydnor et al., 2021). To compare our connectome 23 
edge-level developmental variability to the S-A axis, we converted the S-A cortical axis map into 24 
the S-A connectional axis. Specifically, we assigned a single S-A axis rank to each of the 78 25 
connections by calculating the sum of the squared S-A cortical axis ranks for each pair of regions 26 
involved. This generated a continuous spectrum of S-A connectional axis ranks across the 27 
connectome, progressing from the lowest ranks in connections between sensorimotor systems to 28 
the highest ranks in connections between association systems (Figure 3A).  29 

We next evaluated the relationship between the second derivative obtained from the age fits 30 
(Figure 3B, also see Figure 2C) and S-A connectional axis rank across all connections. Using 31 
Spearman’s rank correlation, we identified a highly significant positive correlation between the 32 
second derivatives and S-A connectional axis ranks (rho = 0.79, P < 0.001, Figure 3C). This 33 
finding quantitatively demonstrates that connections among primary sensorimotor systems 34 
exhibited negative second derivatives in developmental trajectories, whereas connections between 35 
association networks displayed positive second derivatives. Furthermore, there is a continuous 36 
spectrum of second derivatives between these two extremes along the S-A connectional axis. To 37 
visually depict the progression of developmental trajectories of structural connectivity from the 38 
sensorimotor to the association end of the S-A connectional axis, we partitioned the axis into 10 39 
decile bins and computed the average age fits across all connections within each bin. We then 40 
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 9 

visualized the z-scores of the average age fits. The continuous spectrum of developmental 1 
trajectories observed at the connectional level (Figure 2D) was mirrored by S-A connectional axis 2 
deciles (Figure 3D). Particularly, the connections located at the sensorimotor end of the S-A 3 
connectional axis displayed downward concave trajectories characterized by an early steep 4 
developmental increase followed by a plateau, while those situated at the association end exhibited 5 
upward concave trajectories with a late developmental increase. 6 

 7 

 8 

Figure 3. The heterogeneity of structural connectivity development across connectome aligns 9 
with the S-A connectional axis. A, The S-A connectional axis generated from the priori S-A 10 
cortical axis. A single connectional axis rank was assigned to each connection by summing the 11 
squares of pairwise systems’ S-A cortical axis ranks. These connectional ranks were subsequently 12 
scaled into discrete values, ranging from 1 to 78. B, The second-order derivative of developmental 13 
trajectories in structural connectivity strength from Figure 2C. C, The second-order derivative is 14 
highly correlated (Spearman’s rho = 0.79, P < 0.001) with the connectional axis rank across all 15 
structural connections. The color of all points was determined by the corresponding color in S-A 16 
connectional axis matrix. D, Averaging model fits depicting the developmental trajectory of 17 
structural connectivity are shown for deciles of the S-A connectional axis. To generate average 18 
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decile fits, the S-A connectional axis was divided into 10 bins each consisting of 7 or 8 large-scale 1 
structural connections, and age smooth functions were averaged across all connections in a bin. 2 
Subsequently, the average age fits were normalized with z-scores for visualization. The first decile 3 
(darkest blue) represents the sensorimotor pole of the S-A connectional axis, and the tenth decile 4 
(darkest red) represents the association pole of the axis. Maturation trajectories diverged most 5 
between the two connectional axis poles and varied continuously between them. SC: structural 6 
connectivity; S-A: sensorimotor-association. 7 

 8 

Developmental alignment with S-A connectional axis shifts during youth 9 

Having demonstrated that the developmental heterogeneity of structural connectivity across 10 
the connectome edges aligns with the S-A connectional axis, we further evaluated how this 11 
alignment evolves across the youth. For this analysis, the age range of 8.1 to 21.9 years was divided 12 
into 1,000 equally spaced intervals, within which the rate of development was assessed for each 13 
segment. Given the brevity of the interval, we assumed a linear developmental effect during this 14 
short period. We estimated the developmental rate in each segment as the first derivative to 15 
quantify the age-resolved developmental effect. By visualizing the rate of change for all structural 16 
connections across the S-A connectional axis from ages 8.1 to 21.9 years (Figure 4A), we observed 17 
a continuous spectrum of developmental patterns in connectivity change rates. This spectrum 18 
ranged from predominantly positive change rates during childhood and early adolescence in 19 
primary sensorimotor connections to association connections characterized by positive change 20 
rates during late adolescence and early adulthood. Notably, the negative change rates were not 21 
statistically significant for any connection (Figure S3).  22 

We next evaluated how the alignment between the developmental change rates and S-A 23 
connectional axis ranks evolves from ages 8.1 to 21.9 years. To achieve this, we calculated the 24 
age-resolved spatial alignment between the connectome-wide change rates and S-A connectional 25 
axis for each of 1,000 age spaced intervals. This analysis revealed a continuous shift from a strong 26 
negative S-A axis alignment to a strong positive S-A axis alignment over development (Figure 27 
4B). More specifically, there was a negative correlation that slowly increased to 0 before 28 
approximately 13 years, followed by a rapid increase in the correlation value until late adolescence 29 
around 18 years, ultimately reaching a stable period during young adulthood. Notably, a zero 30 
alignment was observed at the age of 15.5 years (95% confidence interval of 15.3 to 15.8 years), 31 
indicating a switch in the direction of alignment between developmental connectivity 32 
strengthening and the S-A connectional axis at this age point. This result suggests that the largest 33 
developmental increases occurred at the S-A axis sensorimotor pole and decline in strength along 34 
the S-A axis early in childhood (i.e., Figure 4C, left). During mid-adolescence, there was a clear 35 
switch in the patterning of effects such that the rate of developmental strengthening started to 36 
become stronger when moving from the sensorimotor to the association pole of the axis (i.e., 37 
Figure 4C, right). The matrices visualizing developmental change rates of all connections at ages 38 
8.1, 15.5, and 21.9 years illustrate this transition (Figure 4C): from a pattern opposing the S-A 39 
connectional axis at 8.1 years old, to uniform developmental rates across all connections at 15.5 40 
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years old, and finally to a pattern closely aligned with the S-A connectional axis at 21.9 years old. 1 
The scatter plots depicting the correlation between change rates and connectional axis ranks 2 
confirmed this shift from negative to positive correlation during youth (Figure 4D). 3 

As the age of 15.5 years suggests a transition point in the alignment with the S-A connectional 4 
axis, we expected to see a different spatial pattern of structural connectivity developmental effects 5 
between preceding and succeeding this critical age. We split all participants into two subsets, with 6 
355 participants ages 8.1 to 15.5 years, and 235 participants ages 15.5 to 21.9 years old. We then 7 
re-evaluated the developmental effects of structural connectivity for the two subsets of participants 8 
separately using GAM. As with the full sample, the developmental effect was characterized by the 9 
variance explained by age (partial R2) while controlling for sex and head motion. We observed that 10 
age effects were predominantly positive in sensorimotor connections and were negative in 11 
association connections from 8.1 to 15.5 years old (Figure 4E, left). A Spearman’s rank 12 
correlation analysis revealed a negative association between age effects and S-A connectional axis 13 
ranks across all connections (Spearman’s rho = -0.69, P < 0.001, Figure 4E, right). As expected, 14 
the reverse pattern emerged between the ages of 15.5 and 21.9 years: the age effects of 15 
sensorimotor connections were lower compared to those of association connections (Figure 4F, 16 
left), resulting in a significant positive correlation between age effects and S-A connectional axis 17 
ranks across all connections (Spearman’s rho = 0.55, P < 0.001, Figure 4F, right). Overall, our 18 
findings suggest a rapid shift in the developmental program of structural connectivity refinement 19 
during mid-adolescence, with connections to association cortex exhibiting concerted strengthening 20 
after this shift. 21 

 22 
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 1 

Figure 4. The spatial alignment between structural connectivity development and the S-A 2 
connectional axis shifts through youth. A, The rate (first derivative) of developmental changes 3 
of the large-scale structural connections from ages 8.1 to 21.9 years. Each line represents an edge, 4 
color-coded based on its rank in the S-A connectional axis. The change rates of connections at the 5 
sensorimotor pole of the S-A connectional axis decline from positive in childhood to slightly 6 
negative in young adulthood, while the connections at the association pole exhibited an opposite 7 
pattern. A continuous spectrum of the developmental patterns in structural connectivity change 8 
rates exists between the two S-A connectional axis poles. B, The alignment between the spatial 9 
patterning of structural connectivity development and S-A connectional axis evolves throughout 10 
youth. A spectrum ranging from the most pronounced negative association to zero-alignment 11 
around the age of 15.5 years, and then progressing to the most significant positive association is 12 
seen. To ensure the reliability of this alignment at different ages, we drew 1,000 samples from the 13 
posterior derivative of each connection’s age smooth function and then proceeded to evaluate age-14 
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resolved correlations between these derivatives and S-A connectional axis ranks for each sample. 1 
The black line on the plot represents the median correlation value across all samples, while the 2 
gray band indicates the 95% credible interval. Additionally, we identified the age of zero 3 
correlation between developmental changes and S-A connectional axis ranks for all 1,000 samples, 4 
with the corresponding 95% credible interval depicted by the yellow band. The distribution of ages 5 
with zero alignment from all samples is illustrated in the inset histogram (aged 15.3–15.8 years), 6 
revealing a median age of 15.5. C, The matrices of age-specific developmental change rates (first 7 
derivative) at ages 8.1, 15.5, and 21.9 years. D, Age-specific alignments (at ages 8.1, 15.5, and 22) 8 
between developmental effects and S-A connectional axis ranks across all edges. The plots depict 9 
a continuous transition from negative to positive alignment during development at 8.1, 15.5, and 10 
21.9 years. E, F, Divergent developmental pattern of structural connectivity between younger and 11 
older youths. The age effects, estimated by partial R2, exhibit a negative correlation with 12 
connectional axis ranks in younger youths (aged 8.1–15.5 years, Spearman’s rho = -0.69, P < 0.001, 13 
(E)) and a positive correlation in the older youths (aged 15.5–21.9 years, Spearman’s rho = 0.55, 14 
P < 0.001, (F)). The dot color is determined by the corresponding age effects in the matrix left side. 15 
Two edges with effect sizes of 0.18 and 0.16 were identified as outliers and removed in the scatter 16 
plot of panel (E). SC: structural connectivity; S-A: sensorimotor-association. 17 

 18 

Independent longitudinal dataset confirmed developmental variability of structural 19 
connectivity along the S-A connectional axis  20 

Using cross-sectional data from the HCP-D dataset, our results demonstrated alignment 21 
between the spatial variation of structural connectivity developmental trajectories and the S-A 22 
connectional axis during youth. We endeavored to replicate this finding using independent 23 
longitudinal data from the ABCD study(Casey et al., 2018). Our analysis included both baseline 24 
and two-year follow-up data, spanning ages from 8.9 to 13.8 years (Figure 1B). Given that this 25 
age range did not reach 15.5 years, the critical age associated with a shift in the developmental 26 
alignments with S-A axis from negative to positive, we hypothesized that there would be a negative 27 
association between developmental effects and the S-A connectional axis ranks across connectome 28 
edges in this dataset, based on our earlier findings (Figure 4E). We also hypothesized that the 29 
spatial variation of developmental trajectories’ shape, as quantified by the second derivatives, 30 
would align with the S-A connectional axis, consistent with our findings in HCP-D dataset (Figure 31 
3C). 32 

To test these hypotheses, we constructed the structural connectivity matrices based on our 33 
cortical atlas with 12 systems for each participant’s scans in the ABCD dataset. Using generalized 34 
additive mixed models (GAMM) to model the longitudinal development of structural connectivity 35 
strength, we evaluated the age effect of each structural connection, while controlling for sex and 36 
head motion. Our analysis revealed a spectrum of age effects across the connectome, ranging from 37 
positive effect sizes in primary sensorimotor connections to negative effect sizes in higher-order 38 
association connections (Figure 5A). Spearman’s rank correlation revealed a significant negative 39 
correlation between age effects and S-A connectional axis ranks across all structural connections 40 
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(rho = -0.69, P < 0.001, Figure 5B), suggesting the S-A connectional axis captured connectome-1 
wide spatial heterogeneity of structural connectivity development. These results were consistent 2 
with what we observed in the HCP-D dataset at younger ages (Figure 4E).  3 

Furthermore, the average second derivatives of developmental trajectories demonstrate a 4 
positive correlation with the S-A connectional axis ranks across all connections (rho = 0.81, P < 5 
0.001, Figure 5C, D), which also aligns with the findings in HCP-D (Figure 3C). Next, we 6 
replicated the evolution of the age-resolved change rate in structural connectivity strength. We also 7 
observed that the correlation between the age-resolved change rate and the S-A connectional axis 8 
ranks across all connections increased from a highly negative value to a near-zero correlation from 9 
8.9 to 13.8 years old (Figure 5E). This continuous transition was further confirmed by fitting 10 
correlation plots between change rates and S-A connectional axis ranks at 8.9 and 13.8 years, 11 
respectively (Figure 5F). These findings align with the observed pattern in the HCP-D dataset. 12 

 13 
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 1 
Figure 5. Longitudinal development of structural connectivity unfolds along the S-A 2 
connectional axis in an independent youth sample. A, Age effects (partial R2) of longitudinal 3 
structural connectivity development through ages 8.9 to 13.8 years in the ABCD children. The 4 
black asterisks indicate statistically significant age effects (PFDR < 0.05). B, The age effects were 5 
negatively correlated with the S-A connectional axis rank across all structural connections 6 
(Spearman’s rho = -0.69, P < 0.001). The dots represent connections and were colored by the 7 
corresponding color in the age effect matrix of the panel (A). One edge with an effect size of -0.04 8 
was identified as an outlier and removed in the correlation analysis. C, The second-order derivative 9 
of structural connectivity developmental trajectories. D, The second-order derivative was highly 10 
correlated with the connectional axis rank across all structural connections (Spearman’s rho = 0.81, 11 
P < 0.001). The color of all dots was determined by the corresponding color in the second 12 
derivative matrix of the panel (C). E, The spatial variation of structural connectivity developmental 13 
changes negatively align with S-A connectional axis and the magnitude of this negative alignment 14 
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declined. F, Age-specific fitting of the relationship between change rates of connectivity strength 1 
and S-A connectional axis ranks shows the strongest negative correlation at the youngest age (i.e., 2 
8.9 years) and the weakest association at mid-adolescence (i.e., 13.8 years). SC: structural 3 
connectivity; S-A: sensorimotor-association. 4 

 5 

Cognitive associations of structural connectivity vary along the S-A connectional axis in 6 
adolescence   7 

 Previous studies have shown that structural connectivity strength associates with 8 
individual differences in higher-order cognition during youth(Baum et al., 2017; Lebel et al., 2019), 9 
however, the connectome-wide spatiotemporal variability of this association remains 10 
uncharacterized. Here, we proceeded to evaluate whether the associations between structural 11 
connectivity strength and cognitive performance differ along the S-A connectional axis on the 12 
human connectome. To do this, we employed the datasets from both the HCP-D and ABCD study 13 
and selected the composite score of fluid cognition to assess individuals’ performance in higher-14 
order cognitive functions(Weintraub et al., 2013). The composite score was obtained by averaging 15 
the normalized scores from several cognitive tasks, including flanker inhibition, dimensional 16 
change card sort (flexibility), list sorting working memory, picture sequence episodic memory, 17 
and pattern comparison processing speed (Figure 6A).  18 

 We employed GAM analyses to model the linear association between fluid cognition and 19 
structural connectivity strength while controlling for the spline of age, sex, and head motion as 20 
covariates, for both the HCP-D and ABCD datasets. As the 2-year follow-up data from the ABCD 21 
study did not include flexibility and working memory behaviors, our analysis focused solely on 22 
the baseline data from individuals aged 8.9 to 11.0 years for ABCD. We did not observe significant 23 
cognitive effects in the HCP-D dataset, which may be due to the limited sample size. However, in 24 
the ABCD dataset, we found that 72 out of 78 structural connections exhibited a significant 25 
association between structural connectivity strength and individual differences in higher-order 26 
cognition during childhood (PFDR < 0.05, Figure 6B). Notably, all significant correlations were 27 
negative, indicating that weaker structural connectivity between the large-scale cortical systems 28 
was linked to stronger performance in higher-order cognition. Furthermore, the effect sizes 29 
continuously increased along an axis from edges connected to the sensorimotor systems to those 30 
connected to the association systems. Using Spearman’s rank correlation, we found that the 31 
cognitive effects of structural connectivity were negatively associated with the S-A connectional 32 
axis ranks across all connections with marginal significance (Figure 6C). This quantitative result 33 
confirmed that sensorimotor connections at the lower end of the S-A connectional axis exhibited 34 
weaker cognitive relationships, while association connections at the upper end of the axis showed 35 
stronger cognitive effects. Exemplifying this pattern, there was a decline in fluid cognitive scores 36 
associated with stronger structural connectivity strength for the connection between the 5th and 6th 37 
cortical systems (S-A connectional axis rank = 23), between the 2nd and 11th systems (S-A 38 
connectional axis rank = 48), as well as between the 10th and 11th systems (S-A connectional axis 39 
rank = 73) (Figure 6D). 40 
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We next evaluated if developmental trajectories of structural connectivity strength differ for 1 
youth with different levels of cognitive performance. While we only have baseline cognitive data, 2 
we included both baseline and two-year follow-up dMRI data to characterize the structural 3 
connectivity development as above. We modeled age-dependent changes in structural connectivity 4 
strength as a function of cognitive scores, while controlling for age, sex, and head motion. Using 5 
GAMs with an age by cognition interaction, we predicted the developmental trajectories of 6 
structural connectivity strength for low and high levels of cognitive performance respectively. To 7 
define these levels, we used the 10th percentile of baseline cognitive performance for the low level, 8 
and the 90th percentile for the high level. We observed that children with poorer cognitive 9 
performance exhibited a prominent and prolonged increase in connectivity strength of 10 
sensorimotor connections (deciles 1 and 3), along with an earlier inflection point and an earlier 11 
increase in the strength of association connections (deciles 8 and 10), during the age range of 8.9 12 
to 13.8 years old (Figure 6E). These result suggests that S-A connectional axis capture the spatial 13 
variation of relationship between structural connectivity strength and cognitive performance, and 14 
the connectivity strength developmental trajectories differ between populations with different 15 
levels of cognitive performance during childhood and adolescence.  16 
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 1 

Figure 6. The spatial variation of the association between structural connectivity strength 2 
and higher-order cognition aligns with the S-A connectional axis. A, Fluid cognition is a 3 
composite score of flanker inhibition, dimensional change card sort (flexibility), list sorting 4 
working memory, picture sequence episodic memory, and pattern comparison processing speed. 5 
B, Structural connectivity strength is associated with the individual differences in fluid cognition 6 
across 3,871 children within the ABCD baseline dataset. The black asterisks indicate statistically 7 
significant associations (PFDR < 0.05). C, The effect sizes of the association between connectivity 8 
strength and fluid cognition negatively related (Spearman’s rho = -0.22, P = 0.056) to the S-A 9 
connectional axis ranks across all connections. D, Scatterplots of the association between structural 10 
connectivity strength and fluid cognitive performance for the three connectome edges with an S-11 
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A connectional axis rank of 23, 48, and 73, respectively. The x and y axes represent the residuals 1 
of structural strength and fluid cognitive performance after regressing out age, sex and head motion. 2 
Data points in the scatter plots represent each participant, the bold line indicates the best fit from 3 
linear models, and the shaded envelope denotes the 95% confidence interval. E, The 4 
developmental trajectories of structural connectivity strength are displayed for populations with 5 
low (the 10th percentile) and high (the 90th percentile) cognitive performance for five deciles of the 6 
S-A connectional axis. SC: structural connectivity; S-A: sensorimotor-association. 7 

 8 

Associations between structural connectivity and general psychopathology vary along the S-9 
A connectional axis in adolescence 10 

 Psychiatric disorders have been increasingly conceptualized as neurodevelopmental 11 
disorders that involve altered maturation of higher-order association cortices that support complex 12 
cognition(Insel, 2014a; Sydnor et al., 2021). Therefore, we investigate whether there were 13 
associations between structural connectivity strength and psychiatric symptomatology during 14 
youth, and whether associations were strongest for association-association connections. 15 
Substantial comorbidity is prevalent across psychiatric disorders and recent studies have proposed 16 
that such comorbidity can be captured by a general psychopathology factor, also referred to as ‘p-17 
factor’. An individual with a higher p-factor is susceptible to a shared vulnerability to a broad 18 
range of transdiagnostic psychiatric symptoms. We investigated whether the S-A connectional axis 19 
captures the spatial variability of relationships between structural connectivity strength and 20 
individual differences in this general psychopathology factor.  21 

 To do this, we employed the structural connectivity and psychiatric symptoms assessed 22 
using the Child Behavior Checklist (CBCL) from both the baseline and two-year follow-up data 23 
from the ABCD study. Based on a previously defined structure(Moore et al., 2020), we calculated 24 
the general psychopathology factor (‘p-factor’) for each participant with 66 items from the CBCL 25 
data, using confirmatory bi-factor analysis (Figure 7A). The general psychopathology factor 26 
summarizes the shared vulnerability across all the 66 CBCL clinical items. We next evaluated the 27 
linear association between the structural connectivity strength and general psychopathology factor 28 
using GAMMs that included per-participant random intercepts, while controlling for age, sex, and 29 
head motion. We found that the associations were mostly positive across all connections and a 30 
total of 11 connections showing statistically significant associations (PFDR < 0.05), suggesting that 31 
a higher p-factor was related to greater structural connectivity strength (Figure 7B). Moreover, we 32 
observed that effect sizes increased along a continuum from the edges connected with sensorimotor 33 
systems to those connected within association systems. Using Spearman’s rank correlation, we 34 
observed a positive relationship between the p-factor effects of structural connectivity strength and 35 
the S-A connectional axis ranks across all connections (rho = 0.50, P < 0.001, Figure 7C). This 36 
result indicates that, as with both developmental and cognitive effects, associations between 37 
structural connectivity strength and the general psychopathology factor were also patterned on the 38 
connectome along the canonical S-A axis. Exemplar scatter plots show how the general 39 
psychopathology factor positively associates with structural connectivity strength for the 40 
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connection between the 6th and 8th systems (S-A connectional axis rank = 38), between the 4th and 1 
12th cortical systems (S-A connectional axis rank = 61), as well as between the 10th and 11th 2 
systems (S-A connectional axis rank = 73) (Figure 7D). 3 

 We next examined whether structural connectivity developmental trajectories are 4 
predicted to differ in individuals with different levels of psychiatric symptomatology. To do so, 5 
we modeled age-dependent changes in structural connectivity strength as a function of the p-factor, 6 
while controlling for sex and head motion. Using the acquired model, we fitted structural 7 
connectivity strength for the participants with a low-level and high-level of p-factor, respectively. 8 
We used the 10th percentile of p-factor to represent the participants with no or mild psychiatric 9 
symptoms, and the 90th percentile for the participants with severe psychiatric symptoms. We 10 
found that the connectivity developmental trajectories primarily differed substantially between the 11 
two groups at the higher-order association connections, such as deciles 8 and 10 of the S-A 12 
connectional axis (Figure 7E), with a similar pattern observed in the previous part of the cognitive 13 
analysis. Particularly, we observed that the participants with a higher p-factor exhibited an earlier 14 
inflection point with stronger connectivity and started increasing earlier. These results suggest that 15 
psychopathology risk is differentially associated with structural connectivity across the S-A 16 
connectional axis, and also related to different developmental trajectories of structural connectivity 17 
between association regions during childhood and adolescence. 18 

 19 
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 1 

Figure 7. S-A connectional axis captures spatial variability of the association between 2 
structural connectivity strength and general psychopathology factor. A, A confirmatory bi-3 
factor analysis revealed four independent psychopathology dimensions derived from the 66 4 
clinical items assessed by the Child Behavior Checklist (CBCL). The general psychopathology 5 
factor, also referred to as ‘p-factor’, captures shared vulnerability to a broad range of psychiatric 6 
symptoms. B, Linear associations between structural connectivity strength and individual 7 
differences in the general psychopathology factor. The black asterisks indicate statistically 8 
significant associations (PFDR < 0.05). C, The effect sizes of the association between structural 9 
connectivity strength and p-factor positively associated with S-A connectional axis ranks across 10 
all the connections (Spearman’s rho = -0.50, P < 0.001). D, Scatterplots of the association between 11 
structural connectivity strength and general psychopathology factor for the three connections with 12 
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a S-A connectional axis rank of 38, 61 and 73, respectively. The x and y axes represent the residuals 1 
of connectivity strength and p-factor after regressing out age, sex, and head motion. The pairs of 2 
points connected by thin lines represent two measurements for each participant from baseline and 3 
two-year follow-up. The bold line indicates the best fit from linear models and the shaded envelope 4 
denotes the 95% confidence interval. E, Developmental trajectories of structural connectivity are 5 
displayed for participants exhibiting severe psychopathological symptoms (at the 90th percentile 6 
of p-factor) and for those with no or mild symptoms (at the 10th percentile of p-factor) for five 7 
deciles of the S-A connectional axis. SC: structural connectivity; S-A: sensorimotor-association. 8 

 9 

Sensitivity Analysis 10 

We conducted several sensitivity analyses to evaluate the robustness of our findings to 11 
methodological variation including: 1) different resolutions of cortical parcellations with 7 systems 12 
(Figure S4) or 17 systems (Figure S5); 2) controlling for the effects of Euclidean distance between 13 
pairwise nodes (Figure S6); 3) additionally adding social-economic status (Figure S7) or 14 
intracranial volume (Figure S8) as covariates. Overall, our primary findings could be reproduced 15 
in all these analyses demonstrating the robustness of our results. See Supplementary Text for 16 
details of sensitivity analysis results.17 
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Discussion 1 

 In this study, we leveraged non-invasive dMRI data from both cross-sectional and 2 
longitudinal developmental datasets to delineate how structural connectivity maturation 3 
spatiotemporally progresses across the human connectome during youth. We demonstrated that 4 
the structural connectivity developmental trajectories vary along a priori-defined S-A connectional 5 
axis. Particularly, we observed a continuous spectrum ranging from early age-related increases in 6 
connectivity strength between sensorimotor regions and post-adolescence increases in connectivity 7 
strength in association-association connections at the top end of the S-A axis. This developmental 8 
alignment with the S-A connectional axis evolved during youth, with a critical transition from 9 
negative to positive alignment occurring at approximately 15.5 years of age. Additionally, we 10 
found that the S-A connectional axis captures connectome-wide spatial variation in relationships 11 
between structural connectivity strength and both cognitive performance and transdiagnostic 12 
psychiatric symptomatology. Taken together, these results provide evidence of hierarchical 13 
development of structural connectivity along a macroscale connectional axis of the human 14 
connectome during youth.    15 

White matter structural connectivity primarily consists of bundles of myelinated or 16 
unmyelinated axons connecting different brain regions(Sampaio-Baptista and Johansen-Berg, 17 
2017). While evaluating white matter maturation during neurodevelopment can be challenging, 18 
dMRI offers a non-invasive approach to reconstruct macroscale bundles of white matter tracts in 19 
the human brain(Le Bihan, 2003). Using this technique, we have identified sustained increases in 20 
white matter structural connectivity strength throughout childhood, adolescence, and young 21 
adulthood. This finding is consistent with prior work showing a progressive increase in white 22 
matter volume throughout early life that peaks at 28.7 years of age(Bethlehem et al., 2022). 23 
Moreover, we observed substantial heterogeneity in periods of increase across connectome edges. 24 
Connection strength began to increase before the earliest age studied (i.e., 8.1 years old) and ceased 25 
around 16 years old for unimodal sensorimotor-sensorimotor connections. In contrast, higher-26 
order association-association connections began to strengthen around 14 years of age and exhibited 27 
rapid increases until the oldest age studied (i.e., 21.9 years old). The developmental trajectories of 28 
other sensorimotor-association connections displayed an intermediate pattern between these two 29 
extremes, forming a continuous spectrum of connectivity development across the human 30 
connectome.  31 

These findings align with prior work showing that the development of white matter tracts 32 
exhibits asynchronous timing. Particularly, projection and commissural tracts have been shown to 33 
mature earlier (typically by late adolescence), while association tracts continue developing through 34 
late adolescence into early adulthood(Lebel and Beaulieu, 2011). Additionally, recent evidence 35 
has shown that the inferior and posterior parts of white matter tracts mature earlier than their 36 
superior and anterior counterparts(Bagautdinova et al., 2023). Expanding upon these coarse and 37 
qualitative comparisons of developmental timing among white matter tracts, our work provides a 38 
systematic description of the developmental sequence of white matter structural connectivity 39 
across the entire cortico-cortical connectome in humans. Notably, this sequence aligns with the 40 
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spatiotemporal progression of developmental changes in intrinsic cortical activity across the S-A 1 
cortical axis(Sydnor et al., 2023), suggesting potential links between changes in the functional 2 
architecture of local cortical circuits and long-range cortico-cortical connectivity.  3 

We further demonstrated that the connectome-wide spatial variation in structural connectivity 4 
development highly aligns with a pre-defined S-A connectional axis, which constitutes a 5 
continuum spanning from the sensorimotor-sensorimotor to association-association connections in 6 
the human connectome. A recent theoretical framework suggests that cortical neurodevelopmental 7 
plasticity progresses heterogeneously along the S-A cortical axis(Sydnor et al., 2021), and studies 8 
have shown that this axis captures the developmental chronology of regional neurobiological 9 
properties, including intracortical myelin(Baum et al., 2022), intrinsic activity(Sydnor et al., 2023), 10 
and functional connectivity strength((Luo et al., 2024; Pines et al., 2022) in youth. Our results 11 
expand this framework to the structural connectome and provide initial evidence that the 12 
developmental sequence of structural connectivity conforms with the S-A axis throughout the 13 
human connectome. Furthermore, we identified a critical age period in mid-adolescence (15.5 14 
years) at which time the alignment between spatial variation in structural connectivity 15 
development and the S-A connectional axis shifts from a negative to a positive association. Prior 16 
to this age period, the strength of sensorimotor connectivity primarily increases, while thereafter, 17 
the strength of association connectivity rapidly increases. Consistently, previous seminal work has 18 
shown that between the ages of 14 and 16, a putative functional marker of cortical plasticity peaks 19 
in association cortices and then starts to decline(Sydnor et al., 2023). We speculate that the rapid 20 
developmental strengthening of association connectivity after the age of 15 could accelerate 21 
functional maturation in association regions and help to reduce regional variation in the patterning 22 
of spontaneously-generated activity across the cortex(Sydnor et al., 2023).    23 

Our study reveals a hierarchical pattern of white matter structural connectivity development, 24 
continuously progressing from sensorimotor-sensorimotor to association-association connections. 25 
This developmental pattern is likely shaped by a complex interplay of molecular, cellular, and 26 
activity-dependent processes. The myelination of axonal tracts has also been demonstrated to 27 
follow a chronologic sequence, wherein fibers belonging to specific functional systems mature 28 
simultaneously(de Faria et al., 2021). Sensorimotor pathways undergo early myelination during 29 
development, whereas association pathways myelinate later during adolescence(de Faria et al., 30 
2021). This maturational sequence in myelination is driven by oligodendrocytes and regulated by 31 
various cellular and molecular mechanisms, such as transcription factors (Olig family), growth 32 
factors (BDNF, neuregulin-1), and hormones (T3)(Yu et al., 2023). The process of myelination is 33 
strongly influenced by experience- and activity-dependent plasticity mechanisms(Chereau et al., 34 
2017; Fields, 2015). For example, studies have demonstrated that signaling molecules regulated 35 
by action potential firing in axons can impact the development of myelinating glia(Fields, 2015). 36 
It is widely acknowledged that early development is primarily marked by new sensorimotor 37 
experience, whereas later developmental stages are characterized by prolonged exposure to 38 
increasingly complex cognitive and social experiences. Therefore, experience-driven and activity-39 
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dependent myelin plasticity could be a primary mechanism underlying the maturational sequence 1 
of strengthening in white matter structural connectivity.    2 

Our findings also revealed that structural connectivity strength was associated with higher-3 
order cognitive performance, with the S-A connectional axis capturing the spatial variation in the 4 
strength of cognitive associations. Specifically, we first demonstrated that structural connectivity 5 
strength correlated with individual differences in higher-order cognition, assessed by a composite 6 
score comprising working memory, inhibition, flexibility, episodic memory, and pattern 7 
comparison speed(Akshoomoff et al., 2013). Notably, nearly all connections exhibited a negative 8 
relationship, indicating that weaker structural connectivity between large-scale cortical systems is 9 
related to stronger cognitive performance. This finding aligns with prior literature suggesting that 10 
enhanced segregation of brain network modules is linked to improved executive function(Baum et 11 
al., 2017; Finc et al., 2020; Keller et al., 2023b; Pines et al., 2022). Furthermore, our findings 12 
revealed that the effect sizes of the negative association between connectivity strength and 13 
cognition progressively increase along the connectional axis, from sensorimotor-sensorimotor to 14 
association-association connections. This result is consistent with previous accounts emphasizing 15 
the primary role of association connections, rather than sensorimotor connections, in higher-order 16 
cognitions(Baum et al., 2017; Keller et al., 2023a; Menon and D'Esposito, 2022; Shen et al., 2020). 17 
Our study also contributes additional insight by demonstrating that the magnitudes of this 18 
relationship continuously change across the landscape of the human connectome. Importantly, we 19 
observed that populations with different levels of cognitive performance displayed distinct 20 
developmental trajectories in structural connectivity. Particularly, participants with higher 21 
cognitive abilities exhibited a more pronounced decline and lower connectivity strength in 22 
association connections compared to those with lower cognitive abilities. This relationship may be 23 
mediated by the increased structural network segregation during development(Baum et al., 2017). 24 
Together, these findings support spatially varying cognitive impacts on the maturation of structural 25 
connectivity across the human connectome, with the most significant effects observed in 26 
association connections. 27 

Finally, we observed that the association between structural connectivity and 28 
psychopathology was also patterned on the human connectome along the S-A connectional axis. 29 
Traditional psychiatric diagnostic systems, such as DSM-5(Edition, 2013), typically reply on 30 
categorical diagnoses that often fail to capture the spectrum characteristic of diseases characterized 31 
by varying severity and are marked by a high degree of comorbidity(Kotov et al., 2017). 32 
Accordingly, efforts such as the Research Domain Criteria have proposed dimensional models of 33 
psychopathology(Insel, 2014b; Kotov et al., 2017). Related studies have identified a general 34 
psychopathology factor, also known as the ‘p-factor’, which reflects shared vulnerability to a broad 35 
range of psychiatric symptoms(Caspi and Moffitt, 2018). Our findings indicated that nearly all 36 
structural connections exhibited a positive correlation between connectivity strength and the p-37 
factor score. Furthermore, the magnitude of this relationship demonstrated a significantly positive 38 
correlation with the S-A connectional axis ranks across all connectome edges. These results 39 
suggested that participants with higher p-factor scores tended to exhibit stronger structural 40 
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connectivity strength for association connections, which potentially reduced the network modules 1 
segregation. These results align with previous literature indicating that the loss of segregation 2 
between higher-order association functional networks, such as the default mode and fronto-parietal 3 
networks, represents a common deficit across psychopathology dimensions(Xia et al., 2018). We 4 
also observed that the levels of the general psychopathology factor influence the developmental 5 
trajectories in association connections. Populations with a severer p-factor exhibited earlier 6 
connectivity maturation and stronger connectivity strength. This psychopathological effect on 7 
structural connectivity development demonstrates a distinctly opposite pattern compared to the 8 
cognitive effects, suggesting that altered structural connectivity development associated with 9 
worse cognition or greater psychopathology may operate through similar mechanisms.   10 

Several potential limitations of the present study should be noted. First, precisely 11 
reconstructing individuals’ white matter structural connectivity is challenging; prior studies have 12 
demonstrated that dMRI-based fiber tractography may encounter false positives and 13 
negatives(Maier-Hein et al., 2017). In this study, we used state-of-the-art probabilistic fiber 14 
tractography with multi-shell, multi-tissue constrained spherical deconvolution(Jeurissen et al., 15 
2014). Additionally, we applied anatomically constrained tractography(Smith et al., 2012) and 16 
spherical deconvolution-informed filtering of tractograms(Smith et al., 2015a) to improve 17 
biological accuracy. Consistency-based thresholding was also employed to reduce the influence of 18 
false-positive connections(Baum et al., 2020). Moreover, previous studies have consistently shown 19 
the reliability of dMRI-based tracing of large-scale white matter bundles(Donahue et al., 2016; 20 
Girard et al., 2020). Our study focused on analyzing large-scale structural connectivity between 21 
cortical systems rather than delving into finer between-regional connectivity. This approach 22 
ensured the reliability of our structural connectivity analysis. While large-scale network analysis 23 
has been widely used in functional networks in recent years(Cui et al., 2020; Gordon et al., 2017; 24 
Wang et al., 2015; Yeo et al., 2011), it has been seldomly considered in structural networks. Our 25 
study thus offers a significant methodological contribution, potentially inspiring a shift towards a 26 
research paradigm emphasizing large-scale structural connectivity over finer between-regional 27 
structural connectivity with dMRI.   28 

Second, both the cognitive and psychopathological measures were composite scores derived 29 
from aggregating a set of interrelated variables, precluding inference about specific associations 30 
between structural connectivity and individual traits. Future investigations should aim to untangle 31 
the complex interplay between structural connectivity and specific cognitive or 32 
psychopathological components. Third, it’s important to acknowledge that, although statistically 33 
significant, the effect sizes observed for both cognitive and psychopathological effects on 34 
structural connectivity were relatively small. However, prior work has consistently demonstrated 35 
that effect sizes tend to be inflated in small samples(Yarkoni, 2009), whereas larger samples 36 
provide a more accurate estimate of the true effect size. Notably, our findings revealed a strong 37 
relationship between effect size and S-A connectional ranks. Forth, our study primarily focused 38 
on understanding the developmental trajectories of structural connectivity between cortical 39 
systems. Future studies should extend this research to explore how the spatiotemporal variability 40 
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in structural connectivity development for subcortex and cerebellum, which play crucial roles in 1 
motor control, emotional processing, and cognitive functions(McFadyen et al., 2020; Sokolov et 2 
al., 2017).  3 

Notwithstanding these limitations, our study provides compelling evidence that, throughout 4 
childhood and adolescence, developmental changes in structural connectivity and associations 5 
with cognitive and clinical factors follow a distinct pattern along the hierarchical S-A axis of the 6 
human connectome. These findings suggest the importance of considering connectome-wide 7 
spatial variation in connectivity maturation in the context of cognitive development and 8 
vulnerability to psychopathology. Insights into this spatial progression of structural connectivity 9 
maturation will facilitate discerning connection-specific sensitive time windows for experiential, 10 
environmental, and interventional influences. Given the importance of the S-A connectional axis 11 
in structural connectivity development, future studies could evaluate whether this organizing axis 12 
serves as a unifying developmental principle across multi-modal and multi-scale human and non-13 
human primate connectomes. 14 
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Methods 1 

Participants 2 

Our study utilized two independent neurodevelopmental datasets. The first one was a cross-3 
sectional dataset from the Lifespan Human Connectome Project in Development (HCP-4 
D)(Somerville et al., 2018). The HCP-D recruited typical developing participants aged 5 to 22 5 
from four sites in the United States. We selected this dataset as the discovery dataset for 6 
developmental analyses, given its broad age range coverage. Initially, demographic, cognitive, and 7 
neuroimaging data from 653 participants were obtained from the NIMH Data Archive (NDA) 8 
Lifespan HCP-D release 2.0. From this initial pool, we excluded 20 participants due to incomplete 9 
diffusion magnetic resonance imaging (dMRI) data and 10 participants due to anatomical anomaly. 10 
Additionally, 18 participants under 8 years of age were excluded due to the small sample size and 11 
big head motion often reported in this age group (Greene et al., 2018). An additional 14 participants 12 
were excluded due to excessive head motion during dMRI scanning, identified by mean framewise 13 
displacement (FD) exceeding the mean plus three standard deviations (SD)(Pines et al., 2020). 14 
Ultimately, we included 590 participants (273 males, aged 8.1–21.9) from the HCP-D. Written 15 
informed consent and assent were obtained from participants over 18 years of age and parents of 16 
participants under 18 years by the WU-Minn HCP Consortium. All research procedures were 17 
approved by the institutional review boards at Washington University (IRB #201603135). 18 

The second dataset was from the Adolescent Brain Cognitive Development (ABCD) 19 
study(Casey et al., 2018). The ABCD study recruited and followed approximately 10,000 children 20 
aged 9 to 10 years across the United States. Up to the beginning of data analyses of the current 21 
study, the ABCD study had released neuroimaging data from the baseline and 2-year follow-up, 22 
covering ages 8.9 to 13.8 years. We selected this dataset as a replicated dataset for developmental 23 
analyses and also used it for cognitive analyses. Furthermore, given the ABCD dataset recruited 24 
participants with various psychiatric disorders, we performed psychopathological analyses using 25 
this dataset. We accessed neuroimaging data from the ABCD fast-tract portal in June 2022, and 26 
demographic, cognitive, and psychopathological measures from the ABCD release 5.1. The 27 
imaging data were acquired using scanners from SIEMENS, PHILIPS, or GE manufacturers. Our 28 
study exclusively utilized data from SIEMENS scanners, encompassing 5,803 scans from baseline 29 
and 4,547 scans from the 2-year follow-up, each including dMRI, associated field map, and T1-30 
weighted imaging (T1WI). This decision aimed to mitigate bias from manufacturer variations and 31 
reduce computational costs. We selected the SIEMENS manufacturer because most data were 32 
collected by scanners from this manufactuer in the ABCD study. From these scans, we applied 33 
various exclusion criteria including: 1) not meeting the official imaging recommended inclusion 34 
criteria outlined in the release 4.0 notes (we adopted criteria from release 4.0 because release 5.1 35 
was not available when the MRI processing was conducted.); 2) incomplete dMRI data or failure 36 
in unzip or format conversion process; 3) lack of parental fluency in English or Spanish; 4) lack 37 
of proficiency in English; 5) diagnosis of severe sensory, intellectual, medical or neurological 38 
issues; 6) prematurity or low birth weight (N = 2,350); 7) having contraindications to MRI 39 
scanning; 8) invalid data regarding age and sex; 9) failure in data processing; 10) excessive head 40 
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motion (mean FD > Mean + 3×SD). The criteria regarding demography and healthy conditions 1 
came from a prior study(Garavan et al., 2018). After applying these criteria, we included a total of 2 
7,104 eligible scans for the subsequent analyses, comprising 3,949 from baseline (2,075 males, 3 
aged 8.9–11.0) and 3,155 from 2-year follow-up (1,701 males, aged 10.6–13.8). The study protocol 4 
was approved by the institutional review board of the University of California, San Diego (IRB# 5 
160091). Before participation, parents or legal guardians provided written informed consent, and 6 
children provided verbal assent. 7 

The flow charts of HCP-D and ABCD participant inclusion and exclusion are presented in 8 
Figure S1, S2. Additional demographic details for the included datasets are available in Table S1, 9 
S2. 10 

 11 

Cognitive assessment 12 

Both the HCP-D and ABCD studies assessed participants’ cognitive abilities using NIH 13 
Toolbox Cognition Battery. This battery evaluates five fluid cognitive functions: flanker inhibitory 14 
control and attention, list sorting working memory, dimensional change card sort, picture sequence 15 
memory, and pattern comparison processing speed. Both datasets generated a composite score 16 
from these five cognitive measurements to reflect participants’ fluid cognition (Akshoomoff et al., 17 
2013). Specifically, based on the NIH Toolbox national norms, raw scores from each task were 18 
converted into normally distributed standard scores, with a mean of 100 and a standard deviation 19 
of 15. These standardized scores were then averaged, and the resulting average score was re-20 
standardized to acquire the composite score of fluid cognition (Weintraub et al., 2013). We utilized 21 
the standard score without age correction in analyses of both the HCP-D and ABCD datasets. 22 

 23 

Psychopathology assessment 24 

Prior studies on dimensional psychopathology have identified a general psychopathology 25 
factor (also referred to as ‘p-factor’), which represents a shared vulnerability to broad psychiatric 26 
symptoms and accounts for the comorbidity across mental disorders(Caspi and Moffitt, 2018). The 27 
ABCD dataset constitutes a transdiagnostic dimensional sample covering a continuous spectrum, 28 
ranging from healthy participants to those at high risk for psychopathology, and participants 29 
diagnosed with at least one mental disorder. Therefore, we utilized this dataset for our 30 
psychopathological analyses. We utilized the score from the parent-report Child Behavior 31 
Checklist (CBCL) (Achenbach and Verhulst, 2009) as the psychopathological measurements for 32 
children from the ABCD study. The CBCL comprises 119 items describing emotional and 33 
behavioral symptoms in youth covering various Diagnostic and Statistical Manual of Mental 34 
Disorders (DSM) classifications. It has exhibited strong psychometric properties, making it a 35 
widely utilized tool in both clinical and research settings(Ebesutani et al., 2010). 36 

Moore and colleagues established a bifactor model for the general psychopathology factor 37 
using CBCL measurements from the ABCD study, demonstrating adequate reliability and validity 38 
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of this p-factor(Moore et al., 2020). This model utilized a total of 66 CBCL items and generated 1 
four independent psychopathology dimensions, including a general psychopathology factor (p-2 
factor) and three specific factors: internalizing, attention deficit hyperactivity disorder (ADHD), 3 
and conduct problems (Figure 7A). Based on this model structure, we conducted confirmatory 4 
bifactor analyses on the entire sample from the ABCD study in release 5.1 (baseline N = 11,860; 5 
1-year follow-up N = 11,201; 2-year follow-up N = 10,895; 3-year follow-up N = 10,095) using 6 
Mplus 8.3(Muthén and Muthén, 2017). We fitted the model using the entire sample to reduce bias 7 
due to subject selection or visit time on the item loadings. The model was stratified by sites and 8 
accounted for clusters of families, while constraining factor loadings to be equal across time points. 9 
The model exhibited acceptable fitting performance: the baseline model yielded a comparative fit 10 
index (CFI) of 0.96 (>0.90), a root mean square error of approximation (RMSEA) of 0.02 (<0.08), 11 
and a standardized root mean square residual (SRMR) of 0.06 (<0.08) referring to Hu and Bentler 12 
(1999) (Hu and Bentler, 1999). 13 

 14 

MRI acquisition 15 

MRI data in the HCP-D dataset were acquired using the same protocol on 3T SIEMENS 16 
Prisma scanners with a 32-channel head coil from four different acquisition sites. 3D T1-weighted 17 
imaging (T1WI) data with a resolution of 0.8 mm isotropic were scanned using Magnetization 18 
Prepared Rapid Gradient Echo (MPRAGE) sequence. Two sessions of dMRI with a voxel size of 19 
1.5 mm isotropic were acquired. The sessions used opposite phase-encoding directions to facilitate 20 
the correction of distortion induced by the Echo Planar Imaging (EPI) sequence used in dMRI 21 
scanning. Each session includes 185 diffusion directions with two b-values of 1,500 and 3,000 22 
s/mm2, along with 14 b = 0 s/mm2 images. Further details about MRI acquisition of the HCP-D 23 
have been described in the previous study(Harms et al., 2018). 24 

The MRI data from the ABCD dataset were acquired using 3T SIEMENS scanners across 13 25 
acquisition sites, with sequences harmonized across different sites. 3D T1WI data were acquired 26 
with a 1 mm isotropic resolution. The dMRI scans were acquired at a 1.7 mm isotropic resolution 27 
comprising 7 b = 0 s/mm2 frames and 96 diffusion directions across 4 shells of b = 500 s/mm2, 28 
1,000 s/mm2, 2,000 s/mm2 and 3,000 s/mm2. Additionally, fieldmap scans in the opposite phase-29 
encoding direction to dMRI were acquired for EPI distortion correction. Further details regarding 30 
MRI acquisition for the ABCD study have been provided in previous studies(Casey et al., 2018; 31 
Hagler et al., 2019). 32 

 33 

MRI data processing 34 

We acquired minimally processed T1WI from the HCP-D dataset and SIEMENS normalized 35 
T1WI from the ABCD dataset. Before our processing, the HCP-D T1WI underwent gradient 36 
distortion, anterior commissure-posterior commissure (ACPC) alignment, and readout distortion 37 
correction(Glasser et al., 2013). The ABCD T1WI underwent SIEMENS intensity normalization. 38 
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Initially, we applied the anatomical pipeline embedded in QSIPrep version 0.16.0 1 
(https://qsiprep.readthedocs.io/)(Cieslak et al., 2021) to the T1WI data from both datasets. 2 
QSIPrep is an integrative platform for preprocessing dMRI and structural imaging data and 3 
reconstructing white matter structural connectome (Cieslak et al., 2021) by incorporating tools 4 
from FSL(Jenkinson et al., 2012), DSI Studio (https://dsi-studio.labsolver.org/), 5 
DIPY(Garyfallidis et al., 2014), ANTs (https://stnava.github.io/ANTs/), and MRtrix3(Tournier et 6 
al., 2019). The anatomical pipeline conducted through ANTs included: 1) intensity non-uniformity 7 
correction; 2) removal of non-brain tissues; 3) normalization to the standard Montreal 8 
Neurological Institute (MNI) space. The skull-stripped T1WI in native space was used as the 9 
anatomical reference for the dMRI workflow. Normalization generated transformation matrices to 10 
register the atlas in MNI space to individual anatomical references. Next, the T1WI data were 11 
utilized to reconstruct surface and segment tissues through FreeSurfer(Fischl, 2012) 12 
(http://surfer.nmr.mgh.harvard.edu/). The surface pial and tissue segmentations would be used as 13 
anatomical constraints during the construction of the structural connectome. The HCP-D T1WI 14 
was processed based on the FreeSurfer workflow from the HCP processing pipelines(Glasser et 15 
al., 2013), while the ABCD T1WI were processed using the recon-all pipeline through FreeSurfer 16 
version 7.1.1. 17 

Raw dMRI data were acquired from both the HCP-D and ABCD datasets. We applied the 18 
dMRI pipeline embedded in the QSIPrep to the dMRI data from both datasets. The pipeline 19 
included: 1) aligning and concatenating runs of dMRI and associated field maps; 2) designating 20 
frames with a b-value less than 100 s/mm2 as b = 0 volumes; 3) Marchenko-Pastur principal 21 
component analysis (MP-PCA) denoising through MRtrix3’s dwidenoise function(Veraart et al., 22 
2016); 4) Gibbs unringing through MRtrix3’s mrdegibbs function(Kellner et al., 2016); 5) B1 bias 23 
correction through MRtrix3’s dwibiascorrect function(Tustison et al., 2010); 6) head motion, 24 
distortion and eddy current corrections through FSL’s eddy tool(Andersson et al., 2016); 7) 25 
coregistration to individual T1WI and realignment to ACPC orientation. During this process, 26 
distortion correction utilized b = 0 reference images with reversed phase encoding directions. 27 
Following the previous study(Power et al., 2014), the mean FD was calculated as the sum of the 28 
absolute values of the differentiated realignment estimates for each volume to estimate the head 29 
motion during the dMRI scans. 30 

 31 

Reconstruction of structural connectome 32 

For each scan, whole-brain probabilistic fiber tracking was conducted on the preprocessed 33 
dMRI using MRtrix3(Tournier et al., 2019). Multi-sell multi-tissue constrained spherical 34 
deconvolution (CSD) was utilized to estimate the fiber orientation distribution (FOD) for each 35 
voxel through MRtrix3(Jeurissen et al., 2014). We employed the anatomically constrained 36 
tractography (ACT) framework based on the hybrid surface and volume segmentation (HSVS) 37 
algorithm to enhance the biological accuracy of fiber reconstruction(Smith et al., 2020; Smith et 38 
al., 2012). The surface pial and tissue segmentations constructed by FreeSurfer provided tissue 39 
anatomical information. Within the ACT framework, FOD-based tractography (iFOD2 algorithm) 40 
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was performed using the tckgen function(Tournier et al., 2010), generating 10 million streamlines 1 
with lengths ranging from 30 to 250 mm. To match the streamline densities with fiber densities 2 
estimated by CSD, the streamlines were filtered based on the spherical deconvolution of the 3 
diffusion signal using the tcksift2 function(Smith et al., 2015b). Next, we constructed structural 4 
connectivity matrices based on the Schaefer-400 atlas(Schaefer et al., 2018) using the 5 
tck2connectome function(Hagmann et al., 2008). Due to the low diffusion signal-to-noise ratio 6 
reported(Concha et al., 2005), limbic regions were removed from the atlas, leaving 376 regions. 7 

For the 376×376 connectomes across individuals, we applied a consistency-based 8 
thresholding method(Roberts et al., 2017) to mitigate the presence of spurious streamlines arising 9 
from probabilistic tractography. We computed the coefficient of variation (CV) for each edge 10 
across different scans from each dataset. Edge weights were determined by the streamline number 11 
scaled by pairwise nodes' volume. Following previous studies(Baum et al., 2020; Ge et al., 2023), 12 
we generated a binary mask for each dataset to filter the spurious streamlines based on the 13 
threshold at the 75th percentile of CV.  14 

Large-scale structural connectivity connectomes with larger-size nodes have demonstrated 15 
higher reproducibility and biological validity than connectomes with finer nodes(Cammoun et al., 16 
2012; Chen et al., 2015; Sotiropoulos and Zalesky, 2019). Consequently, we computed large-scale 17 
structural connectivity matrices based on the 376×376 connectomes for the following statistical 18 
analyses. Previous studies on large-scale brain networks typically parcellated the cortex into 7 or 19 
17 systems (Hermosillo et al., 2024; Power et al., 2011; Yeo et al., 2011). Here, we selected a 20 
resolution of 12 cortical systems as the median value of this range. We also evaluated 7 or 17 21 
systems in the sensitivity analyses to demonstrate the robustness of our findings. Particularly, we 22 
first ordered the 376 regions according to their position in the sensorimotor-association (S-A) 23 
cortical axis and then evenly partitioned the regions into 12 large-scale systems, each comprising 24 
32 or 31 regions along the S-A cortical axis. The S-A cortical axis was derived from a multitude 25 
of cortical features to capture a cortical hierarchical gradient from lower-order unimodal areas to 26 
higher-order transmodal areas(Sydnor et al., 2021). Then, we computed the structural connectivity 27 
strength as the number of streamlines connecting two large-scale systems normalized by the 28 
volume of the paired systems. During this process, the spurious streamlines were removed based 29 
on the binary mask defined by the consistency threshold. Finally, we obtained a 12×12 large-scale 30 
structural connectome matrix containing 78 structural connections for each participant. 31 

 32 

Development of structural connectivity strength in youth 33 

We first evaluated the connectome-wide spatial variation in developmental trajectories of 34 
structural connectivity strength during youth. All statistical analyses were performed in R4.1.0. 35 
We fitted the developmental models for 78 large-scale structural connections in both the HCP-D 36 
and ABCD datasets. We utilized general additive models (GAMs) for the cross-sectional HCP-D 37 
dataset and general additive mixed models (GAMMs) for the longitudinal ABCD dataset to 38 
flexibly capture linear and non-linear age-related changes in structural connectivity strength. The 39 
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models were fitted using mgcv (Wood, 2017) and gamm4 package(Wood, 2014). For each model, 1 
we set structural connectivity strength as the dependent variable, with age as a smooth term, and 2 
sex and mean FD as covariates, as shown in equation (1). Per-participant random intercepts were 3 
additionally included in the GAMMs. Smooth plate regression splines served as the basic function 4 
of the smooth term, and the restricted maximal likelihood approach was used to estimate 5 
smoothing parameters. Based on previous neurodevelopmental studies in youth(Baum et al., 2022; 6 
Sydnor et al., 2023), we selected the degree of freedom of the smooth function (k) as 3 to prevent 7 
overfitting. We additionally calculated the Akaike Information Criterion (AIC) for GAMs or 8 
GAMMs with k values ranging from 3 to 6 to assess the model fitting performance. Consistent 9 
with previous studies(Baum et al., 2022; Sydnor et al., 2023), the optimal fits for most models 10 
were observed at a k value of 3, confirming the suitability of k = 3. 11 

Structural connectivity strength ~ s(Age, k = 3) +Sex + Mean_FD           (1) 12 

For each model, we evaluated the significance of the age effect by comparing the full model 13 
with a null model lacking the age term(Sydnor et al., 2023) using parametric bootstrap testing via 14 
analysis of variance for GAMs and parametric bootstrap testing via the likelihood ratio test statistic 15 
for GAMMs with 1,000 simulations(Larsen and Luna, 2018). The model comparisons were 16 
supported by the ecostats(Warton, 2022) and pbkrtest(Halekoh and Højsgaard, 2014) packages. 17 
The P values were then adjusted using the false discovery rate (FDR) correction, with a significant 18 
threshold set at 0.05. We calculated the first derivative of the age smooth function for each model 19 
using the gratia package(Simpson, 2021) to assess the change rate of structural connectivity 20 
strength. The first derivatives were computed for 1,000 age points sampled at equal intervals within 21 
the age span. For derivatives at each age point, we computed the P values of the derivatives based 22 
on the 95% confidence interval and then adjusted the P values using the FDR method for 78 models. 23 
Age windows of significant development were identified when the first derivative had a PFDR < 24 
0.05. To assess the overall age effect, we calculated the partial R2 between the full and null models 25 
and then assigned the sign based on the average first derivative of the smooth function(Sydnor et 26 
al., 2023). 27 

To visualize the developmental trajectory of structural connectivity strength for each 28 
connection, we predicted the model fits for 1,000 age points sampled at equal intervals within the 29 
age span. Covariates were set at the median for numerical variables and the mode for categorical 30 
variables. The structural connectivity strength was normalized by dividing the initial strength at 31 
the youngest age (HCP-D: 8.1 years; ABCD: 8.9 years) within the age span for visualization, 32 
termed as structural connectivity strength ratio. As shown in Figure 2B, we observed heterogeneity 33 
in the curvature of the developmental trajectories. To highlight this heterogeneity, we standardized 34 
the fits (z-scored) across the age span for each connection. The fiber bundle diagrams shown in 35 
Figure 2E, F were generated using DSI studio (https://dsi-studio.labsolver.org/). 36 

As we observed heterogeneity in the curvature of developmental trajectories, we computed 37 
the average second derivatives of age via central finite differences to quantify this curvature. A 38 
positive value of the average second derivative indicates a concave upward trajectory, while a 39 
negative value indicates a concave downward trajectory. The greater the absolute value, the greater 40 
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the degree of curvature. Notably, there is significant variability in the average weights of structural 1 
connectivity strength across the connectome, ranging from 0.4 to 12.3. It is important to recognize 2 
that a higher first or second derivative does not necessarily imply a greater change rate or curvature 3 
of trajectory relative to the connection’s initial strength. For instance, a connection starting with 4 
an initial strength of 0.5 and a first derivative of 0.1 will evolve faster than a connection with an 5 
initial strength of 5 and a first derivative of 0.2, relative to their starting points. To address this 6 
issue, we normalized the structural connectivity strength of each connection by its fitted value at 7 
the youngest age within the dataset's age span, resulting in a structural connectivity strength ratio 8 
relative to its initial strength. We then computed the first and second derivatives on the models 9 
with the structural connectivity strength ratio as the dependent variable. This normalization process 10 
does not alter the significance or magnitude of the age effect. 11 

 12 

Definition of the S-A connectional axis 13 

The S-A cortical axis provided a framework to characterize the heterochrony of postnatal 14 
regional neurodevelopment, suggesting that many cortical features progress along the S-A cortical 15 
axis during childhood and adolescence(Baum et al., 2022; Luo et al., 2024; Sydnor et al., 2023). 16 
Building upon this, we aimed to investigate whether the development of structural connectivity 17 
strength unfolds along the S-A axis in terms of connections. As shown in equation (2), we defined 18 
the element (Ci,j) between nodei and nodej in the matrix of the S-A connectional axis as the 19 
quadratic sum of the S-A cortical axis ranks of nodei and nodej. Next, we computed the ranks of C 20 
as the S-A axis connectional rank. 21 

Ci,j= Node_ranki
2+Node_rankj

2                     (2) 22 

This definition was based on the hypothesis that connections between high-order regions on 23 
the cortical axis occupy higher positions on the S-A connectional axis. We did not adopt 24 

Node_ranki+Node_rankj  because the simple addition resulted in many identical values in the 25 

ranking. In the context of a 12×12 large-scale connectome, the S-A connectional axis rank ranges 26 
from 1 to 78. 27 

 28 

Developmental alignment with the S-A connectional axis 29 

The main goal of this study is to determine if the spatial variation of structural connectivity 30 
development aligns with the S-A connectional axis. To achieve this, we utilized Spearman’s rank 31 
correlation to evaluate the concordance and its significance between the S-A connectional axis 32 
rank and both 1) the magnitude and direction of developmental effects (partial R2) and 2) the 33 
curvature of the developmental trajectories (average second derivative). To depict developmental 34 
trajectories along the S-A connectional axis continuously, we divided the S-A connectional axis 35 
into 10 decile bins, with each bin consisting of 7 or 8 large-scale structural connections. We then 36 
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calculated the average age within each bin and subsequently normalized these averages using z-1 
scores (Figure 3D). 2 

To comprehensively understand how alignment evolves across the youth, we performed an 3 
age-resolved analysis of the alignment between the developmental change rates of connectivity 4 
strength and the S-A connectional axis((Luo et al., 2024; Sydnor et al., 2023). We calculated the 5 
first derivative to measure the developmental change rates. This approach enabled us to capture 6 
the evolving alignment of development with the S-A connectional axis across the targeted age span. 7 
To determine the correlation coefficient and 95% credible interval for these age-specific 8 
correlation values, we initially sampled 1,000 times from the specified multivariate normal 9 
distribution of the independent variables’ coefficients for each connectional model. We then 10 
generated the posterior derivatives at 1,000 age points based on the posterior distribution of each 11 
connectional fitted model. Subsequently, we repeated the process of correlating the S-A 12 
connectional axis rank with 1,000 draws of the posterior derivative of the age smooth function at 13 
each of the 1,000 age points. The resultant distribution of correlation coefficients was utilized to 14 
determine the median and 95% credible interval of alignment at each age point. Additionally, we 15 
employed the sampling distribution of age-specific S-A connectional axis correlation values to 16 
identify the age at which the alignment flipped from negative to positive. This involved calculating 17 
the age at which the axis correlation was closest to zero across all 1,000 draws and reporting the 18 
median along with the 95% credible interval.  19 

Based on the age-resolved analysis, we found a transition age of 15.5 years at which the 20 
alignment of developmental effects with the S-A connectional axis shifts from negative to positive 21 
in the HCP-D dataset. To test whether the overall structural connectivity developmental effects 22 
differ spatially before and after this critical age, we split all participants into two subsets (younger 23 
subset: N = 355, aged 8.1–15.5 years; older subset: N = 235, aged 15.5–21.9 years). We re-24 
evaluated the developmental effects (partial R2) of structural connectivity strength for the two 25 
subsets separately using GAMs with the same parameters as those used for the full sample. Then, 26 
we utilized Spearman’s rank correlation analysis to test the alignment of the overall developmental 27 
effects (partial R2) with the S-A connectional axis in the two subsets. Notably, we expected the 28 
replicated results from the ABCD dataset to be consistent with those found in the younger subset 29 
of the HCP-D because the age span of ABCD participants (8.9–13.8 years) was within the 8.1 to 30 
15.5 years range. 31 

 32 

Associations between structural connectivity strength and higher-order cognitions 33 

Associations between fluid cognition and structural connectivity strength were examined 34 
within both the HCP-D and ABCD datasets. Due to the lack of measurements for working memory 35 
and flexibility, which are components of fluid cognition, in the 2-year follow-up data of the ABCD 36 
study, only baseline data from the ABCD dataset were included in the cognitive analyses. We 37 
employed GAMs to assess the relationships between the structural connectivity strength and fluid 38 
cognition ability for each connection, controlling for age, sex, and mean FD. The equation for 39 
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GAMs is shown below (equation (3)).  1 

Structural connectivity strength ~ Fluid cognition + s(Age, k = 3) + Sex + Mean_FD   (3) 2 

The T values of the fluid cognition indicate the magnitude and direction of the association, 3 
and its significance was determined by comparing the full model with a null model lacking the 4 
cognition term. GAM comparisons utilized parametric bootstrap testing via analysis of variance 5 
with 1,000 simulations, facilitated by the ecostats package(Warton, 2022). The P values were then 6 
FDR corrected across all the 78 connections. We next evaluated the alignment of association 7 
magnitude and direction with the S-A connectional axis rank across all connections through 8 
Spearman’s correlation analysis.  9 

Furthermore, we depicted the developmental trajectories by different levels of fluid cognition 10 
to elucidate how structural connectivity strength evolved in individuals with varying cognition 11 
levels. To do this, we fitted an age-by-cognition interaction model for each connection controlling 12 
for sex, and mean FD (see equation (4) for the formula).  13 

Structural connectivity strength ~ s(Age, by = Fluid cognition, k = 3) + s(Age, k = 3) + 14 

Sex + Mean_FD                           (4) 15 

For this age-by-cognition interaction analysis, we included both the observations from 16 
baseline and 2-year follow-up of the ABCD dataset and utilized baseline fluid cognition as the by-17 
item to fit GAMM models. Using the acquired models, we estimated structural connectivity 18 
strength by assigning cognitive performance as low and high levels respectively. To define these 19 
levels, we used the 10th percentile of baseline cognitive performance for the low level, and the 20 
90th percentile for the high level. We then averaged trajectories for low and high cognition levels 21 
independently within deciles of the S-A connectional axis for visualization purposes. 22 

 23 

Psychopathological associations with structural connectivity strength 24 

We further evaluated the associations between the general psychopathological factor, p-factor, 25 
and structural connectivity strength. These psychopathological analyses were conducted only in 26 
the ABCD dataset, as the ABCD study included participants with various psychiatric disorders 27 
diagnoses. The associations were evaluated through GAMMs while controlling age, sex, and mean 28 
FD. See below for the equation (5).  29 

Structural connectivity strength ~ p-factor + s(Age, k = 3) + Sex + Mean_FD     (5) 30 

Similar to cognitive analysis, the T value of the structural connectivity strength term indicates 31 
the magnitude and direction of the association between fluid cognition and structural connectivity, 32 
and its significance was determined by comparing the full model with a null model lacking the p-33 
factor term. GAMM comparisons employed a parametric bootstrap method utilizing the likelihood 34 
ratio test statistic with 1,000 simulations, supported by the pbkrtest package(Halekoh and 35 
Højsgaard, 2014). FDR correction was utilized to adjust P values. To evaluate the alignment of 36 
psychopathological associations with the S-A connectional axis rank, we performed Spearman’s 37 
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rank correlation analysis. 1 

Subsequently, we further depicted the developmental trajectories by different levels of p-2 
factors to elucidate how developmental trajectories of structural connectivity strength differed 3 
between individuals with varying severity of general psychiatric symptoms. To achieve this, we 4 
modeled age-dependent changes in structural connectivity strength as a function of p-factors (see 5 
equation (6)).  6 

Structural connectivity strength ~ s(Age, by = p-factor, k = 3) + s(Age, k = 3) + 7 

 Sex + Mean_FD                            (6) 8 

Based on this model, we estimated structural connectivity strength by assigning p-factor as 9 
low and high levels respectively. To define these levels, we used the 10th percentile of the p-factor 10 
for the low level, which represents no or mild psychiatric symptoms, and the 90th percentile for 11 
the high level, which represents severe psychiatric symptoms. We then averaged trajectories for 12 
low and high p-factor levels independently within deciles of the S-A connectional axis for 13 
visualization purposes.  14 

 15 

Correction for multi-site batch effects 16 

Data in the HCP-D and ABCD datasets were collected from multi-acquisition sites. The 17 
ComBat harmonization technique has been shown to be effective in reducing batch effects in 18 
neuroimaging studies(Fortin et al., 2017; Middleton et al., 2023). In this study, we applied the 19 
ComBat method using an empirical Bayes framework(Johnson et al., 2007; Larsen et al., 2020) on 20 
each of the 78 connections with acquisition sites as the batch effect. Additionally, age, sex and 21 
mean FD were included as covariates, where age was modeled as a smooth term using GAM or 22 
GAMM. For cognitive and psychopathological analyses, fluid cognition and the p-factor were also 23 
included in models, so these two variables were additionally added as covariates separately in the 24 
ComBat processing for these analyses. 25 

 26 

Sensitivity analyses 27 

We performed a series of sensitivity analyses to ascertain the robustness of our findings. The 28 
first sensitive analysis aimed to test whether the resolution of large-scale structural connectome 29 
would affect the results. Rather than parcellating the cortex into 12 cortical systems, we acquired 30 
a cortical parcellation of 7 or 17 systems. We next computed the structural connectome with 28 31 
connections among 7 systems, as well the connectome with 153 connections among 17 systems, 32 
per scan. We next repeated all the analyses with the connectome of these two resolutions.   33 

Second, as the Euclidean distance between regions could impact the structural connectivity 34 
strength, we evaluated whether this distance would confound our findings. To do this, we regressed 35 
the Euclidean distance of pairwise systems in the MNI space from the acquired effect size matrix 36 
of age, cognitive, and psychopathological effects of structural connectivity strength. 37 
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Third, we examined whether our findings were confounded by socioeconomic status (SES) 1 
or intracranial volume (ICV). SES was measured by the family income-to-needs ratio as prior 2 
research(Barch et al., 2022; King et al., 2020). The family income-to-needs ratio was computed as 3 
the annual family income divided by the federal poverty line from the Federal Register by the U.S. 4 
Department of Health and Human Services (https://aspe.hhs.gov/topics/poverty-economic-5 
mobility/poverty-guidelines/prior-hhs-poverty-guidelines-federal-register-references). The 6 
intracranial volume was computed via FreeSurfer. Individuals’ SES or ICV were added as 7 
additional covariates when evaluating the associations between structural connectivity strength 8 
and age, cognition, or psychopathology. 9 

 10 

Data and code availability 11 

The HCP-Development 2.0 Release data used in this report came from DOI: 12 
10.15154/1520708 via the NDA (https://nda.nih.gov/ccf). The ABCD 5.1 data release used in this 13 
report came from DOI: 10.15154/z563-zd24 via the NDA (https://nda.nih.gov/abcd). The fast-14 
track data from the ABCD Study data is also available through the NDA. All analysis methods are 15 
described in the main text and supplementary materials. All codes used to perform the analyses in 16 
this study and the statistical magnitudes derived from analyses can be found at 17 
https://github.com/CuiLabCIBR/SCDevelopment.git. All analysis methods are described in the 18 
main text and supplementary materials. 19 
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